Automata and Formal Languages

Due January 20, 2015 before class!

Exercise 1 (Büchi-Automata - 10 points)

Given a Büchi automaton A and finite words u, v, decide whether A accepts the ω-word $u v^{\omega}$

Exercise 2 (ω-expressions I)

Let $\Sigma=\{a, b, c\}$. Give an ω-expression for each of the following languages:
(a) $L_{1}=\{w \mid ' a b$ ' occurs only finitely often in $w\}$
(b) $L_{2}=\{w \mid$ every ' a ' is immediately followed by a ' b ' $\}$
(c) $L_{3}=\{w \mid$ every ' b ' is preceded by an ' a ' $\}$

Exercise 3 (ω-expressions II - 10 points)

Give Büchi- and Muller-automata for the following languages:
(a) $r_{1}=\left(a^{*} b\right)^{\omega}$
(b) $r_{2}=\left(010^{*}\right)^{\omega}+1^{\omega}$
(c) $r_{3}=(a b+b c+a)^{\omega}$

Exercise 4 (Ranking - 10 points)

Consider the following Büchi- automaton B representing the ω-words over $\Sigma=\{a, b\}$ having only finitely many as:

(a) Sketch $\operatorname{dag}\left(a b a b^{\omega}\right)$ and $\operatorname{dag}\left((a b)^{\omega}\right)$.
(b) Consider the ranking r defined as $r\left(<q_{0}, i>\right)=1$ and $r\left(<q_{1}, i>\right)=0$ for all $i \in \mathbb{N}$. Is r an odd ranking for the two dags from (a)?
(c) Show:

Ranking r defined in (b) is odd $\Leftrightarrow w \notin \mathcal{L}(B)$

