Efficient Algorithms and Datastructures I

Question 1 (10 Points)

Consider the following Binomial Heaps:
Heap A:

24
Heap B:

Carry out the following operations sequentially on the heaps and show them after each operation(always carry out each operation on the result of the previous operation):

1. merge (A, B)
2. deleteMin()

Question $2(10$ Points)

We say that $f(n)=\stackrel{\infty}{\Omega}(g(n))$ if there exists a positive constant c such that $f(n) \geq \operatorname{cg}(n) \geq 0$ for infinitely many integers n. Find inputs that cause DELETE-MIN, DECREASE-KEY, and DELETE to run in $\Omega(\log n)$ time for a binomial heap. Explain why the worst-case running times of INSERT, MINIMUM, and MERGE are ${ }_{\Omega}^{\infty}(\log n)$ but not $\Omega(\log n)$ for a binomial heap.

Question 3 (10 Points)

n motorcyclists $M_{1}, M_{2}, \ldots, M_{n}$ start riding their bikes from a (straight) start line. At the start M_{i} and M_{i+1} are adjacent to each other. Each motorcyclist M_{i} starts at some angle ϕ_{i} and keeps riding in a straight line along this direction at a constant speed $s_{i}>0$. Whenever a motorcyclist M_{j} comes across the path traversed by any other motorcyclist M_{i}, we say that M_{i} defeated M_{j} and in that case, M_{j} stops riding.
(a) We call the point where M_{i} defeats M_{j} as the point of ambush $A_{i, j} \in \mathbb{R}^{2}$. Show that if $A_{i^{\prime}, j^{\prime}}$ is a point of ambush which occurs closest to the start line, then i^{\prime} and j^{\prime} are consecutive integers.
(b) Show how to enumerate in $O(n \log n)$ time, all events where one motorcyclist defeats another.

Question 4 (10 Points)

Give a sequence of m MAKESET, UNION and FIND operations, n of which are MAKESET operations, that take $\Omega(m \log n)$ time when we use union by rank only.

