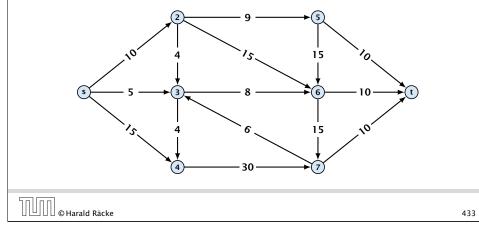
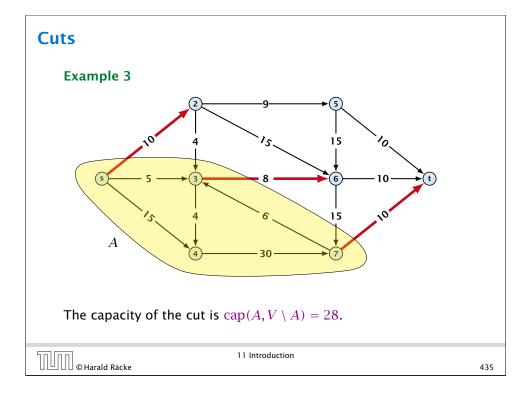
11 Introduction

Flow Network

- directed graph G = (V, E); edge capacities c(e)
- \blacktriangleright two special nodes: source s; target t;
- no edges entering s or leaving t;
- ▶ at least for now: no parallel edges;





Cuts

Definition 1

An (s, t)-cut in the graph G is given by a set $A \subset V$ with $s \in A$ and $t \in V \setminus A$.

Definition 2 The capacity of a cut *A* is defined as

$$\operatorname{cap}(A, V \setminus A) := \sum_{e \in \operatorname{out}(A)} c(e)$$
,

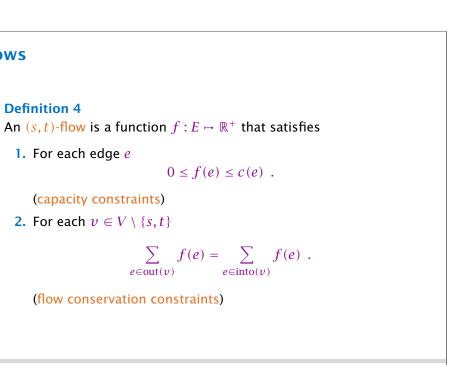
where out(A) denotes the set of edges of the form $A \times V \setminus A$ (i.e. edges leaving A).

Minimum Cut Problem: Find an (s, t)-cut with minimum capacity.

```
C Harald Räcke
```

Flows

```
11 Introduction
```



434

Flows

Definition 5 The value of an (s, t)-flow f is defined as

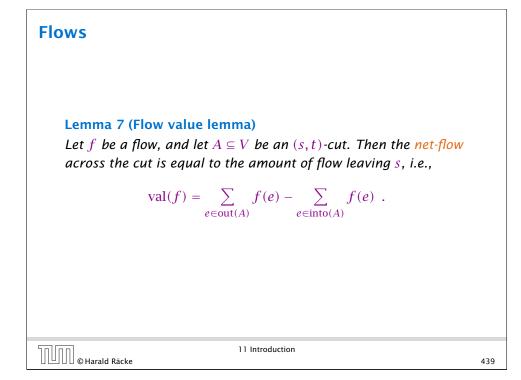
$$\operatorname{val}(f) = \sum_{e \in \operatorname{out}(s)} f(e)$$

Maximum Flow Problem: Find an (s, t)-flow with maximum value.

IIII © Harald Räcke

11 Introduction

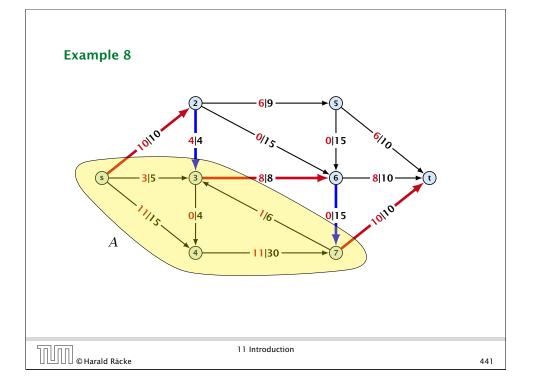
437

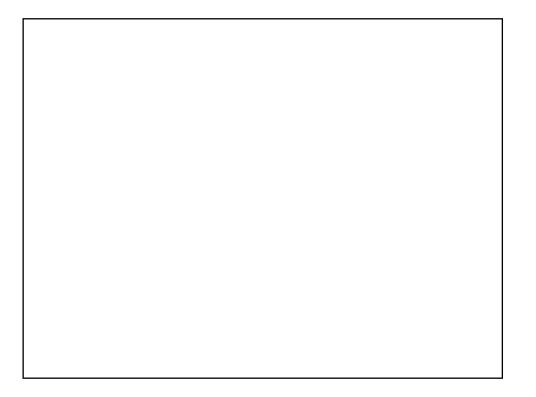


Proof. $val(f) = \sum_{e \in out(s)} f(e)$ $= \sum_{e \in out(s)} f(e) + \sum_{v \in A \setminus \{s\}} \left(\sum_{e \in out(v)} f(e) - \sum_{e \in in(v)} f(e) \right)$ $= \sum_{e \in out(A)} f(e) - \sum_{e \in into(A)} f(e)$

The last equality holds since every edge with both end-points in A contributes negatively as well as positively to the sum in Line 2. The only edges whose contribution doesn't cancel out are edges leaving or entering A.

Marald Räcke





Corollary 9

Let f be an (s,t)-flow and let A be an (s,t)-cut, such that

 $\operatorname{val}(f) = \operatorname{cap}(A, V \setminus A).$

Then f is a maximum flow.

Proof.

Suppose that there is a flow f^\prime with larger value. Then

