Part V

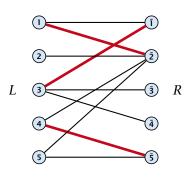
Matchings

548

550

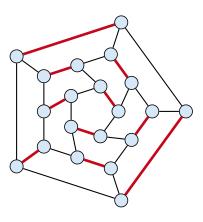
Bipartite Matching

- ▶ Input: undirected, bipartite graph $G = (L \uplus R, E)$.
- ▶ $M \subseteq E$ is a matching if each node appears in at most one edge in M.
- Maximum Matching: find a matching of maximum cardinality



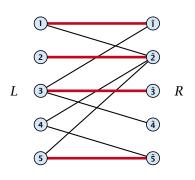
Matching

- ▶ Input: undirected graph G = (V, E).
- ▶ $M \subseteq E$ is a matching if each node appears in at most one edge in M.
- Maximum Matching: find a matching of maximum cardinality



Bipartite Matching

- ▶ Input: undirected, bipartite graph $G = (L \uplus R, E)$.
- ▶ $M \subseteq E$ is a matching if each node appears in at most one edge in M.
- Maximum Matching: find a matching of maximum cardinality



16 Definition

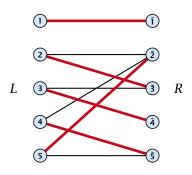
nition

16 Definition

551

Bipartite Matching

- ▶ A matching M is perfect if it is of cardinality |M| = |V|/2.
- ► For a bipartite graph $G = (L \uplus R, E)$ this means |M| = |L| = |R| = n.



© Harald Räcke

16 Definition

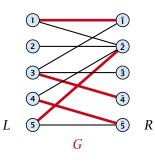
552

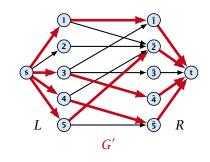
554

Proof

Max cardinality matching in $G \le \text{value}$ of maxflow in G'

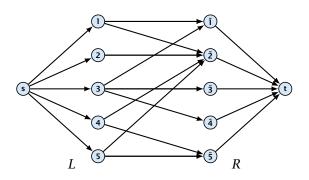
- Given a maximum matching M of cardinality k.
- ightharpoonup Consider flow f that sends one unit along each of k paths.
- ightharpoonup f is a flow and has cardinality k.





17 Bipartite Matching via Flows

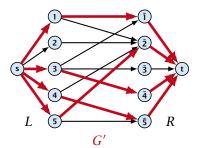
- ▶ Input: undirected, bipartite graph $G = (L \uplus R \uplus \{s, t\}, E')$.
- ▶ Direct all edges from *L* to *R*.
- Add source s and connect it to all nodes on the left.
- Add t and connect all nodes on the right to t.
- All edges have unit capacity.

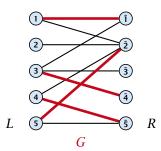


Proof

Max cardinality matching in $G \ge \text{value of maxflow in } G'$

- $\blacktriangleright \ \, \mathsf{Let} \, f \, \, \mathsf{be} \, \, \mathsf{a} \, \, \mathsf{maxflow} \, \, \mathsf{in} \, \, G' \, \, \mathsf{of} \, \, \mathsf{value} \, \, k$
- ▶ Integrality theorem $\Rightarrow k$ integral; we can assume f is 0/1.
- ► Consider M= set of edges from L to R with f(e) = 1.
- ▶ Each node in L and R participates in at most one edge in M.
- ightharpoonup |M| = k, as the flow must use at least k middle edges.





17 Bipartite Matching via Flows

Which flow algorithm to use?

- ▶ Generic augmenting path: $\mathcal{O}(m \operatorname{val}(f^*)) = \mathcal{O}(mn)$.
- ► Capacity scaling: $\mathcal{O}(m^2 \log C) = \mathcal{O}(m^2)$.

© Harald Räcke

17 Bipartite Matching via Flows

556

18 Augmenting Paths for Matchings

Definitions.

- ► Given a matching *M* in a graph *G*, a vertex that is not incident to any edge of *M* is called a free vertex w.r..t. *M*.
- For a matching M a path P in G is called an alternating path if edges in M alternate with edges not in M.
- ► An alternating path is called an augmenting path for matching *M* if it ends at distinct free vertices.

Theorem 1

A matching M is a maximum matching if and only if there is no augmenting path w.r.t.M.

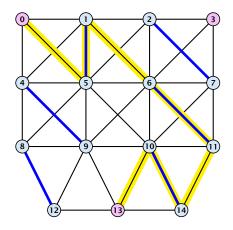
© Harald Räcke

malal Dälalia

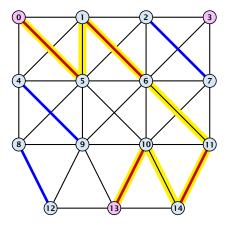
18 Augmenting Paths for Matchings

557

Augmenting Paths in Action



Augmenting Paths in Action



18 Augmenting Paths for Matchings

558

18 Augmenting Paths for Matchings

Proof.

