
Part II

Foundations
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Vocabularies

a · b “a times b”

“a multiplied by b”

“a into b”
a
b “a divided by b”

“a by b”

“a over b”

(a: numerator (Zähler), b: denominator (Nenner))

ab “a raised to the b-th power”

“a to the b-th”

“a raised to the power of b”

“a to the power of b”

“a raised to b”

“a to the b”

“a raised by the exponent of b”
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Vocabularies

n! “n factorial”(
n
k

)
“n choose k”

xi “x subscript i”
“x sub i”
“x i”

logb a “log to the base b of a”

“log a to the base b”

f : X → Y ,x , x2

f is a function that maps from domain (Definitionsbereich) X to

codomain (Zielmenge) Y . The set {y ∈ Y | ∃x ∈ X : f(x) = y}
is the image or the range of the function

(Bildbereich/Wertebereich).
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3 Goals

ñ Gain knowledge about efficient algorithms for important

problems, i.e., learn how to solve certain types of problems

efficiently.

ñ Learn how to analyze and judge the efficiency of algorithms.

ñ Learn how to design efficient algorithms.

3 Goals
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4 Modelling Issues

1 What do you measure?

ñ Memory requirement

ñ Running time

ñ Number of comparisons

ñ Number of multiplications

ñ Number of hard-disc accesses

ñ Program size

ñ Power consumption

ñ . . .

4 Modelling Issues
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4 Modelling Issues

How do you measure?

ñ Implementing and testing on representative inputs
ñ How do you choose your inputs?
ñ May be very time-consuming.
ñ Very reliable results if done correctly.
ñ Results only hold for a specific machine and for a specific

set of inputs.

ñ Theoretical analysis in a specific model of computation.
ñ Gives asymptotic bounds like “this algorithm always runs in

time O(n2)”.
ñ Typically focuses on the worst case.
ñ Can give lower bounds like “any comparison-based sorting

algorithm needs at least Ω(n logn) comparisons in the
worst case”.

4 Modelling Issues
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4 Modelling Issues

Input length

The theoretical bounds are usually given by a function f : N→ N
that maps the input length to the running time (or storage

space, comparisons, multiplications, program size etc.).

The input length may e.g. be

ñ the size of the input (number of bits)

ñ the number of arguments

Example 1

Suppose n numbers from the interval {1, . . . ,N} have to be

sorted. In this case we usually say that the input length is n
instead of e.g. n logN, which would be the number of bits

required to encode the input.

4 Modelling Issues
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Model of Computation

How to measure performance

1. Calculate running time and storage space etc. on a

simplified, idealized model of computation, e.g. Random

Access Machine (RAM), Turing Machine (TM), . . .

2. Calculate number of certain basic operations: comparisons,

multiplications, harddisc accesses, . . .

Version 2. is often easier, but focusing on one type of operation

makes it more difficult to obtain meaningful results.

4 Modelling Issues
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Turing Machine

ñ Very simple model of computation.

ñ Only the “current” memory location can be altered.

ñ Very good model for discussing computabiliy, or polynomial

vs. exponential time.

ñ Some simple problems like recognizing whether input is of

the form xx, where x is a string, have quadratic lower

bound.

=⇒ Not a good model for developing efficient algorithms.

0 11 0 0 1 0 0 1 0 0 1 0 0 1 1 0

control
unit

state
state holds program and can
act as constant size memory

. . . . . .

4 Modelling Issues
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Random Access Machine (RAM)

ñ Input tape and output tape (sequences of zeros and ones;

unbounded length).

ñ Memory unit: infinite but countable number of registers

R[0], R[1], R[2], . . . .
ñ Registers hold integers.

ñ Indirect addressing.

Note that in the picture on the right
the tapes are one-directional, and that
a READ- or WRITE-operation always ad-
vances its tape.

0 11 0 0 1 0 0 1

0 0 1 1

R[0]

R[1]

R[2]

R[3]

R[4]

R[5]

input tape

output tape

memory

control
unit

. . . . . .

. . . . . .
.
.
.

4 Modelling Issues
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Random Access Machine (RAM)

Operations

ñ input operations (input tape → R[i])
ñ READ i

ñ output operations (R[i]→ output tape)
ñ WRITE i

ñ register-register transfers
ñ R[j] := R[i]
ñ R[j] := 4

ñ indirect addressing
ñ R[j] := R[R[i]]

loads the content of the R[i]-th register into the j-th
register

ñ R[R[i]] := R[j]
loads the content of the j-th into the R[i]-th register

4 Modelling Issues
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Random Access Machine (RAM)

Operations

ñ branching (including loops) based on comparisons
ñ jump x

jumps to position x in the program;
sets instruction counter to x;
reads the next operation to perform from register R[x]

ñ jumpz x R[i]
jump to x if R[i] = 0
if not the instruction counter is increased by 1;

ñ jumpi i
jump to R[i] (indirect jump);

ñ arithmetic instructions: +, −, ×, /
ñ R[i] := R[j] + R[k];
R[i] := -R[k]; The jump-directives are very close to the

jump-instructions contained in the as-
sembler language of real machines.

4 Modelling Issues

© Harald Räcke 26



Model of Computation

ñ uniform cost model

Every operation takes time 1.

ñ logarithmic cost model
The cost depends on the content of memory cells:

ñ The time for a step is equal to the largest operand involved;
ñ The storage space of a register is equal to the length (in

bits) of the largest value ever stored in it.

Bounded word RAM model: cost is uniform but the largest

value stored in a register may not exceed 2w , where usually

w = log2n.
The latter model is quite realistic as the word-size of
a standard computer that handles a problem of size n
must be at least log2 n as otherwise the computer could
either not store the problem instance or not address all
its memory.

4 Modelling Issues
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4 Modelling Issues

Example 2

Algorithm 1 RepeatedSquaring(n)
1: r ← 2;

2: for i = 1→ n do

3: r ← r2

4: return r

ñ running time:
ñ uniform model: n steps
ñ logarithmic model: 1+ 2+ 4+ · · · + 2n = 2n+1 − 1 = Θ(2n)

ñ space requirement:
ñ uniform model: O(1)
ñ logarithmic model: O(2n)

4 Modelling Issues
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C(x)
cost of instance
x

|x| input length of
instance x

In
set of instances
of length n

There are different types of complexity bounds:

ñ best-case complexity:

Cbc(n) :=min{C(x) | |x| = n}
Usually easy to analyze, but not very meaningful.

