Automata and Formal Languages

Due December 02, 2014 before class!

Exercise 1 (Master automaton - 10 points)

(a) Construct the fragment of the master automaton that captures the languages

- $L_{1}=\{0011,0110\}$
- $L_{2}=\{1101,1010,0000\}$
- $L_{3}=\{1111,1010\}$
(b) Construct initial states and necessary intermediate states for $L_{1} \cap L_{2}$ and $L_{2} \cup L_{3}$.

Exercise 2 (Variable Ordering - 10 points)

Let $\Sigma=\{0,1\}$ and define $a \cdot b$ as the usual multiplication for $a, b \in \Sigma$. Furthermore define $a \oplus b$ to be 0 if $a=b=0$ and 1 otherwise.
Consider the function $f: \Sigma^{6} \rightarrow \Sigma$ defined as

$$
f\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)=\left(x_{1} \cdot x_{2}\right) \oplus\left(x_{3} \cdot x_{4}\right) \oplus\left(x_{5} \cdot x_{6}\right)
$$

(a) Construct the minimal DFA recognizing $L_{1}=\left\{x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} \mid f\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)=1\right\}$
(b) Construct the minimal DFA recognizing $L_{1}=\left\{x_{1} x_{3} x_{5} x_{2} x_{4} x_{6} \mid f\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)=1\right\}$
(c) Consider $f\left(x_{1}, \ldots, x_{2 n}\right)=\bigoplus_{i \leq k \leq n}\left(x_{2 k-1} \cdot x_{2 k}\right)$ as well as the orderings $x_{1} x_{2} \ldots x_{2 n-1} x_{2 n}$ and $x_{1} x_{3} x_{5} \ldots x_{2 n-1} x_{2} x_{4} \ldots x_{2 n}$. How big is the minimal DFA recognizing these two orderings depending on n ?

Exercise 3 (Number of words - 10 points)

Give an efficient algorithm that computes the number of words a given minimal DFA for a fixed-length language accepts.

Exercise 4 (Verification - 10 points)

In this exercise we want to model and verify mutual exclusion protocols. Let there be two agents with id 0 and 1 . They both run the following program:
function agent(id)
While(true) \{
enter(id)
critical commands
leave(id)
non-critical commands
\}
(a) turn $=0$
function enter(id)
While(turn=1-id) \{
Skip
\}
function leave(id)
turn=1-id

- Design an asynchronous network of automata capturing this bahaviour.
- Construct the asynchronous product of the automata from the previous exercise. Can agent 0 and 1 run critical commands at the same time?
- Is it true that whenever an agent wants to enter the critical section he will eventually be allowed to?
(b) flag[0] = false
flag[1] = false
function enter(id)
flag[id] = true
While(flag[1-id]) \{ skip
\}
function leave(id)
flag[id]=false
- Design an asynchronous network of automata capturing this bahaviour.
- Can a deadlock occur?
(c) Now we combine both approaches.

```
flag[0] = false
flag[1] = false
turn = 0
function enter(id)
    turn=1-id
    flag[id]=true
    While(flag[1-id] & turn=1-id) {
        skip
    }
function leave(id)
    flag[id]=false
```

- Can a deadlock occur?
- Can any type of starvation occur?