- \Rightarrow If M is maximum there is no augmenting path P, because we could switch matching and non-matching edges along P. This gives matching $M' = M \oplus P$ with larger cardinality.
- \leftarrow Suppose there is a matching M' with larger cardinality. Consider the graph H with edge-set $M' \oplus M$ (i.e., only edges that are in either M or M' but not in both).

Each vertex can be incident to at most two edges (one from M and one from M'). Hence, the connected components are alternating cycles or alternating path.

As |M'| > |M| there is one connected component that is a path P for which both endpoints are incident to edges from M'. P is an alternating path.

18 Augmenting Paths for Matchings

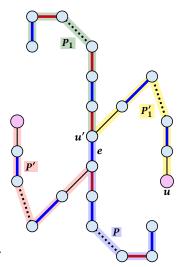
559

561

18 Augmenting Paths for Matchings

Proof

- Assume there is an augmenting path P' w.r.t. M' starting at u.
- If P' and P are node-disjoint, P' is also augmenting path w.r.t. M (∮).
- Let u' be the first node on P' that is in P, and let e be the matching edge from M' incident to u'.
- u' splits P into two parts one of which does not contain e. Call this part P_1 . Denote the sub-path of P' from u to u' with P'_1 .
- ▶ $P_1 \circ P_1'$ is augmenting path in M (\$).



18 Augmenting Paths for Matchings

Algorithmic idea:

As long as you find an augmenting path augment your matching using this path. When you arrive at a matching for which no augmenting path exists you have a maximum matching.

Theorem 2

Let G be a graph, M a matching in G, and let u be a free vertex w.r.t. M. Further let P denote an augmenting path w.r.t. M and let $M' = M \oplus P$ denote the matching resulting from augmenting M with P. If there was no augmenting path starting at u in M then there is no augmenting path starting at u in M'.

The above theorem allows for an easier implementation of an augmenting path algorithm. Once we checked for augmenting paths starting from u we don't have to check for such paths in future rounds.

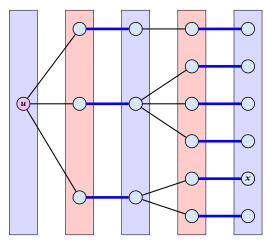
18 Augmenting Paths for Matchings

560

562

How to find an augmenting path?

Construct an alternating tree.

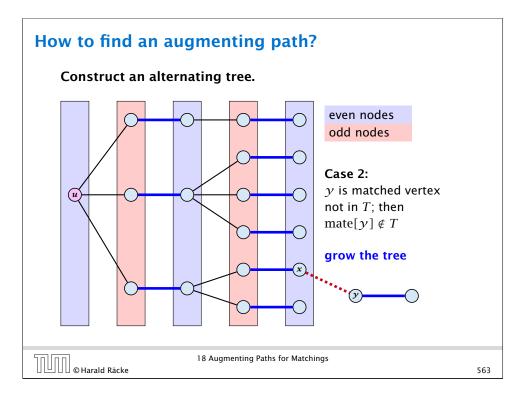


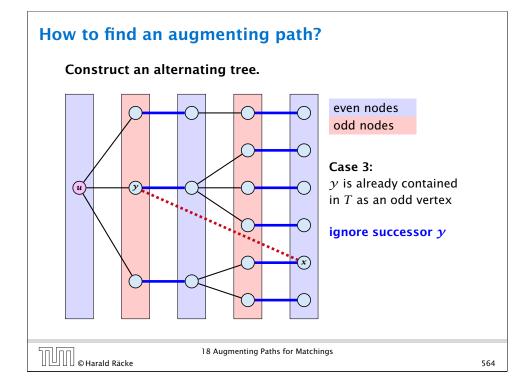
even nodes odd nodes

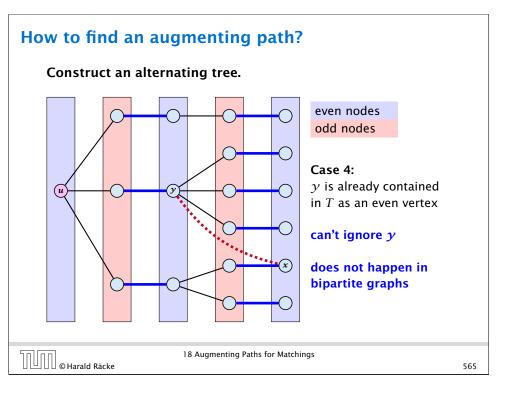
Case 1: *y* is free vertex not contained in *T*