ñ worst-case complexity:

Cwc(n) :=max{C(x) | |x| = n}
Usually moderately easy to analyze; sometimes too

pessimistic.
ñ average case complexity:

Cavg(n) := 1
|In|

∑
|x|=n

C(x)

more general: probability measure µ

Cavg(n) :=
∑
x∈In

µ(x) · C(x)

4 Modelling Issues
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There are different types of complexity bounds:

ñ amortized complexity:

The average cost of data structure operations over a worst

case sequence of operations.

ñ randomized complexity:

The algorithm may use random bits. Expected running time

(over all possible choices of random bits) for a fixed input

x. Then take the worst-case over all x with |x| = n.

4 Modelling Issues

© Harald Räcke 29



4 Modelling Issues

Bibliography
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4 Modelling Issues
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5 Asymptotic Notation

We are usually not interested in exact running times, but only in

an asymptotic classification of the running time, that ignores

constant factors and constant additive offsets.

ñ We are usually interested in the running times for large

values of n. Then constant additive terms do not play an

important role.

ñ An exact analysis (e.g. exactly counting the number of

operations in a RAM) may be hard, but wouldn’t lead to

more precise results as the computational model is already

quite a distance from reality.

ñ A linear speed-up (i.e., by a constant factor) is always

possible by e.g. implementing the algorithm on a faster

machine.

ñ Running time should be expressed by simple functions.

5 Asymptotic Notation

© Harald Räcke 30



Asymptotic Notation

Formal Definition

Let f denote functions from N to R+.

ñ O(f ) = {g | ∃c > 0 ∃n0 ∈ N0 ∀n ≥ n0 : [g(n) ≤ c · f(n)]}
(set of functions that asymptotically grow not faster than f )

ñ Ω(f ) = {g | ∃c > 0 ∃n0 ∈ N0 ∀n ≥ n0 : [g(n) ≥ c · f(n)]}
(set of functions that asymptotically grow not slower than f )

ñ Θ(f ) = Ω(f )∩O(f )
(functions that asymptotically have the same growth as f )

ñ o(f) = {g | ∀c > 0 ∃n0 ∈ N0 ∀n ≥ n0 : [g(n) ≤ c · f(n)]}
(set of functions that asymptotically grow slower than f )

ñ ω(f) = {g | ∀c > 0 ∃n0 ∈ N0 ∀n ≥ n0 : [g(n) ≥ c · f(n)]}
(set of functions that asymptotically grow faster than f )

5 Asymptotic Notation
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Asymptotic Notation

There is an equivalent definition using limes notation (assuming

that the respective limes exists). f and g are functions from N0

to R+0 .

ñ g ∈ O(f ): 0 ≤ lim
n→∞

g(n)
f(n)

<∞

ñ g ∈ Ω(f ): 0 < lim
n→∞

g(n)
f(n)

≤ ∞

ñ g ∈ Θ(f ): 0 < lim
n→∞

g(n)
f(n)

<∞

ñ g ∈ o(f): lim
n→∞

g(n)
f(n)

= 0

ñ g ∈ω(f): lim
n→∞

g(n)
f(n)

= ∞

• Note that for the version of the Lan-
dau notation defined here, we as-
sume that f and g are positive func-
tions.

• There also exist versions for arbitrary
functions, and for the case that the
limes is not infinity.

5 Asymptotic Notation

© Harald Räcke 32



Asymptotic Notation

Abuse of notation

1. People write f = O(g), when they mean f ∈ O(g). This is

not an equality (how could a function be equal to a set of

functions).

2. People write f(n) = O(g(n)), when they mean f ∈ O(g),
with f : N→ R+, n, f(n), and g : N→ R+, n, g(n).

3. People write e.g. h(n) = f(n)+ o(g(n)) when they mean

that there exists a function z : N→ R+, n, z(n), z ∈ o(g)
such that h(n) = f(n)+ z(n).

3. This is particularly useful if you do not
want to ignore constant factors. For ex-
ample the median of n elements can
be determined using 3

2n+o(n) compar-
isons.

2. In this context f(n) does not mean the
function f evaluated at n, but instead
it is a shorthand for the function itself
(leaving out domain and codomain and
only giving the rule of correspondence
of the function).

5 Asymptotic Notation
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Asymptotic Notation

Abuse of notation

4. People write O(f (n)) = O(g(n)), when they mean

O(f (n)) ⊆ O(g(n)). Again this is not an equality.

5 Asymptotic Notation
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Asymptotic Notation in Equations

How do we interpret an expression like:

2n2 + 3n+ 1 = 2n2 +Θ(n)

Here, Θ(n) stands for an anonymous function in the set Θ(n)
that makes the expression true.

Note that Θ(n) is on the right hand side, otw. this interpretation

is wrong.

5 Asymptotic Notation
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Asymptotic Notation in Equations

How do we interpret an expression like:

2n2 +O(n) = Θ(n2)

Regardless of how we choose the anonymous function

f(n) ∈ O(n) there is an anonymous function g(n) ∈ Θ(n2)
that makes the expression true.

5 Asymptotic Notation
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Asymptotic Notation in Equations

How do we interpret an expression like:

n∑
i=1

Θ(i) = Θ(n2)

Careful!

“It is understood” that every occurence of an O-symbol (or

Θ,Ω, o,ω) on the left represents one anonymous function.

Hence, the left side is not equal to

Θ(1)+Θ(2)+ · · · +Θ(n− 1)+Θ(n)

The Θ(i)-symbol on the left rep-
resents one anonymous function
f : N → R+, and then

∑
i f(i) is

computed.

Θ(1)+Θ(2)+· · ·+Θ(n−1)+Θ(n) does
not really have a reasonable interpreta-
tion.

5 Asymptotic Notation
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Asymptotic Notation in Equations

We can view an expression containing asymptotic notation as

generating a set:

n2 · O(n)+O(logn)

represents

{
f : N→ R+ | f(n) = n2 · g(n)+ h(n)

with g(n) ∈ O(n) and h(n) ∈ O(logn)
}

Recall that according to the previous
slide e.g. the expressions

∑n
i=1O(i) and∑n/2

i=1 O(i)+
∑n
i=n/2+1O(i) generate dif-

ferent sets.

5 Asymptotic Notation
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Asymptotic Notation in Equations

Then an asymptotic equation can be interpreted as

containement btw. two sets:

n2 · O(n)+O(logn) = Θ(n2)

represents

n2 · O(n)+O(logn) ⊆ Θ(n2)

Note that the equation does not hold.

