Automata and Formal Languages

Due October 14, 2014 before class!
The purpose of this problem set is to repeat basic concepts already acquired in introductory courses.

Exercise 1 (Regular expressions - 10 points)

(a) Describe the regular languages induced by the following regular expressions in your own words:

- $r_{1}=0^{*} 10^{*}\left(0^{*} 10^{*} 10^{*}\right)$
- $r_{2}=00(0+1)^{*}$
(b) Decide whether the following languages are regular or not. Justify your decision.
- $\mathcal{L}_{1}=\left\{0^{n} 1^{n} \mid n \in \mathbb{N}\right\}$
- $\mathcal{L}_{2}=\left\{\omega \in\{0,1\}^{*} \mid \omega\right.$ contains the same number of 1 s and 0 s$\}$

Exercise 2 (Basic Automata - 10 points)

Give an automaton (NFA or DFA) that accepts
(a) All binary strings of length divisible by 5 .
(b) All binary strings of length divisible by 3 or 5 .

How would you have to change your automaton in order to accept all binary strings of length divisible by 3 and 5 ?
(c) Decimal numbers divisible by 3 or 9 .

Exercise 3 (NFA to DFA - 10 points)

Let r be the regular expression $\left(a(b+c)^{*}(a+b)\right)$ over the alphabet $\Sigma=\{a, b, c\}$.
(a) Give a non-deterministic finite automaton (NFA) recognizing $\mathcal{L}(r)$.
(b) Convert the NFA from (a) into a DFA using the Myhill-construction.

Exercise 4 (10 points)

(a) Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a DFA with $|Q|=n$. Prove or disprove: If there exists a word ω with $|\omega|>n$ s.t. $\omega \in \mathcal{L}(M)$ then $\mathcal{L}(M)$ is an infinite language.
(b) Let L_{1} and L_{2} denote regular languages. We define the zipper-product (sometimes also referred to as shuffle-product) as

$$
L_{1} \% L_{2}=\left\{a_{1} b_{1} a_{2} b_{2} \ldots a_{n} b_{n} \mid a_{1} a_{2} \ldots a_{n} \in L_{1} \wedge b_{1} b_{2} \ldots b_{n} \in L_{2}\right\} .
$$

Prove or disprove: $L_{1} \% L_{2}$ is regular.