you found alternating path

18 Augmenting Paths for Matchings







```
Algorithm 52 BiMatch(G, match)
 1: for x \in V do mate[x] \leftarrow 0;
 2: r \leftarrow 0; free \leftarrow n;
 3: while free \ge 1 and r < n do
                                                           graph G = (S \cup S', E)
    r \leftarrow r + 1
                                                               S = \{1, ..., n\}
       if mate[r] = 0 then
           for i = 1 to m do parent[i'] \leftarrow 0
 6:
                                                             S' = \{1', \dots, n'\}
           Q \leftarrow \emptyset; Q. append(r); aug \leftarrow false;
 7:
           while aug = false and Q \neq \emptyset do
 8:
 9:
              x \leftarrow Q. \text{dequeue}();
               for y \in A_X do
10:
11:
                  if mate[\gamma] = 0 then
12:
                      augm(mate, parent, y);
13:
                      aug ← true;
14:
                      free \leftarrow free - 1;
15:
                  else
16:
                      if parent[y] = 0 then
                         parent[y] \leftarrow x;
17:
                                                       The lecture version of the slides
                         Q. enqueue(mate[y]);
18:
                                                        contains a step-by-step explana-
                                                       tion of the algorithm.
```

19 Weighted Bipartite Matching

Weighted Bipartite Matching/Assignment

- ▶ Input: undirected, bipartite graph $G = L \cup R, E$.
- ▶ an edge $e = (\ell, r)$ has weight $w_e \ge 0$
- find a matching of maximum weight, where the weight of a matching is the sum of the weights of its edges

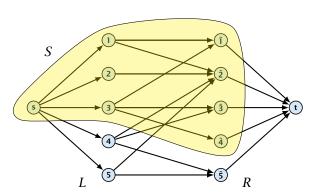
Simplifying Assumptions (wlog [why?]):

- ightharpoonup assume that |L| = |R| = n
- assume that there is an edge between every pair of nodes $(\ell,r) \in V \times V$

19 Weighted Bipartite Matching

567

19 Weighted Bipartite Matching



Weighted Bipartite Matching

Theorem 3 (Halls Theorem)

A bipartite graph $G = (L \cup R, E)$ has a perfect matching if and only if for all sets $S \subseteq L$, $|\Gamma(S)| \ge |S|$, where $\Gamma(S)$ denotes the set of nodes in R that have a neighbour in S.

19 Weighted Bipartite Matching

569

Halls Theorem

Proof:

- ← Of course, the condition is necessary as otherwise not all nodes in *S* could be matched to different neighbours.
- \Rightarrow For the other direction we need to argue that the minimum cut in the graph G' is at least |L|.
 - Let S denote a minimum cut and let $L_S \not \equiv L \cap S$ and $R_S \not \equiv R \cap S$ denote the portion of S inside L and R, respectively.
 - ▶ Clearly, all neighbours of nodes in L_S have to be in S, as otherwise we would cut an edge of infinite capacity.
 - ▶ This gives $R_S \ge |\Gamma(L_S)|$.
 - ▶ The size of the cut is $|L| |L_S| + |R_S|$.
 - Using the fact that $|\Gamma(L_S)| \ge L_S$ gives that this is at least |L|.

Algorithm Outline

Idea:

We introduce a node weighting \vec{x} . Let for a node $v \in V$, $x_v \ge 0$ denote the weight of node v.

► Suppose that the node weights dominate the edge-weights in the following sense:

$$x_u + x_v \ge w_e$$
 for every edge $e = (u, v)$.

- Let $H(\vec{x})$ denote the subgraph of G that only contains edges that are tight w.r.t. the node weighting \vec{x} , i.e. edges e = (u, v) for which $w_e = x_u + x_v$.
- ▶ Try to compute a perfect matching in the subgraph $H(\vec{x})$. If you are successful you found an optimal matching.

19 Weighted Bipartite Matching

571

Algorithm Outline

What if you don't find a perfect matching?

Then, Halls theorem guarantees you that there is a set $S \subseteq L$, with $|\Gamma(S)| < |S|$, where Γ denotes the neighbourhood w.r.t. the subgraph $H(\vec{x})$.

Idea: reweight such that:

- the total weight assigned to nodes decreases
- the weight function still dominates the edge-weights

If we can do this we have an algorithm that terminates with an optimal solution (we analyze the running time later).

Algorithm Outline

Reason:

▶ The weight of your matching M^* is

$$\sum_{(u,v)\in M^*} w_{(u,v)} = \sum_{(u,v)\in M^*} (x_u + x_v) = \sum_v x_v .$$

 \triangleright Any other matching M has

$$\sum_{(u,v)\in M} w_{(u,v)} \leq \sum_{(u,v)\in M} (x_u+x_v) \leq \sum_v x_v \ .$$

© Harald Räcke

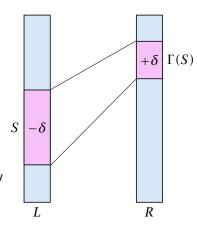
19 Weighted Bipartite Matching

572

Changing Node Weights

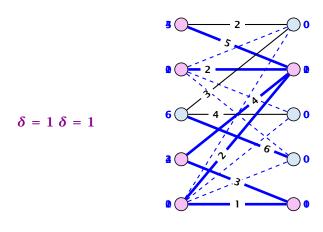
Increase node-weights in $\Gamma(S)$ by $+\delta$, and decrease the node-weights in S by $-\delta$.