5 Asymptotic Notation
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Asymptotic Notation

Lemma 3

Let f , g be functions with the property

∃n0 > 0∀n ≥ n0 : f(n) > 0 (the same for g). Then

ñ c · f(n) ∈ Θ(f (n)) for any constant c
ñ O(f (n))+O(g(n)) = O(f (n)+ g(n))
ñ O(f (n)) · O(g(n)) = O(f (n) · g(n))
ñ O(f (n))+O(g(n)) = O(max{f(n), g(n)})

The expressions also hold for Ω. Note that this means that

f(n)+ g(n) ∈ Θ(max{f(n), g(n)}).

5 Asymptotic Notation
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Asymptotic Notation

Comments

ñ Do not use asymptotic notation within induction proofs.

ñ For any constants a,b we have logan = Θ(logb n).
Therefore, we will usually ignore the base of a logarithm

within asymptotic notation.

ñ In general logn = log2n, i.e., we use 2 as the default base

for the logarithm.

5 Asymptotic Notation
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Asymptotic Notation

In general asymptotic classification of running times is a good

measure for comparing algorithms:

ñ If the running time analysis is tight and actually occurs in

practise (i.e., the asymptotic bound is not a purely

theoretical worst-case bound), then the algorithm that has

better asymptotic running time will always outperform a

weaker algorithm for large enough values of n.

ñ However, suppose that I have two algorithms:
ñ Algorithm A. Running time f(n) = 1000 logn = O(logn).
ñ Algorithm B. Running time g(n) = log2n.

Clearly f = o(g). However, as long as logn ≤ 1000

Algorithm B will be more efficient.

5 Asymptotic Notation
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5 Asymptotic Notation
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6 Recurrences

Algorithm 2 mergesort(listL)
1: n← size(L)
2: if n ≤ 1 return L
3: L1 ← L[1 · · · bn2 c]
4: L2 ← L[bn2 c + 1 · · ·n]
5: mergesort(L1)
6: mergesort(L2)
7: L←merge(L1, L2)
8: return L

This algorithm requires

T(n) = T
(⌈n

2

⌉)
+ T

(⌊n
2

⌋)
+O(n) ≤ 2T

(⌈n
2

⌉)
+O(n)

comparisons when n > 1 and 0 comparisons when n ≤ 1.

6 Recurrences
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Recurrences

How do we bring the expression for the number of comparisons

(≈ running time) into a closed form?

For this we need to solve the recurrence.

6 Recurrences
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Methods for Solving Recurrences

1. Guessing+Induction

Guess the right solution and prove that it is correct via

induction. It needs experience to make the right guess.

2. Master Theorem

For a lot of recurrences that appear in the analysis of

algorithms this theorem can be used to obtain tight

asymptotic bounds. It does not provide exact solutions.

3. Characteristic Polynomial

Linear homogenous recurrences can be solved via this

method.

6 Recurrences
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Methods for Solving Recurrences

4. Generating Functions

A more general technique that allows to solve certain types

of linear inhomogenous relations and also sometimes

non-linear recurrence relations.

5. Transformation of the Recurrence

Sometimes one can transform the given recurrence relations

so that it e.g. becomes linear and can therefore be solved

with one of the other techniques.

6 Recurrences
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6.1 Guessing+Induction

First we need to get rid of the O-notation in our recurrence:

T(n) ≤
{

2T
(⌈n

2

⌉)+ cn n ≥ 2

0 otherwise

Assume that instead we had

T(n) ≤
{

2T
(n

2

)+ cn n ≥ 2

0 otherwise

One way of solving such a recurrence is to guess a solution, and

check that it is correct by plugging it in.

6.1 Guessing+Induction
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6.1 Guessing+Induction

Suppose we guess T(n) ≤ dn logn for a constant d. Then

T(n) ≤ 2T
(n

2

)
+ cn

≤ 2
(
d
n
2

log
n
2

)
+ cn

= dn(logn− 1)+ cn
= dn logn+ (c − d)n
≤ dn logn

if we choose d ≥ c.

Formally one would make an induction proof, where the above is

the induction step. The base case is usually trivial.

6.1 Guessing+Induction
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6.1 Guessing+Induction

• Note that this proves the
statement for n ∈ N≥2, as the
statement is wrong for n = 1.

• The base case is usually omitted,
as it is the same for different
recurrences.

T(n) ≤
{

2T
(n

2

)+ cn n ≥ 16

b otw.
Guess: T(n) ≤ dn logn.

Proof. (by induction)

ñ base case (2 ≤ n < 16): true if we choose d ≥ b.

ñ induction step 2 . . . n− 1→ n:

Suppose statem. is true for n′ ∈ {2, . . . , n− 1}, and n ≥ 16.

We prove it for n:

T(n) ≤ 2T
(n

2

)
+ cn

≤ 2
(
d
n
2

log
n
2

)
+ cn

= dn(logn− 1)+ cn
= dn logn+ (c − d)n
≤ dn logn

Hence, statement is true if we choose d ≥ c.



6.1 Guessing+Induction

Why did we change the recurrence by getting rid of the ceiling?

If we do not do this we instead consider the following

recurrence:

T(n) ≤
{

2T(
⌈n

2

⌉
)+ cn n ≥ 16

b otherwise

Note that we can do this as for constant-sized inputs the running

time is always some constant (b in the above case).

6.1 Guessing+Induction
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6.1 Guessing+Induction

We also make a guess of T(n) ≤ dn logn and get

T(n) ≤ 2T
(⌈n

2

⌉)
+ cn

≤ 2
(
d
⌈n

2

⌉
log

⌈n
2

⌉)
+ cn

≤ 2
(
d(n/2+ 1) log(n/2+ 1)

)+ cn
≤ dn log

( 9
16
n
)
+ 2d logn+ cn

= dn logn+ (log 9− 4)dn+ 2d logn+ cn
≤ dn logn+ (log 9− 3.5)dn+ cn
≤ dn logn− 0.33dn+ cn
≤ dn logn

for a suitable choice of d.

⌈
n
2

⌉
≤ n

2 + 1

n
2 + 1 ≤ 9

16n

log 9
16n = logn+ (log 9− 4)

logn ≤ n
4

6.1 Guessing+Induction
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6.2 Master Theorem

Lemma 4

Let a ≥ 1, b ≥ 1 and ε > 0 denote constants. Consider the

recurrence

T(n) = aT
(n
b

)
+ f(n) .

Case 1.

If f(n) = O(nlogb(a)−ε) then T(n) = Θ(nlogb a).

Case 2.

If f(n) = Θ(nlogb(a) logkn) then T(n) = Θ(nlogb a logk+1n),
k ≥ 0.

Case 3.

If f(n) = Ω(nlogb(a)+ε) and for sufficiently large n
af(nb ) ≤ cf(n) for some constant c < 1 then T(n) = Θ(f (n)).

