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And finally, removing ε-transitions, we obtain:
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2.4 NFA-ε to regular expressions

Preprocessing:
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Processing:
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Postprocessing (if necessary):
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3. Minimization and Reduction

In this section, we are going to look at the problem of constructing minimal size DFA’s
for a given regular language, or reducing the size of an NFA without changing the
language it accepts.
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Example 13
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3.1 Residual

Definition 14
Let L ⊆ Σ∗ be a language, and w ∈ Σ∗ a word. The w-residual of L is the language

Lw := {u ∈ Σ∗; wu ∈ L} .

A language L′ ⊆ Σ∗ is a residual of L if L′ = Lw for at least one w ∈ Σ∗.

We note that:
(Lw)u = Lwu .
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Relation between residuals and states:
Let A be a DFA and q a state of A.

Definition 15
The state-language LA(q) (or just L(q)) is the language recognized by A with q as
initial state.

We remark:

State-languages are residuals. For every state q of A, L(q) is a residual of L(A).

Residuals are state-languages. For every residual R of L(A), there is a state q
such that R = L(q).
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Important consequence:

A regular language has finitely many residuals,

and, equivalently,

languages with infinitely many residuals are not regular.
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Canonical DFA for a regular language:

Definition 16
Let L ⊆ Σ∗ be a formal language. The canonical DFA for L is the DFA
CL := (QL,Σ, δL, q0L, FL) given by

QL is the set of residuals of L, i.e., QL = {Lw; w ∈ Σ∗}
δ(K, a) = Ka for every K ∈ QL and a ∈ Σ

q0L = L, and

FL = {K ∈ QL ; ε ∈ K}

AFS 3.1 Residual 58/431
c©je/ewm



Theorem 17
The canoncial DFA for L recognizes L.

Proof.
Let w ∈ Σ∗. We show by induction on |w| that w ∈ L iff w ∈ L(CL).

ε ∈ L (w = ε)
⇐⇒ L ∈ FL (definition of FL)
⇐⇒ q0L ∈ FL (q0L = L)
⇐⇒ ε ∈ L(CL) (q0L is the initial state of CL)

aw′ ∈ L
⇐⇒ w′ ∈ La (definition of La)
⇐⇒ w′ ∈ L(CLa) (induction hypothesis)
⇐⇒ aw′ ∈ L(CL) (δL(L, a) = La)
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Definition 18
Let L ⊆ Σ∗ be a formal language. Define the relation ≡L⊆ Σ∗ × Σ∗ by

x ≡L y ⇔ (∀z ∈ Σ∗)[xz ∈ L⇔ yz ∈ L]

Lemma 19
≡L is a right-invariant equivalence relation.

Here right-invariant means:

x ≡L y ⇒ xu ≡L yu for all u .

Proof.
Clear!
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Theorem 20 (Myhill-Nerode)

Let L ⊆ Σ∗. Then the following are equivalent:

1 L is regular

2 ≡L has finite index (= number of equivalence classes)

3 L is the union of some of the finitely many equivalence classes of ≡L.
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Proof.
(1)⇒(2):

Let L = L(A) for some DFA A = (Q,Σ, δ, q0, F ).

Then we have
δ̂(q0, x) = δ̂(q0, y) ⇒ x ≡L y .

Thus there are at most as many equivalence classes as A has states.
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Proof.
(2)⇒(3):

Let [x] be the equivalence class of x, y ∈ [x] and x ∈ L.

Then, by the definition of ≡L, we have:

y ∈ L
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Proof.
(3)⇒(1):
Define A′ = (Q′,Σ, δ′, q′0, F

′) with

Q′ := {[x]; x ∈ Σ∗} (Q′ finite!)

q′0 := [ε]

δ′([x], a) := [xa] ∀x ∈ Σ∗, a ∈ Σ (consistent!)

F ′ := {[x]; x ∈ L}

Then:
L(A′) = L
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