- Total node-weight decreases.
- ► Only edges from S to $R \Gamma(S)$ decrease in their weight.
- ▶ Since, none of these edges is tight (otw. the edge would be contained in $H(\vec{x})$, and hence would go between S and $\Gamma(S)$) we can do this decrement for small enough $\delta > 0$ until a new edge gets tight.



Weighted Bipartite Matching

Edges not drawn have weight 0.



© Harald Räcke

19 Weighted Bipartite Matching

575

577

Analysis

- ightharpoonup We will show that after at most n reweighting steps the size of the maximum matching can be increased by finding an augmenting path.
- ► This gives a polynomial running time.

Analysis

How many iterations do we need?

- One reweighting step increases the number of edges out of S by at least one.
- Assume that we have a maximum matching that saturates the set $\Gamma(S)$, in the sense that every node in $\Gamma(S)$ is matched to a node in S (we will show that we can always find S and a matching such that this holds).
- ▶ This matching is still contained in the new graph, because all its edges either go between $\Gamma(S)$ and S or between L-S and $R-\Gamma(S)$.
- ► Hence, reweighting does not decrease the size of a maximum matching in the tight sub-graph.

untal Disales

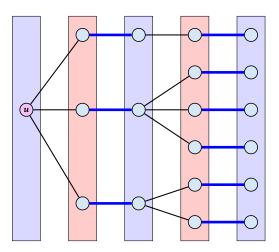
19 Weighted Bipartite Matching

576

578

How to find an augmenting path?

Construct an alternating tree.



19 Weighted Bipartite Matching

Analysis

How do we find S?

- ▶ Start on the left and compute an alternating tree, starting at any free node u.
- If this construction stops, there is no perfect matching in the tight subgraph (because for a perfect matching we need to find an augmenting path starting at u).
- ▶ The set of even vertices is on the left and the set of odd vertices is on the right and contains all neighbours of even nodes.
- ▶ All odd vertices are matched to even vertices. Furthermore. the even vertices additionally contain the free vertex u. Hence, $|V_{\text{odd}}| = |\Gamma(V_{\text{even}})| < |V_{\text{even}}|$, and all odd vertices are saturated in the current matching.

19 Weighted Bipartite Matching

579

A Fast Matching Algorithm

Algorithm 53 Bimatch-Hopcroft-Karp(*G*)

1: *M* ← Ø

2: repeat

let $\mathcal{P} = \{P_1, \dots, P_k\}$ be maximal set of

vertex-disjoint, shortest augmenting path w.r.t. M.

 $M \leftarrow M \oplus (P_1 \cup \cdots \cup P_k)$

6: until $\mathcal{P} = \emptyset$

7: **return** *M*

We call one iteration of the repeat-loop a phase of the algorithm.

Analysis

- ightharpoonup The current matching does not have any edges from $V_{\rm odd}$ to outside of $L \setminus V_{\text{even}}$ (edges that may possibly be deleted by changing weights).
- After changing weights, there is at least one more edge connecting V_{even} to a node outside of V_{odd} . After at most nreweights we can do an augmentation.
- A reweighting can be trivially performed in time $\mathcal{O}(n^2)$ (keeping track of the tight edges).
- ▶ An augmentation takes at most $\mathcal{O}(n)$ time.
- In total we otain a running time of $\mathcal{O}(n^4)$.
- A more careful implementation of the algorithm obtains a running time of $\mathcal{O}(n^3)$.

19 Weighted Bipartite Matching

580

Analysis

Lemma 4

Given a matching M and a maximal matching M^* there exist $|M^*| - |M|$ vertex-disjoint augmenting path w.r.t. M.

Proof:

- ▶ Similar to the proof that a matching is optimal iff it does not contain an augmenting paths.
- ▶ Consider the graph $G = (V, M \oplus M^*)$, and mark edges in this graph blue if they are in M and red if they are in M^* .
- ▶ The connected components of *G* are cycles and paths.
- ▶ The graph contains $k \triangleq |M^*| |M|$ more red edges than blue edges.
- ► Hence, there are at least *k* components that form a path starting and ending with a blue edge. These are augmenting paths w.r.t. M.

Analysis

- ightharpoonup Let P_1, \ldots, P_k be a maximal collection of vertex-disjoint, shortest augmenting paths w.r.t. M (let $\ell = |P_i|$).
- $M' \stackrel{\text{def}}{=} M \oplus (P_1 \cup \cdots \cup P_k) = M \oplus P_1 \oplus \cdots \oplus P_k.$
- \blacktriangleright Let P be an augmenting path in M'.

