Automata and Formal Languages

Due January 13, 2015 before class!

Exercise 1 (Semilinear sets - 10 points)

A set of integers is linear if it is of the form $\{c+p i \mid i=0,1,2, \cdots\}$ for some constants c and p. A set is semilinear if it is the finite union of linear sets. Let $R \subseteq 0^{*}$ be regular. Prove that $\left\{i \mid 0^{i} \in R\right\}$ is semi-linear.

Exercise 2 (Büchi-automata I - 10 points)

Consider the following NBA:

Find a number $n \geq 1$ and regular languages $U_{1}, V_{1}, \ldots, U_{n}, V_{n}$ s.t.

$$
L=\bigcup_{i=1}^{n} U_{i} V_{i}^{\omega}
$$

Exercise 3 (Büchi Automata II - 10 points)

Find a language over the alphabet $\Sigma=\{a, b\}$ consisting of one infinite word such that there is no Büchi-automaton recognizing it.

Exercise 4 (Büchi Automata III - 10 points)

Let $\inf (w)$ denote the set of all letters $a \in \Sigma$ that occur infinitely often in w.
Construct a Büchi automaton over the alphabet $\Sigma=\{a, b, c\}$ that recognizes the language L where
(a) $L=\{w \mid\{a, b\} \subseteq \inf (w)\}$
(b) $L=\{w \mid\{a, b\}=\inf (w)\}$
(c) $L=\left\{w \in\{a, b, c\}^{\omega} \mid\right.$ if $a \in \inf (w)$ then $\left.\{b, c\} \subseteq \inf (w)\right\}$

