Automaten und formale Sprachen

Last Name	First Name	Matriculation No.	Signature

General Information

- Please fill in the fields above and write your name and matriculation number on all extra supplementaries provided.
- Please keep your student's card and an identity card available.
- Do not use pencils! Do not use red or green ink!
- You are not allowed to use any device other than your pens and a double-sided handwritten A4 sized paper.
- You have 180 minutes to answer the questions.

Left Lecture Hall from to / from to
Submitted early at
Special notes:

	A 1	A 2	A 3	A 4	A 5	A 6	A 7	A 8	Σ	Examiner
Points	8	5	6	6	10	6	10	9	60	
$1^{\text {st }}$ correction										
$2^{\text {nd }}$ correction										

Problem 1 (8 Points)

Answer the following questions in one or two short sentences. If the answer is 'yes' or 'no' please justify your choice briefly.
a) Which words does the language $\mathcal{L}\left(\emptyset^{*}\right)$ contain?
b) Which words does the ω-language $\mathcal{L}\left(\emptyset^{\omega}\right)$ contain?
c) Why do regular languages have finitely many residuals?
d) Are finite ω-languages always ω-regular?
e) Are finite languages of finite words always regular?
f) Are regular languages equivalent to type-0 languages in the Chomsky hierarchy?
g) Are DBAs and NRAs equally expressive?
h) Are the following statements equivalent?
(1) The set of states $F=\left\{q_{1}, q_{2}, \ldots, q_{k}\right\}$ is visited infinitely often
(2) $\exists i \in\{1, \ldots, k\}: q_{i}$ is visited infinitely often
i) Bonus-question: In which year was Mojzesz Presburger born and who mentored his MA-Thesis?

Problem 2 (5 Points)

Prove or disprove:
(a) $L_{1}=\left\{w \in\{a, b\}^{*} \mid a b w=w b a\right\}$ is regular.
(b) $L_{2}=\left\{a^{n} b^{m} \mid n \leq 10^{9} \wedge m \leq 10^{n}\right\}$ is regular.
(c) $L_{3}=\left\{w \in\{a, b,(,)\}^{*} \mid\right.$ The numbers of opening and closing brackets in w are equal $\}$ is regular.
(d) $L_{4}=\left\{w \in\{a, b, c\}^{\omega} \mid\right.$ If $a \in \inf (w)$ then $\left.c \notin \inf (w)\right\}$ is ω-regular.
(e) $L_{5}=\left\{w \in\{a, b, c\}^{\omega} \mid\right.$ For all finite prefixes v of w the number of a in v equals the number of $b \mathrm{~s}$ in v.$\} is \omega$-regular.

Remarks:

- A finite automaton recognizing a given language is regarded as a proof for regularity.
- You may use the fact that $\left\{a^{n} b^{n} \mid n \in \mathbb{N}\right\}$ is not regular.

Problem 3 (6 Points)

Consider the following regular expressions:

- $r_{1}=a b^{*}(a+b)^{*} c$
- $r_{2}=a\left(a+b c+c^{*}\right)^{*} a$
- $r_{3}=\Sigma^{*}(a b c+b c a+c a b) \Sigma^{*}$
(a) Describe in words the language induced by each regular expression above.
(b) Construct a finite automaton (NFA or DFA) for each regular expression above.
(c) Give an MSO-sentence for each regular expression above.

Problem 4 (6 Points)

The derivative of a language $L \subseteq \Sigma^{*}$ with respect to a symbol $a \in \Sigma$ is defined as:

$$
\frac{\delta L}{\delta a}=\{w \mid a w \in L\}
$$

(a) Show that if L is regular then $\frac{\delta L}{\delta a}$ is regular as well.
(b) Let $L_{1} \subseteq \Sigma^{*}$ and $L_{2} \subseteq \Sigma^{*}$ be regular languages. Show how to express the derivative of $L_{1} L_{2}$ with respect to a using the rule for the derivative of a single language above.

Problem 5 (10 Points)

For any given language $L \subseteq \Sigma^{*}$, let $L_{\text {pre }}$ (resp. $L_{s u f}$) denote the language containing all prefixes (resp. all suffixes) of the words in L.
(a) Given a finite automaton A s.t. $\mathcal{L}(A)=L$, construct a finite automaton B s.t. $\mathcal{L}(B)=\left(L_{\text {pre }}\right)_{\text {suf }}$.
(b) Let $r=(a b+a)^{*} c$ be a regular expression over $\Sigma=\{a, b, c\}$. Give a regular expression $r_{\text {pre,suf }}$ s.t. $\mathcal{L}\left(r_{\text {pre,suf }}\right)=\left(\mathcal{L}(r)_{\text {pre }}\right)_{\text {suf }}$.

Problem 6 (6 Points)

Let $L \subseteq \Sigma^{*}$ be a regular language. Show how to construct a transducer that accepts

$$
\begin{aligned}
L^{\prime}=\left\{\left(a_{1} a_{2} \ldots a_{n}, b_{1} b_{2} \ldots b_{n}\right) \mid\right. & a_{1} a_{2} \ldots a_{n} \in L \wedge \\
& b_{1} b_{2} \ldots b_{n} \in L \wedge \\
& \left.\exists c \in \Sigma^{n}: a_{1} b_{1} c_{1} a_{2} b_{2} c_{2} \ldots a_{n} b_{n} c_{n} \in L\right\} .
\end{aligned}
$$

Explain your construction.

Problem 7 (10 Points)

(a) Let $\Sigma=\{a, b, c\}$. Give an NBA, an NMA and an NRA for each of the following languages:
(1) $L_{1}=\{w \mid$ every b and c is preceded (not necessarily immediately) by an $a\}$
(2) $L_{2}=\{w \mid$ every b is preceded by an a and succeeded by a $c\}$ (as before, preceded/succeeded does not necessarily imply immediacy)
(b) Let A and B be two NBAs. We define the shuffle-product of two ω-languages as

$$
s\left(L_{1}, L_{2}\right)=\left\{w_{0}^{1} w_{0}^{2} w_{1}^{1} w_{1}^{2} \ldots \mid w^{1} \in L_{1} \wedge w^{2} \in L_{2}\right\}
$$

Show how to construct an NBA that recognizes the language $s(\mathcal{L}(A), \mathcal{L}(B))$. Explain your solution.

Problem 8 (9 Points)

Use the method from class to generate a finite automaton recognizing the solution space of the following Presburger formula. Include all intermediate steps. You may merge trap states at any point during the procedure.

$$
\forall x: x>1 \wedge x+y>2
$$