Lemma 5

The set $A \stackrel{\text{def}}{=} M \oplus (M' \oplus P) = (P_1 \cup \cdots \cup P_k) \oplus P$ contains at least $(k+1)\ell$ edges.

20 The Hopcroft-Karp Algorithm

583

Analysis

Lemma 6

P is of length at least $\ell+1$. This shows that the length of a shortest augmenting path increases between two phases of the Hopcroft-Karp algorithm.

Proof.

- ▶ If P does not intersect any of the P_1, \ldots, P_k , this follows from the maximality of the set $\{P_1, \ldots, P_k\}$.
- ▶ Otherwise, at least one edge from *P* coincides with an edge from paths $\{P_1, \ldots, P_k\}$.
- ► This edge is not contained in *A*.
- ▶ Hence, $|A| \le k\ell + |P| 1$.
- ▶ The lower bound on |A| gives $(k+1)\ell \le |A| \le k\ell + |P| 1$, and hence $|P| \ge \ell + 1$.

Analysis

Proof.

- ► The set describes exactly the symmetric difference between matchings M and $M' \oplus P$.
- ▶ Hence, the set contains at least k + 1 vertex-disjoint augmenting paths w.r.t. M as |M'| = |M| + k + 1.
- **Each** of these paths is of length at least ℓ .

20 The Hopcroft-Karp Algorithm

Analysis

If the shortest augmenting path w.r.t. a matching M has ℓ edges then the cardinality of the maximum matching is of size at most $|M| + \frac{|V|}{p+1}$.

Proof.

The symmetric difference between M and M^* contains $|M^*| - |M|$ vertex-disjoint augmenting paths. Each of these paths contains at least $\ell+1$ vertices. Hence, there can be at most $\frac{|V|}{\ell+1}$ of them.

Analysis

Lemma 7

The Hopcroft-Karp algorithm requires at most $2\sqrt{|V|}$ phases.

Proof.

- ▶ After iteration $\lfloor \sqrt{|V|} \rfloor$ the length of a shortest augmenting path must be at least $\lfloor \sqrt{|V|} \rfloor + 1 \ge \sqrt{|V|}$.
- ▶ Hence, there can be at most $|V|/(\sqrt{|V|}+1) \le \sqrt{|V|}$ additional augmentations.

20 The Hopcroft-Karp Algorithm

587

589

Analysis

- ► Then a maximal set of shortest path from the leftmost layer of the tree construction to nodes in *F* needs to be computed.
- Any such path must visit the layers of the BFS-tree from left to right.
- ► To go from an odd layer to an even layer it must use a matching edge.
- ► To go from an even layer to an odd layer edge it can use edges in the BFS-tree or edges that have been ignored during BFS-tree construction.
- We direct all edges btw. an even node in some layer ℓ to an odd node in layer $\ell+1$ from left to right.
- ▶ A DFS search in the resulting graph gives us a maximal set of vertex disjoint path from left to right in the resulting graph.

© Harald Räc

Analysis

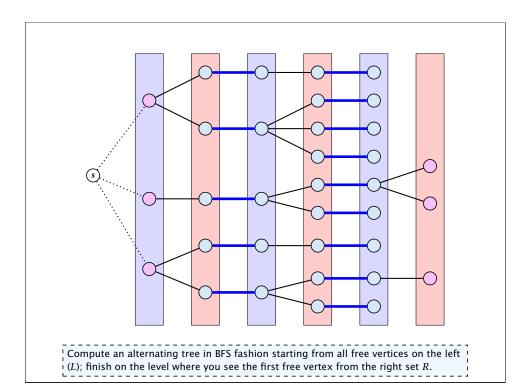
Lemma 8

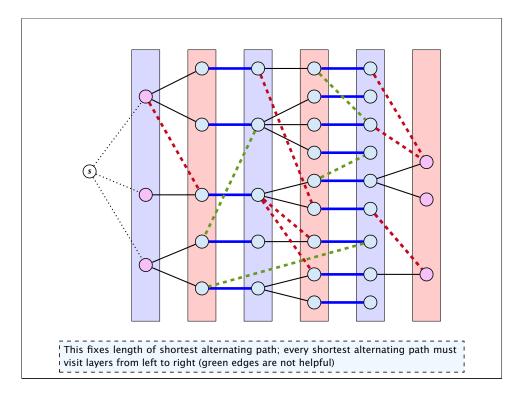
One phase of the Hopcroft-Karp algorithm can be implemented in time O(m).

