Automata and Formal Languages

Due November 04, 2014 before class!

Exercise 1 (Universality - 10 points)

Decide if the following automata are universal or not. Use the methods from the lecture.
(a)

> a,b
(b)

Exercise 2 (DFA Operations - 10 points)

(a) Construct DFAs M_{1} and M_{2} for

- $r_{1}=a a^{*} b b$
- $r_{2}=a a b b^{*}$
(b) Construct automata recognizing
- $\mathcal{L}\left(M_{1}\right) \cup \mathcal{L}\left(M_{2}\right)$
- $\mathcal{L}\left(M_{1}\right) \cap \mathcal{L}\left(M_{2}\right)$
- $\mathcal{L}\left(M_{1}\right) \triangle \mathcal{L}\left(M_{2}\right)$
using the method from the lecture.

Exercise 3 (NFA Operations - 10 points)

(a) Construct NFAs N_{1} and N_{2} recognizing

- $r_{1}=a a a^{*} a a b$
- $r_{2}=a a^{*} a b$
(b) Construct automata recognizing
- $\mathcal{L}\left(N_{1}\right) \cup \mathcal{L}\left(N_{2}\right)$
- $\mathcal{L}\left(N_{1}\right) \cap \mathcal{L}\left(N_{2}\right)$
using the methods shown in the lecture.

Exercise 4 (Star-free expressions II - 10 points)

Recall the definition of star-free expressions from the previous problem set.
Let $A=\left(Q, \Sigma, \delta, q_{\text {init }}, F\right)$ be a finite automaton with states $Q=\left\{q_{1}, \ldots, q_{n}\right\}$. To every input letter $a \in \Sigma$ we associate a adjacency matrix $M_{a} \in\{0,1\}^{n \times n}$ in which the entry (i, j) is 1 if $\delta\left(q_{i}, a\right)=q_{j}$ and 0 else.
(a) Consider the following automaton:

The corresponding adjacency matrices are:

$$
M_{a}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) M_{b}=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

We define the map $h: \Sigma^{*} \rightarrow\{0,1\}^{3 \times 3}$ as follows:

$$
\begin{array}{ll}
h(\epsilon) & =I_{3} \\
h(a) & =M_{a} \\
h(b) & =M_{b} \\
h\left(a_{1} a_{2} \ldots a_{k}\right) & =h\left(a_{1}\right) \cdot h\left(a_{2}\right) \cdots \cdot h\left(a_{k}\right)
\end{array}
$$

- For $w \in \Sigma^{*}$ describe what $h(w)$ represents.
- Draw a graph with vertex set $h\left(\Sigma^{*}\right)=\left\{h(w) \mid w \in \Sigma^{*}\right\}$ such that there is an edge between q and q^{\prime} labeled by a if $q \cdot h(a)=q^{\prime}$. Start drawing the graph at $h(\epsilon)$.
- How can you obtain a deterministic automaton accepting the same language as the original non-deterministic automaton?
(b) Let L be a regular language and M the minimal DFA accepting L with states $Q=\left\{q_{1}, \ldots, q_{n}\right\}$. We define h similarly as in the previous exercise and denote by S_{L} the set $h\left(\Sigma^{*}\right) . S_{L}$ is called the syntactic monoid of L.
A theorem by Schützenberger[1] states that L is representable by a star-free expression iff $M^{n}=M^{n+1}$ for all $M \in S_{L}$ with $n=|Q|$.
- Show that $\mathcal{L}\left((a a)^{*}\right)$ is not representable by a star-free expression.
- Show that $\mathcal{L}\left((a b+b a)^{*}\right)$ is representable by a star-free expression.

Literatur

[1] Marcel Paul Schützenberger. On finite monoids having only trivial subgroups. Information and control, 8(2):190-194, 1965.