Note that the cases do not cover all pos-
sibilities.

6.2 Master Theorem

© Harald Räcke 51



6.2 Master Theorem

We prove the Master Theorem for the case that n is of the form

b`, and we assume that the non-recursive case occurs for

problem size 1 and incurs cost 1.

6.2 Master Theorem
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The Recursion Tree

The running time of a recursive algorithm can be visualized by a

recursion tree:

x f(n)

af(nb )

a2f( nb2 )

alogb n

nlogb a

=

n

n
b

n
b

n
b

n
b2

n
b2

n
b2

n
b2

n
b2

n
b2

n
b2

n
b2

n
b2

11111111 1 1 1 1 1 1 1

a

aaa

a a a a a a a a a

6.2 Master Theorem
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6.2 Master Theorem

This gives

T(n) = nlogb a +
logb n−1∑
i=0

aif
(
n
bi

)
.

6.2 Master Theorem
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Case 1. Now suppose that f(n) ≤ cnlogb a−ε.

T(n)−nlogb a =
logb n−1∑
i=0

aif
(
n
bi

)

≤ c
logb n−1∑
i=0

ai
(
n
bi

)logb a−ε

= cnlogb a−ε
logb n−1∑
i=0

(
bε
)i

= cnlogb a−ε(bε logb n − 1)/(bε − 1)

= cnlogb a−ε(nε − 1)/(bε − 1)

= c
bε − 1

nlogb a(nε − 1)/(nε)

Hence,

T(n) ≤
(

c
bε − 1

+ 1
)
nlogb(a)

∑k
i=0 qi = qk+1−1

q−1

b−i(logb a−ε) = bεi(blogb a)−i = bεia−i

⇒ T(n) = O(nlogb a).

6.2 Master Theorem
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Case 2. Now suppose that f(n) ≤ cnlogb a.

T(n)−nlogb a =
logb n−1∑
i=0

aif
(
n
bi

)

≤ c
logb n−1∑
i=0

ai
(
n
bi

)logb a

= cnlogb a
logb n−1∑
i=0

1

= cnlogb a logb n

Hence,

T(n) = O(nlogb a logb n) ⇒ T(n) = O(nlogb a logn).

6.2 Master Theorem
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Case 2. Now suppose that f(n)≥ cnlogb a.

T(n)−nlogb a =
logb n−1∑
i=0

aif
(
n
bi

)

≥ c
logb n−1∑
i=0

ai
(
n
bi

)logb a

= cnlogb a
logb n−1∑
i=0

1

= cnlogb a logb n

Hence,

T(n) = Ω(nlogb a logb n) ⇒ T(n) = Ω(nlogb a logn).

6.2 Master Theorem
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Case 2. Now suppose that f(n) ≤ cnlogb a(logb(n))k.

T(n)−nlogb a =
logb n−1∑
i=0

aif
(
n
bi

)

≤ c
logb n−1∑
i=0

ai
(
n
bi

)logb a
·
(

logb

(
n
bi

))k

= cnlogb a
`−1∑
i=0

(
logb

(
b`

bi

))k

= cnlogb a
`−1∑
i=0

(` − i)k

= cnlogb a
∑̀
i=1

ik

≈ c
k
nlogb a`k+1

n = b` ⇒ ` = logb n

∑̀
i=1

ik ≈ 1
k`
k+1

⇒ T(n) = O(nlogb a logk+1n).

6.2 Master Theorem
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Case 3. Now suppose that f(n) ≥ dnlogb a+ε, and that for

sufficiently large n: af(n/b) ≤ cf(n), for c < 1.

From this we get aif(n/bi) ≤ cif(n), where we assume that

n/bi−1 ≥ n0 is still sufficiently large.

T(n)−nlogb a =
logb n−1∑
i=0

aif
(
n
bi

)

≤
logb n−1∑
i=0

cif(n)+O(nlogb a)

≤ 1
1− c f(n)+O(n

logb a)

Hence,

T(n) ≤ O(f (n))

q < 1 :
∑n
i=0 qi = 1−qn+1

1−q ≤ 1
1−q

⇒ T(n) = Θ(f (n)).

Where did we use f(n) ≥ Ω(nlogb a+ε)?

6.2 Master Theorem
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Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers

can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

101011011 A

110010001 B

0001001101

111011001

This gives that two n-bit integers can be added in time O(n).

6.2 Master Theorem
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Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an

m-bit integer B (m ≤ n).

1101×10001

10001

010001

0000000

00010001

11011101

• This is also nown as the “school
method” for multiplying integers.

• Note that the intermediate num-
bers that are generated can have
at most m+n ≤ 2n bits.

Time requirement:

ñ Computing intermediate results: O(nm).
ñ Adding m numbers of length ≤ 2n:

O((m+n)m) = O(nm).
6.2 Master Theorem
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Example: Multiplying Two Integers

A recursive approach:

Suppose that integers A and B are of length n = 2k, for some k.

AB × . . .. . . . . . . . .. . . . . . a0anb0bn an
2−1an

2
bn

2−1bn
2

B0B1 A0A1

Then it holds that

A = A1 · 2
n
2 +A0 and B = B1 · 2

n
2 + B0

Hence,

A · B = A1B1 · 2n + (A1B0 +A0B1) · 2
n
2 +A0 · B0

6.2 Master Theorem
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Example: Multiplying Two Integers

Algorithm 3 mult(A, B)
1: if |A| = |B| = 1 then

2: return a0 · b0

3: split A into A0 and A1

4: split B into B0 and B1

5: Z2 ←mult(A1, B1)
6: Z1 ←mult(A1, B0)+mult(A0, B1)
7: Z0 ←mult(A0, B0)
8: return Z2 · 2n + Z1 · 2

n
2 + Z0

O(1)
O(1)
O(n)
O(n)
T(n2 )
2T(n2 )+O(n)
T(n2 )
O(n)

We get the following recurrence:

T(n) = 4T
(n

2

)
+O(n) .

6.2 Master Theorem
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Example: Multiplying Two Integers

Master Theorem: Recurrence: T[n] = aT(nb )+ f(n).
ñ Case 1: f(n) = O(nlogb a−ε) T(n) = Θ(nlogb a)
ñ Case 2: f(n) = Θ(nlogb a logkn) T(n) = Θ(nlogb a logk+1n)
ñ Case 3: f(n) = Ω(nlogb a+ε) T(n) = Θ(f (n))

In our case a = 4, b = 2, and f(n) = Θ(n). Hence, we are in

Case 1, since n = O(n2−ε) = O(nlogb a−ε).