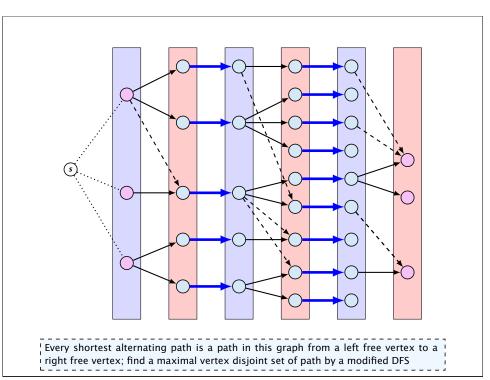
- ▶ Do a breadth first search starting at all free vertices in the left side *L*.
 - (alternatively add a super-startnode; connect it to all free vertices in \boldsymbol{L} and start breadth first search from there)
- ► The search stops when reaching a free vertex. However, the current level of the BFS tree is still finished in order to find a set *F* of free vertices (on the right side) that can be reached via shortest augmenting paths.

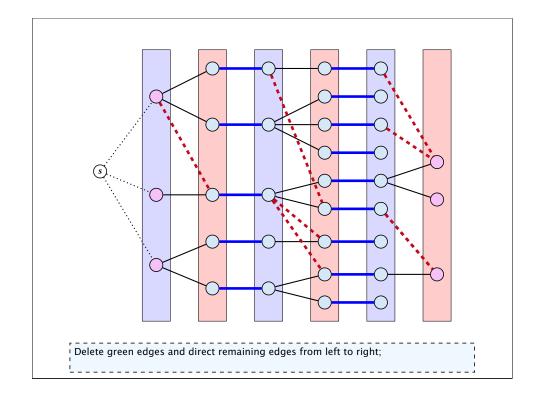
20 The Hopcroft-Karp Algorithm

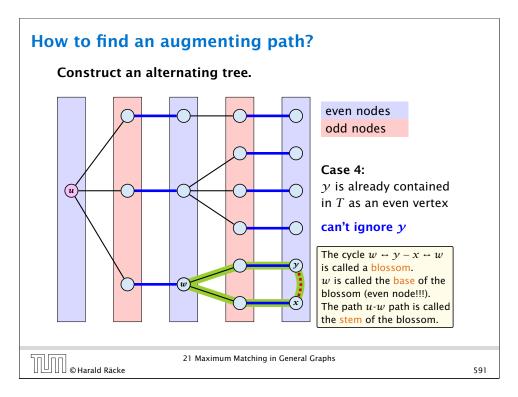
588











Flowers and Blossoms

Definition 9

A flower in a graph G = (V, E) w.r.t. a matching M and a (free) root node r, is a subgraph with two components:

- A stem is an even length alternating path that starts at the root node γ and terminates at some node w. We permit the possibility that r = w (empty stem).
- ▶ A blossom is an odd length alternating cycle that starts and terminates at the terminal node w of a stem and has no other node in common with the stem. w is called the base of the blossom.

21 Maximum Matching in General Graphs

592

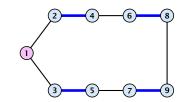
594

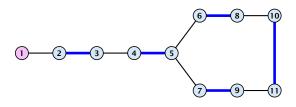
Flowers and Blossoms

Properties:

- 1. A stem spans $2\ell+1$ nodes and contains ℓ matched edges for some integer $\ell \geq 0$.
- **2.** A blossom spans 2k + 1 nodes and contains k matched edges for some integer $k \ge 1$. The matched edges match all nodes of the blossom except the base.
- 3. The base of a blossom is an even node (if the stem is part of an alternating tree starting at r).

Flowers and Blossoms





© Harald Räcke

21 Maximum Matching in General Graphs

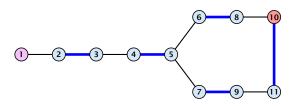
593

Flowers and Blossoms

Properties:

- **4.** Every node *x* in the blossom (except its base) is reachable from the root (or from the base of the blossom) through two distinct alternating paths; one with even and one with odd length.
- 5. The even alternating path to x terminates with a matched edge and the odd path with an unmatched edge.

Flowers and Blossoms



© Harald Räcke

21 Maximum Matching in General Graphs

598

Shrinking Blossoms

When during the alternating tree construction we discover a blossom B we replace the graph G by G' = G/B, which is obtained from *G* by contracting the blossom *B*.

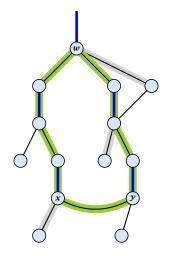
- ▶ Delete all vertices in *B* (and its incident edges) from *G*.
- \blacktriangleright Add a new (pseudo-)vertex b. The new vertex b is connected to all vertices in $V \setminus B$ that had at least one edge to a vertex from B.

© Harald Räcke

21 Maximum Matching in General Graphs

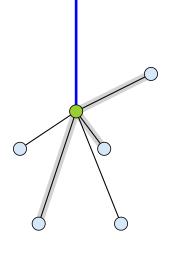
Shrinking Blossoms

- \triangleright Edges of T that connect a node unot in B to a node in B become tree edges in T' connecting u to b.
- ► Matching edges (there is at most one) that connect a node u not in B to a node in B become matching edges in M'.
- ▶ Nodes that are connected in *G* to at least one node in B become connected to b in G'.



