Parallel Algorithms

Due date: November 27th, 2013 before class!

Problem 1 (10 Points)

1. Show that the odd-even merge algorithm works correctly.
2. Formally derive the odd-even merge sorting network and its depth and size.

Problem 2 (10 Points)

Recall: A binary sequence is bitonic if it is a concatenation of two subsequences such that one is monotonically increasing and the other is monotonically decreasing, or vice versa. A sequence $X=\left(x_{0}, \ldots, x_{n-1}\right)$ is bitonic if, for some $j<n$, we have

$$
\begin{aligned}
& x_{j \bmod n} \leq x_{(j+1) \bmod n} \leq \cdots \leq x_{\ell \bmod n} \text { and } \\
& x_{(\ell+1) \bmod n} \geq x_{(\ell+2) \bmod n} \geq \cdots \geq x_{(j+n-1) \bmod n}
\end{aligned}
$$

for some ℓ. That is, the circle $x_{0} \rightarrow x_{1} \rightarrow \cdots \rightarrow x_{n-1} \rightarrow x_{0}$ can be partitioned into two monotonic parts.
Show the zero-one principle for bitonic sequences: An n-input comparator network is a bitonic merging network if and only if it merges correctly all binary bitonic sequences of length n.

Problem 3 (10 Points)

Show that a bitonic merging network can be constructed as follows:

- Given a bitonic sequence, merge $\left(x_{1}, x_{3}, x_{5}, \ldots\right)$ and $\left(x_{2}, x_{4}, x_{6}, \ldots\right)$ in bitonic mergers whose lines are interleaved,
- compare and interchange the outputs in pairs, beginning with the least significant pairs.

Problem 4 (10 Points)

Recall that there exists a sorting network that sorts n elements with depth $\mathcal{O}(\log n)$ and size $\mathcal{O}(n \log n)$, namely the AKS network.
Using the AKS sorting network, show that sorting n elements can be done in $\mathcal{O}\left(\frac{\log n}{\log \left(1+\frac{p}{n}\right)}\right)$ parallel steps on the parallel comparison tree model of degree $p \geq n$.
Hint: Shrink each $t=\frac{1}{2} \log \left(1+\frac{p}{n}\right)$ steps into a single step on the parallel comparison tree model.