We get a running time of O(n2) for our algorithm.

=⇒ Not better then the “school method”.

6.2 Master Theorem
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Example: Multiplying Two Integers

We can use the following identity to compute Z1:

Z1 = A1B0 +A0B1

= (A0 +A1) · (B0 + B1)−A1B1 −A0B0

= Z2︷ ︸︸ ︷
A1B1

= Z0︷ ︸︸ ︷
A0B0

Hence,
Algorithm 4 mult(A, B)
1: if |A| = |B| = 1 then

2: return a0 · b0

3: split A into A0 and A1

4: split B into B0 and B1

5: Z2 ←mult(A1, B1)
6: Z0 ←mult(A0, B0)
7: Z1 ←mult(A0+A1, B0+B1)−Z2−Z0

8: return Z2 · 2n + Z1 · 2
n
2 + Z0

O(1)
O(1)
O(n)
O(n)
T(n2 )
T(n2 )
T(n2 )+O(n)
O(n)

A more precise
(correct) analysis
would say that
computing Z1

needs time
T(n2 + 1)+O(n).

6.2 Master Theorem
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Example: Multiplying Two Integers

We get the following recurrence:

T(n) = 3T
(n

2

)
+O(n) .

Master Theorem: Recurrence: T[n] = aT(nb )+ f(n).
ñ Case 1: f(n) = O(nlogb a−ε) T(n) = Θ(nlogb a)
ñ Case 2: f(n) = Θ(nlogb a logkn) T(n) = Θ(nlogb a logk+1n)
ñ Case 3: f(n) = Ω(nlogb a+ε) T(n) = Θ(f (n))

Again we are in Case 1. We get a running time of

Θ(nlog2 3) ≈ Θ(n1.59).

A huge improvement over the “school method”.

6.2 Master Theorem
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6.3 The Characteristic Polynomial

Consider the recurrence relation:

c0T(n)+ c1T(n− 1)+ c2T(n− 2)+ · · · + ckT(n− k) = f(n)

This is the general form of a linear recurrence relation of order k
with constant coefficients (c0, ck ≠ 0).

ñ T(n) only depends on the k preceding values. This means

the recurrence relation is of order k.

ñ The recurrence is linear as there are no products of T[n]’s.

ñ If f(n) = 0 then the recurrence relation becomes a linear,

homogenous recurrence relation of order k.

Note that we ignore boundary conditions for the moment.

6.3 The Characteristic Polynomial
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6.3 The Characteristic Polynomial

Observations:

ñ The solution T[1], T[2], T[3], . . . is completely determined

by a set of boundary conditions that specify values for

T[1], . . . , T [k].
ñ In fact, any k consecutive values completely determine the

solution.

ñ k non-concecutive values might not be an appropriate set of

boundary conditions (depends on the problem).

Approach:

ñ First determine all solutions that satisfy recurrence relation.

ñ Then pick the right one by analyzing boundary conditions.

ñ First consider the homogenous case.

6.3 The Characteristic Polynomial
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The Homogenous Case

The solution space

S =
{
T = T[1], T[2], T[3], . . . ∣∣ T fulfills recurrence relation

}
is a vector space. This means that if T1,T2 ∈ S, then also

αT1 + βT2 ∈ S, for arbitrary constants α,β.

How do we find a non-trivial solution?

We guess that the solution is of the form λn, λ ≠ 0, and see what

happens. In order for this guess to fulfill the recurrence we need

c0λn + c1λn−1 + c2 · λn−2 + · · · + ck · λn−k = 0

for all n ≥ k.

6.3 The Characteristic Polynomial
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The Homogenous Case

Dividing by λn−k gives that all these constraints are identical to

c0λk + c1λk−1 + c2 · λk−2 + · · · + ck = 0c0λk + c1λk−1 + c2 · λk−2 + · · · + ck︸ ︷︷ ︸
characteristic polynomial P[λ]

This means that if λi is a root (Nullstelle) of P[λ] then T[n] = λni
is a solution to the recurrence relation.

Let λ1, . . . , λk be the k (complex) roots of P[λ]. Then, because of

the vector space property

α1λn1 +α2λn2 + · · · +αkλnk

is a solution for arbitrary values αi.

6.3 The Characteristic Polynomial
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The Homogenous Case

Lemma 5

Assume that the characteristic polynomial has k distinct roots

λ1, . . . , λk. Then all solutions to the recurrence relation are of

the form

α1λn1 +α2λn2 + · · · +αkλnk .

Proof.

There is one solution for every possible choice of boundary

conditions for T[1], . . . , T [k].

We show that the above set of solutions contains one solution

for every choice of boundary conditions.

6.3 The Characteristic Polynomial
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The Homogenous Case

Proof (cont.).

Suppose I am given boundary conditions T[i] and I want to see

whether I can choose the α′is such that these conditions are met:

α1 · λ1 + α2 · λ2 + · · · + αk · λk = T[1]
α1 · λ2

1 + α2 · λ2
2 + · · · + αk · λ2

k = T[2]
...

α1 · λk1 + α2 · λk2 + · · · + αk · λkk = T[k]

6.3 The Characteristic Polynomial
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The Homogenous Case

Proof (cont.).

Suppose I am given boundary conditions T[i] and I want to see

whether I can choose the α′is such that these conditions are met:
λ1 λ2 · · · λk
λ2

1 λ2
2 · · · λ2

k
...

λk1 λk2 · · · λkk




α1

α2
...

αk

 =

T[1]
T[2]

...

T[k]


We show that the column vectors are linearly independent. Then

the above equation has a solution.

6.3 The Characteristic Polynomial

© Harald Räcke 73



Computing the Determinant

∣∣∣∣∣∣∣∣∣∣∣

λ1 λ2 · · · λk−1 λk
λ2

1 λ2
2 · · · λ2

k−1 λ2
k

...
...

...
...

λk1 λk2 · · · λkk−1 λkk

∣∣∣∣∣∣∣∣∣∣∣
=

k∏
i=1

λi ·

∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1 1
λ1 λ2 · · · λk−1 λk
...

...
...

...
λk−1

1 λk−1
2 · · · λk−1

k−1 λk−1
k

∣∣∣∣∣∣∣∣∣∣∣

=
k∏
i=1

λi ·

∣∣∣∣∣∣∣∣∣∣∣

1 λ1 · · · λk−2
1 λk−1

1

1 λ2 · · · λk−2
2 λk−1

2
...

...
...

...
1 λk · · · λk−2

k λk−1
k

∣∣∣∣∣∣∣∣∣∣∣

6.3 The Characteristic Polynomial

© Harald Räcke 74



Computing the Determinant

∣∣∣∣∣∣∣∣∣∣∣

1 λ1 · · · λk−2
1 λk−1

1

1 λ2 · · · λk−2
2 λk−1

2
...