Shrinking Blossoms

- Edges of T that connect a node u not in B to a node in B become tree edges in T' connecting u to b.
- Matching edges (there is at most one) that connect a node u not in B to a node in B become matching edges in M'.
- ▶ Nodes that are connected in *G* to at least one node in B become connected to b in G'.



21 Maximum Matching in General Graphs

21 Maximum Matching in General Graphs

Example: Blossom Algorithm

Animation of Blossom Shrinking algorithm is only available in the lecture version of the slides.

© Harald Räcke

21 Maximum Matching in General Graphs

599

Correctness

Assume that in G we have a flower w.r.t. matching M. Let r be the root, B the blossom, and W the base. Let graph G' = G/B with pseudonode B. Let M' be the matching in the contracted graph.

Lemma 10

If G' contains an augmenting path P' starting at r (or the pseudo-node containing r) w.r.t. the matching M' then G contains an augmenting path starting at r w.r.t. matching M.

© Harald Räcke

21 Maximum Matching in General Graphs

600

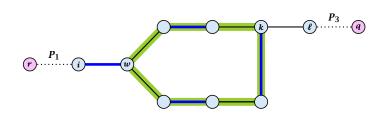
Correctness

Proof.

If P' does not contain b it is also an augmenting path in G.

Case 1: non-empty stem

Next suppose that the stem is non-empty.



Correctness

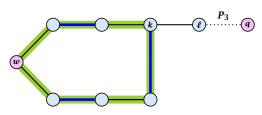
- After the expansion ℓ must be incident to some node in the blossom. Let this node be k.
- ▶ If $k \neq w$ there is an alternating path P_2 from w to k that ends in a matching edge.
- ▶ $P_1 \circ (i, w) \circ P_2 \circ (k, \ell) \circ P_3$ is an alternating path.
- ▶ If k = w then $P_1 \circ (i, w) \circ (w, \ell) \circ P_3$ is an alternating path.

Correctness

Proof.

Case 2: empty stem

• If the stem is empty then after expanding the blossom, w = r.



▶ The path $r \circ P_2 \circ (k, \ell) \circ P_3$ is an alternating path.

21 Maximum Matching in General Graphs

603

Correctness

Lemma 11

If G contains an augmenting path P from r to q w.r.t. matching M then G' contains an augmenting path from r (or the pseudo-node containing r) to q w.r.t. M'.

21 Maximum Matching in General Graphs

604

Correctness

Proof.

- ▶ If *P* does not contain a node from *B* there is nothing to prove.
- ightharpoonup We can assume that r and q are the only free nodes in G.

Case 1: empty stem

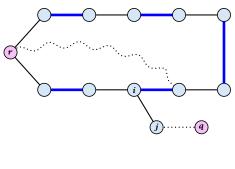
Let i be the last node on the path P that is part of the blossom.

P is of the form $P_1 \circ (i,j) \circ P_2$, for some node j and (i,j) is unmatched.

 $(b, j) \circ P_2$ is an augmenting path in the contracted network.

Correctness

Illustration for Case 1:



Correctness

Case 2: non-empty stem

Let P_3 be alternating path from r to w; this exists because r and w are root and base of a blossom. Define $M_+ = M \oplus P_3$.

In M_+ , r is matched and w is unmatched.

G must contain an augmenting path w.r.t. matching M_+ , since M and M_{+} have same cardinality.

This path must go between w and a as these are the only unmatched vertices w.r.t. M_{+} .

For M'_{\perp} the blossom has an empty stem. Case 1 applies.

G' has an augmenting path w.r.t. M'_+ . It must also have an augmenting path w.r.t. M', as both matchings have the same cardinality.

This path must go between r and q.

21 Maximum Matching in General Graphs

607

Algorithm 55 examine(*i*, *found*)

```
1: for all j \in \bar{A}(i) do
```

if j is even then contract(i, j) and return

if *i* is unmatched **then** 3:

 $q \leftarrow j$; 4:

5: $pred(q) \leftarrow i$;

found ← true: 6:

7: return

if j is matched and unlabeled then 8:

 $pred(j) \leftarrow i$; 9:

 $pred(mate(j)) \leftarrow j$; 10:

add mate(*j*) to *list* 11:

Examine the neighbours of a node i

The lecture version of the slides has a step by step explanation.

Algorithm 54 search(r, found)

1: set $\bar{A}(i) \leftarrow A(i)$ for all nodes i

2: *found* ← false

3: unlabel all nodes;

4: give an even label to r and initialize $list \leftarrow \{r\}$

5: while $list \neq \emptyset$ do

delete a node *i* from *list*

examine(*i*, *found*) 7:

if *found* = true **then return**

Search for an augmenting path starting at r.

