Automata and Formal Languages

Due November 18, 2014 before class!

Exercise 1 (Transducer - 10 points)

(a) Give a transducer over the alphabet $\Sigma=\{0,1\}$ that recognizes
$L_{1}=\left\{(a, b) \mid a, b \in \Sigma^{*} \wedge 2 \operatorname{lsbf}(a)=\operatorname{lsbf}(b)\right\}$.
(b) By generalizing the transition function for transducer to $\delta: Q \times \Sigma^{n} \rightarrow Q$, we can construct automata the accept n-tuple of words.
Give an automaton over the alphabet $\Sigma=\{0,1\}$ that recognizes
$L_{2}=\left\{(a, b, c) \mid a, b, c \in \Sigma^{*} \wedge \operatorname{lsbf}(a)+\operatorname{lsbf}(b)=\operatorname{lsbf}(c)\right\}$.

Exercise 2 (Transducer II - 10 points)

One of the limitations of transducers is that the accepted word-pairs have to be of the same length. To circumvent this limitation we introduce ϵ-transducer: They are defined similarly to usual transducers, however the transitions are labeled with $(\Sigma \cup\{\epsilon\} \times \Sigma \cup\{\epsilon\})$.
(a) Construct ϵ-transducers A_{1} and A_{2} such that $\mathcal{L}\left(A_{1}\right)=\left\{\left(a^{n} b^{m}, c^{2 n}\right) \mid m, n \geq 0\right\}$ and $\mathcal{L}\left(A_{2}\right)=\left\{\left(a^{n} b^{m}, c^{2 m}\right) \mid m, n \geq 0\right\}$.
(b) Compute the intersection of A_{1} and A_{2} using the algorithm for usual NFAs. What language does the resulting ϵ-transducer accept?
(c) Show that there is no ϵ-transducer that accepts $\mathcal{L}\left(A_{1}\right) \cap \mathcal{L}\left(A_{2}\right)$.

Exercise 3 (Transducer III - 10 points)

Show how to construct a transducer T over the alphabet $\Sigma \times \Sigma$ such that $(w, v) \in L(T)$ iff $w v \in L(A)$ and $|w|=|v|$.

Exercise 4 (Encoding - 10 points)

In the lecture we assumed, that every word $s \in \Sigma^{*}$ is encoded by all words $s \#^{n}$ for $n \geq 0$. This way words of different length can be paired up. In the projection- and join-algorithms we saw, that it is necessary to do a Pad-Closure after each operation. How do you have to change the Pad-Closure if instead of encoding s by all words $s \#^{n}, s$ is encoded by all words $\#^{n} s$ for $n \geq 0$?