...
...

...
1 λk · · · λk−2

k λk−1
k

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣

1 λ1−λ1 ·1 · · · λk−2
1 −λ1 ·λk−3

1 λk−1
1 −λ1 ·λk−2

1

1 λ2−λ1 ·1 · · · λk−2
2 −λ1 ·λk−3

2 λk−1
2 −λ1 ·λk−2

2
...

...
...

...
1 λk−λ1 ·1 · · · λk−2

k −λ1 ·λk−3
k λk−1

k −λ1 ·λk−2
k

∣∣∣∣∣∣∣∣∣∣∣

6.3 The Characteristic Polynomial
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Computing the Determinant

∣∣∣∣∣∣∣∣∣∣∣

1 λ1−λ1 ·1 · · · λk−2
1 −λ1 ·λk−3

1 λk−1
1 −λ1 ·λk−2

1

1 λ2−λ1 ·1 · · · λk−2
2 −λ1 ·λk−3

2 λk−1
2 −λ1 ·λk−2

2
...

...
...

...
1 λk−λ1 ·1 · · · λk−2

k −λ1 ·λk−3
k λk−1

k −λ1 ·λk−2
k

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣

1 0 · · · 0 0

1 (λ2 − λ1) ·1 · · · (λ2 − λ1) ·λk−3
2 (λ2 − λ1) ·λk−2

2
...

...
...

...
1 (λk − λ1) ·1 · · · (λk − λ1) ·λk−3

k (λk − λ1) ·λk−2
k

∣∣∣∣∣∣∣∣∣∣∣

6.3 The Characteristic Polynomial
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Computing the Determinant

∣∣∣∣∣∣∣∣∣∣∣

1 0 · · · 0 0

1 (λ2 − λ1) ·1 · · · (λ2 − λ1) ·λk−3
2 (λ2 − λ1) ·λk−2

2
...

...
...

...
1 (λk − λ1) ·1 · · · (λk − λ1) ·λk−3

k (λk − λ1) ·λk−2
k

∣∣∣∣∣∣∣∣∣∣∣
=

k∏
i=2

(λi − λ1) ·

∣∣∣∣∣∣∣∣∣
1 λ2 · · · λk−3

2 λk−2
2

...
...

...
...

1 λk · · · λk−3
k λk−2

k

∣∣∣∣∣∣∣∣∣

6.3 The Characteristic Polynomial
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Computing the Determinant

Repeating the above steps gives:∣∣∣∣∣∣∣∣∣∣∣

λ1 λ2 · · · λk−1 λk
λ2

1 λ2
2 · · · λ2

k−1 λ2
k

...
...

...
...

λk1 λk2 · · · λkk−1 λkk

∣∣∣∣∣∣∣∣∣∣∣
=

k∏
i=1

λi ·
∏
i>`

(λi − λ`)

Hence, if all λi’s are different, then the determinant is non-zero.

6.3 The Characteristic Polynomial
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The Homogeneous Case

What happens if the roots are not all distinct?

Suppose we have a root λi with multiplicity (Vielfachheit) at least

2. Then not only is λni a solution to the recurrence but also nλni .

To see this consider the polynomial

P[λ] · λn−k = c0λn + c1λn−1 + c2λn−2 + · · · + ckλn−k

Since λi is a root we can write this as Q[λ] · (λ− λi)2.

Calculating the derivative gives a polynomial that still has root

λi.

6.3 The Characteristic Polynomial
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This means

c0nλn−1
i + c1(n− 1)λn−2

i + · · · + ck(n− k)λn−k−1
i = 0

Hence,

c0nλni + c1(n− 1)λn−1
i + · · · + ck(n− k)λn−ki = 0︸ ︷︷ ︸

T[n]
︸ ︷︷ ︸

T[n−1]
︸ ︷︷ ︸

T[n−k]

6.3 The Characteristic Polynomial
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The Homogeneous Case

Suppose λi has multiplicity j. We know that

c0nλni + c1(n− 1)λn−1
i + · · · + ck(n− k)λn−ki = 0

(after taking the derivative; multiplying with λ; plugging in λi)

Doing this again gives

c0n2λni + c1(n− 1)2λn−1
i + · · · + ck(n− k)2λn−ki = 0

We can continue j − 1 times.

Hence, n`λni is a solution for ` ∈ 0, . . . , j − 1.

6.3 The Characteristic Polynomial
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The Homogeneous Case

Lemma 6

Let P[λ] denote the characteristic polynomial to the recurrence

c0T[n]+ c1T[n− 1]+ · · · + ckT[n− k] = 0

Let λi, i = 1, . . . ,m be the (complex) roots of P[λ] with

multiplicities `i. Then the general solution to the recurrence is

given by

T[n] =
m∑
i=1

`i−1∑
j=0

αij · (njλni ) .

The full proof is omitted. We have only shown that any choice of

αij’s is a solution to the recurrence.

6.3 The Characteristic Polynomial

© Harald Räcke 82



Example: Fibonacci Sequence

T[0] = 0

T[1] = 1

T[n] = T[n− 1]+ T[n− 2] for n ≥ 2

The characteristic polynomial is

λ2 − λ− 1

Finding the roots, gives

λ1/2 = 1
2
±
√

1
4
+ 1 = 1

2

(
1±

√
5
)

6.3 The Characteristic Polynomial
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Example: Fibonacci Sequence

Hence, the solution is of the form

α
(

1+√5
2

)n
+ β

(
1−√5

2

)n

T[0] = 0 gives α+ β = 0.

T[1] = 1 gives

α
(

1+√5
2

)
+ β

(
1−√5

2

)
= 1 =⇒ α− β = 2√

5

6.3 The Characteristic Polynomial
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Example: Fibonacci Sequence

Hence, the solution is

1√
5

[(
1+√5

2

)n
−
(

1−√5
2

)n]

6.3 The Characteristic Polynomial
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The Inhomogeneous Case

Consider the recurrence relation:

c0T(n)+ c1T(n− 1)+ c2T(n− 2)+ · · · + ckT(n− k) = f(n)

with f(n) ≠ 0.

While we have a fairly general technique for solving

homogeneous, linear recurrence relations the inhomogeneous

case is different.

6.3 The Characteristic Polynomial
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The Inhomogeneous Case

The general solution of the recurrence relation is

T(n) = Th(n)+ Tp(n) ,

where Th is any solution to the homogeneous equation, and Tp
is one particular solution to the inhomogeneous equation.