The lecture version of the slides has a step by step explanation.

Algorithm 56 contract(i, j)

1: trace pred-indices of i and j to identify a blossom B

2: create new node b and set $\bar{A}(b) \leftarrow \bigcup_{x \in B} \bar{A}(x)$

3: label b even and add to list

4: update $\bar{A}(j) \leftarrow \bar{A}(j) \cup \{b\}$ for each $j \in \bar{A}(b)$

5: form a circular double linked list of nodes in B

6: delete nodes in B from the graph

Contract blossom identified by nodes i and j

21 Maximum Matching in General Graphs

Algorithm 56 contract(i, j)

- 1: trace pred-indices of i and j to identify a blossom B
- 2: create new node b and set $\bar{A}(b) \leftarrow \bigcup_{x \in B} \bar{A}(x)$
- 3: label b even and add to list
- 4: update $\bar{A}(j) \leftarrow \bar{A}(j) \cup \{b\}$ for each $j \in \bar{A}(b)$
- 5: form a circular double linked list of nodes in B
- 6: delete nodes in B from the graph

Get all nodes of the blossom.

Time: $\mathcal{O}(m)$

21 Maximum Matching in General Graphs

610

610

Algorithm 56 contract(i, j)

- 1: trace pred-indices of i and j to identify a blossom B
- 2: create new node b and set $\bar{A}(b) \leftarrow \bigcup_{x \in B} \bar{A}(x)$
- 3: label b even and add to list
- 4: update $\bar{A}(j) \leftarrow \bar{A}(j) \cup \{b\}$ for each $j \in \bar{A}(b)$
- 5: form a circular double linked list of nodes in B
- 6: delete nodes in B from the graph

b will be an even node, and it has unexamined neighbours.

Algorithm 56 contract(i, j)

- 1: trace pred-indices of i and j to identify a blossom B
- 2: create new node b and set $\bar{A}(b) \leftarrow \bigcup_{x \in B} \bar{A}(x)$
- 3: label b even and add to list
- 4: update $\bar{A}(j) \leftarrow \bar{A}(j) \cup \{b\}$ for each $j \in \bar{A}(b)$
- 5: form a circular double linked list of nodes in B
- 6: delete nodes in B from the graph

Identify all neighbours of b.

Time: $\mathcal{O}(m)$ (how?)

© Harald Räcke

21 Maximum Matching in General Graphs

610

Algorithm 56 contract(i, j)

- 1: trace pred-indices of i and j to identify a blossom B
- 2: create new node b and set $\bar{A}(b) \leftarrow \bigcup_{x \in B} \bar{A}(x)$
- 3: label b even and add to list
- 4: update $\bar{A}(j) \leftarrow \bar{A}(j) \cup \{b\}$ for each $j \in \bar{A}(b)$
- 5: form a circular double linked list of nodes in B
- 6: delete nodes in B from the graph

Every node that was adjacent to a node in B is now adjacent to b

Algorithm 56 contract(i, j)

- 1: trace pred-indices of i and j to identify a blossom B
- 2: create new node b and set $\bar{A}(b) \leftarrow \bigcup_{x \in B} \bar{A}(x)$
- 3: label b even and add to list
- 4: update $\bar{A}(j) \leftarrow \bar{A}(j) \cup \{b\}$ for each $j \in \bar{A}(b)$
- 5: form a circular double linked list of nodes in B
- 6: delete nodes in B from the graph

Only for making a blossom expansion easier.

21 Maximum Matching in General Graphs

610

Algorithm 56 contract(i, j)

- 1: trace pred-indices of i and j to identify a blossom B
- 2: create new node b and set $\bar{A}(b) \leftarrow \bigcup_{x \in B} \bar{A}(x)$
- 3: label b even and add to list
- 4: update $\bar{A}(j) \leftarrow \bar{A}(j) \cup \{b\}$ for each $j \in \bar{A}(b)$
- 5: form a circular double linked list of nodes in B
- 6: delete nodes in B from the graph

Only delete links from nodes not in B to B.

When expanding the blossom again we can recreate these links in time $\mathcal{O}(m)$.

21 Maximum Matching in General Graphs

610

Analysis

- A contraction operation can be performed in time O(m). Note, that any graph created will have at most m edges.
- ▶ The time between two contraction-operation is basically a BFS/DFS on a graph. Hence takes time $\mathcal{O}(m)$.
- ► There are at most *n* contractions as each contraction reduces the number of vertices.
- ► The expansion can trivially be done in the same time as needed for all contractions.
- An augmentation requires time $\mathcal{O}(n)$. There are at most n of them.
- ► In total the running time is at most

$$n \cdot (\mathcal{O}(mn) + \mathcal{O}(n)) = \mathcal{O}(mn^2)$$
.

Example: Blossom Algorithm

Animation of Blossom Shrinking algorithm is only available in the lecture version of the slides.