Efficient Algorithms and Datastructures I

Question 1 (10 Points)

The mean M of a set of k integers $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ is defined as

$$
M=\frac{1}{k} \sum_{i=1}^{k} x_{i}
$$

We want to maintain a data structure D on a set of integers under the normal INIT, INSERT, DELETE, and FIND operations, as well as a MEAN operation, defined as follows:

1. $\operatorname{INIT}(D)$: Create an empty structure D.
2. $\operatorname{INSERT}(D, x)$: Insert x in D.
3. $\operatorname{DELETE}(D, x)$: Delete x from D.
4. $\operatorname{FIND}(D, x)$: Return pointer to x in D.
5. MEAN (D, a, b) : Return the mean of the set consisting of elements x in D with $a \leq x \leq b$.

Describe how to modify a standard red-black tree in order to implement D, such that INIT is supported in $O(1)$ time and INSERT, DELETE, FIND, and MEAN are supported in $O(\log n)$ time.

Question $2(10$ Points)

In double hashing, if we use the hash function $h(k, i)=\left(h_{1}(k)+i h_{2}(k)\right) \bmod m$, show that when m and $h_{2}(k)$ have greatest common divisor $d \geq 1$ for some key k, then an unsuccessful search for key k examines $\frac{1}{d}$ th of the hash table before returning to slot $h_{1}(k)$.
(Note: When $d=1$, i.e. when m and $h_{2}(k)$ are relatively prime, the search may examine the entire hash table.)

Question 3 (10 Points)

Let $U=\{0, \ldots, p-1\}$ for a prime p. For $x \in \mathbb{Z}_{p}$, define the hash function $h_{a, b}(x)$ as

$$
h_{a, b}(x)=(a x+b \quad \bmod p) \quad \bmod n
$$

Consider the class of hash functions

$$
\mathcal{H}=\left\{h_{a, b} \mid a, b \in \mathbb{Z}_{p}\right\}
$$

(a) Show that \mathcal{H} is not universal.
(b) Show that \mathcal{H} is $(1.1,2)$ independent for p sufficiently large.
(c) Why would you not choose \mathcal{H} as a class of hash functions?