There is no general method to find a particular solution.

6.3 The Characteristic Polynomial
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The Inhomogeneous Case

Example:

T[n] = T[n− 1]+ 1 T[0] = 1

Then,

T[n− 1] = T[n− 2]+ 1 (n ≥ 2)

Subtracting the first from the second equation gives,

T[n]− T[n− 1] = T[n− 1]− T[n− 2] (n ≥ 2)

or

T[n] = 2T[n− 1]− T[n− 2] (n ≥ 2)

I get a completely determined recurrence if I add T[0] = 1 and

T[1] = 2.

6.3 The Characteristic Polynomial
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The Inhomogeneous Case

Example: Characteristic polynomial:

λ2 − 2λ+ 1 = 0λ2 − 2λ+ 1︸ ︷︷ ︸
(λ−1)2

Then the solution is of the form

T[n] = α1n + βn1n = α+ βn

T[0] = 1 gives α = 1.

T[1] = 2 gives 1+ β = 2 =⇒ β = 1.

6.3 The Characteristic Polynomial

© Harald Räcke 89



The Inhomogeneous Case
If f(n) is a polynomial of degree r this method can be applied

r + 1 times to obtain a homogeneous equation:

T[n] = T[n− 1]+n2

Shift:

T[n− 1] = T[n− 2]+ (n− 1)2 = T[n− 2]+n2 − 2n+ 1

Difference:

T[n]− T[n− 1] = T[n− 1]− T[n− 2]+ 2n− 1

T[n] = 2T[n− 1]− T[n− 2]+ 2n− 1



T[n] = 2T[n− 1]− T[n− 2]+ 2n− 1

Shift:

T[n− 1] = 2T[n− 2]− T[n− 3]+ 2(n− 1)− 1

= 2T[n− 2]− T[n− 3]+ 2n− 3

Difference:

T[n]− T[n− 1] =2T[n− 1]− T[n− 2]+ 2n− 1

− 2T[n− 2]+ T[n− 3]− 2n+ 3

T[n] = 3T[n− 1]− 3T[n− 2]+ T[n− 3]+ 2

and so on...



6.4 Generating Functions

Definition 7 (Generating Function)

Let (an)n≥0 be a sequence. The corresponding

ñ generating function (Erzeugendenfunktion) is

F(z) :=
∑
n≥0

anzn;

ñ exponential generating function (exponentielle

Erzeugendenfunktion) is

F(z) =
∑
n≥0

an
n!
zn.

6.4 Generating Functions
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6.4 Generating Functions

Example 8

1. The generating function of the sequence (1,0,0, . . .) is

F(z) = 1 .

2. The generating function of the sequence (1,1,1, . . .) is

F(z) = 1
1− z .

6.4 Generating Functions
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6.4 Generating Functions

There are two different views:

A generating function is a formal power series (formale

Potenzreihe).

Then the generating function is an algebraic object.

Let f =∑n≥0 anzn and g =∑n≥0 bnzn.

ñ Equality: f and g are equal if an = bn for all n.

ñ Addition: f + g :=∑n≥0(an + bn)zn.

ñ Multiplication: f · g :=∑n≥0 cnzn with cn =
∑n
p=0 apbn−p.

There are no convergence issues here.

6.4 Generating Functions
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6.4 Generating Functions

The arithmetic view:

We view a power series as a function f : C→ C.

Then, it is important to think about convergence/convergence

radius etc.

6.4 Generating Functions
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6.4 Generating Functions

What does
∑
n≥0 zn = 1

1−z mean in the algebraic view?

It means that the power series 1− z and the power series∑
n≥0 zn are invers, i.e.,

(
1− z

)
·
( ∞∑
n≥0

zn
)
= 1 .

This is well-defined.

6.4 Generating Functions
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6.4 Generating Functions

Suppose we are given the generating

function

∑
n≥0

zn = 1
1− z .

We can compute the derivative:

∑
n≥1

nzn−1 = 1
(1− z)2

∑
n≥1

nzn−1

︸ ︷︷ ︸∑
n≥0(n+1)zn

Hence, the generating function of the sequence an = n+ 1

is 1/(1− z)2.

Formally the derivative of a formal
power series

∑
n≥0 anz

n is defined
as
∑
n≥0 nanzn−1.

The known rules for differentiation
work for this definition. In partic-
ular, e.g. the derivative of 1

1−z is
1

(1−z)2 .

Note that this requires a proof if we
consider power series as algebraic
objects. However, we did not prove
this in the lecture.

6.4 Generating Functions
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6.4 Generating Functions

We can repeat this

∑
n≥0

(n+ 1)zn = 1
(1− z)2 .

Derivative: ∑
n≥1

n(n+ 1)zn−1 = 2
(1− z)3

∑
n≥1

n(n+ 1)zn−1

︸ ︷︷ ︸∑
n≥0(n+1)(n+2)zn

Hence, the generating function of the sequence

an = (n+ 1)(n+ 2) is 2
(1−z)3 .

6.4 Generating Functions
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6.4 Generating Functions

Computing the k-th derivative of
∑
zn.∑

n≥k
n(n− 1) · . . . · (n− k+ 1)zn−k =

∑
n≥0

(n+ k) · . . . · (n+ 1)zn

= k!
(1− z)k+1 .

Hence: ∑
n≥0

(
n+ k
k

)
zn = 1

(1− z)k+1 .

The generating function of the sequence an =
(
n+k
k

)
is 1
(1−z)k+1 .

6.4 Generating Functions
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6.4 Generating Functions

∑
n≥0

nzn =
∑
n≥0

(n+ 1)zn −
∑
n≥0

zn

= 1
(1− z)2 −

1
1− z

= z
(1− z)2

The generating function of the sequence an = n is z
(1−z)2 .

6.4 Generating Functions
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6.4 Generating Functions

We know ∑
n≥0

yn = 1
1−y

Hence,

∑
n≥0

anzn = 1
1− az

The generating function of the sequence fn = an is 1
1−az .

6.4 Generating Functions
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Example: an = an−1 + 1, a0 = 1
Suppose we have the recurrence an = an−1 + 1 for n ≥ 1 and

a0 = 1.

A(z) =
∑
n≥0

anzn

= a0 +
∑
n≥1

(an−1 + 1)zn

= 1+ z
∑
n≥1

an−1zn−1 +
∑
n≥1

zn

= z
∑
n≥0

anzn +
∑
n≥0

zn

= zA(z)+
∑
n≥0

zn

= zA(z)+ 1
1− z

6.4 Generating Functions
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Example: an = an−1 + 1, a0 = 1

Solving for A(z) gives

∑
n≥0

anzn = A(z) = 1
(1− z)2 =

∑
n≥0

(n+ 1)zn

Hence, an = n+ 1.

6.4 Generating Functions
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Some Generating Functions

n-th sequence element generating function

1
1

1− z
n+ 1

1
(1− z)2(

n+k
k

) 1
(1− z)k+1

n z
(1− z)2

an
1

1− az
n2

z(1+ z)
(1− z)3

1
n! ez

6.4 Generating Functions
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Some Generating Functions

n-th sequence element generating function

cfn cF

fn + gn F +G
∑n
i=0 fign−i F ·G

fn−k (n ≥ k); 0 otw. zkF

∑n
i=0 fi

F(z)
1− z

nfn z
dF(z)

dz

cnfn F(cz)

6.4 Generating Functions

© Harald Räcke 105



Solving Recursions with Generating Functions

1. Set A(z) =∑n≥0 anzn.

2. Transform the right hand side so that boundary condition

and recurrence relation can be plugged in.

3. Do further transformations so that the infinite sums on the

right hand side can be replaced by A(z).

4. Solving for A(z) gives an equation of the form A(z) = f(z),
where hopefully f(z) is a simple function.

5. Write f(z) as a formal power series.
Techniques:

ñ partial fraction decomposition (Partialbruchzerlegung)
ñ lookup in tables

6. The coefficients of the resulting power series are the an.

6.4 Generating Functions
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Example: an = 2an−1, a0 = 1

1. Set up generating function:

A(z) =
∑
n≥0

anzn

2. Transform right hand side so that recurrence can be

plugged in:

A(z) = a0 +
∑
n≥1

anzn

2. Plug in:

A(z) = 1+
∑
n≥1

(2an−1)zn

6.4 Generating Functions

© Harald Räcke 107



Example: an = 2an−1, a0 = 1

3. Transform right hand side so that infinite sums can be

replaced by A(z) or by simple function.

A(z) = 1+
∑
n≥1

(2an−1)zn

= 1+ 2z
∑
n≥1

an−1zn−1

= 1+ 2z
∑
n≥0

anzn

= 1+ 2z ·A(z)

4. Solve for A(z).

A(z) = 1
1− 2z

6.4 Generating Functions
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Example: an = 2an−1, a0 = 1

5. Rewrite f(z) as a power series:

∑
n≥0

anzn = A(z) = 1
1− 2z

=
∑
n≥0

2nzn

6.4 Generating Functions
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Example: an = 3an−1 + n, a0 = 1

1. Set up generating function:

A(z) =
∑
n≥0

anzn

6.4 Generating Functions
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Example: an = 3an−1 + n, a0 = 1

2./3. Transform right hand side:

A(z) =
∑
n≥0

anzn

= a0 +
∑
n≥1

anzn

= 1+
∑
n≥1

(3an−1 +n)zn

= 1+ 3z
∑
n≥1

an−1zn−1 +
∑
n≥1

nzn

= 1+ 3z
∑
n≥0

anzn +
∑
n≥0

nzn

= 1+ 3zA(z)+ z
(1− z)2

6.4 Generating Functions
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Example: an = 3an−1 + n, a0 = 1

4. Solve for A(z):

A(z) = 1+ 3zA(z)+ z
(1− z)2

gives

A(z) = (1− z)2 + z
(1− 3z)(1− z)2 =

z2 − z + 1
(1− 3z)(1− z)2

6.4 Generating Functions
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Example: an = 3an−1 + n, a0 = 1

5. Write f(z) as a formal power series:

We use partial fraction decomposition:

z2 − z + 1
(1− 3z)(1− z)2

!= A
1− 3z

+ B
1− z +

C
(1− z)2

This gives

z2 − z + 1 = A(1− z)2 + B(1− 3z)(1− z)+ C(1− 3z)

= A(1− 2z + z2)+ B(1− 4z + 3z2)+ C(1− 3z)

= (A+ 3B)z2 + (−2A− 4B − 3C)z + (A+ B + C)

6.4 Generating Functions
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Example: an = 3an−1 + n, a0 = 1

5. Write f(z) as a formal power series:

This leads to the following conditions:

A+ B + C = 1

2A+ 4B + 3C = 1

A+ 3B = 1

which gives

A = 7
4
B = −1

4
C = −1

2

6.4 Generating Functions
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Example: an = 3an−1 + n, a0 = 1

5. Write f(z) as a formal power series:

A(z) = 7
4
· 1

1− 3z
− 1

4
· 1

1− z −
1
2
· 1
(1− z)2

= 7
4
·
∑
n≥0

3nzn − 1
4
·
∑
n≥0

zn − 1
2
·
∑
n≥0

(n+ 1)zn

=
∑
n≥0

(7
4
· 3n − 1

4
− 1

2
(n+ 1)

)
zn

=
∑
n≥0

(7
4
· 3n − 1

2
n− 3

4

)
zn

6. This means an = 7
43n − 1

2n− 3
4 .

6.4 Generating Functions
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6.5 Transformation of the Recurrence

Example 9
f0 = 1

f1 = 2

fn = fn−1 · fn−2 for n ≥ 2 .

Define

gn := logfn .

Then

gn = gn−1 + gn−2 for n ≥ 2

g1 = log 2 = 1(for log = log2), g0 = 0

gn = Fn (n-th Fibonacci number)

fn = 2Fn

6.5 Transformation of the Recurrence
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6.5 Transformation of the Recurrence

Example 10

f1 = 1

fn = 3fn
2
+n; for n = 2k, k ≥ 1 ;

Define

gk := f2k .

Then:

g0 = 1

gk = 3gk−1 + 2k, k ≥ 1

6.5 Transformation of the Recurrence
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6 Recurrences

We get

gk = 3
[
gk−1

]+ 2k

= 3
[
3gk−2 + 2k−1

]
+ 2k

= 32 [gk−2
]+ 32k−1 + 2k

= 32
[
3gk−3 + 2k−2

]
+ 32k−1 + 2k

= 33gk−3 + 322k−2 + 32k−1 + 2k

= 2k ·
k∑
i=0

(3
2

)i

= 2k · (
3
2)
k+1 − 1
1/2

= 3k+1 − 2k+1

6.5 Transformation of the Recurrence
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6 Recurrences

Let n = 2k:

gk = 3k+1 − 2k+1, hence

fn = 3 · 3k − 2 · 2k

= 3(2log 3)k − 2 · 2k

= 3(2k)log 3 − 2 · 2k

= 3nlog 3 − 2n .

6.5 Transformation of the Recurrence
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