

How to find an augmenting path? Construct an alternating tree. even nodes odd nodes Case 4: γ is already contained (u in *T* as an even vertex can't ignore y The cycle $w \leftrightarrow y - x \leftrightarrow w$ is called a blossom. w is called the base of the blossom (even node!!!). (x)The path u-w path is called the stem of the blossom. C Barald Räcke 21 Maximum Matching in General Graphs

Flowers and Blossoms

Definition 9

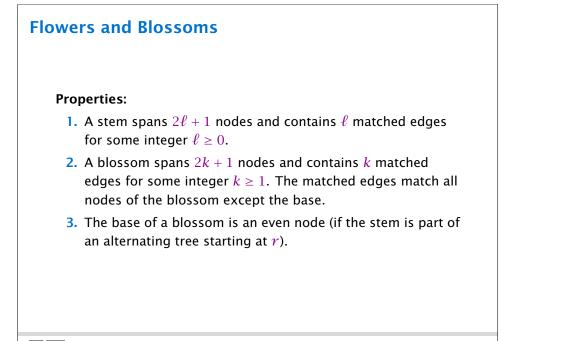
A flower in a graph G = (V, E) w.r.t. a matching M and a (free) root node r, is a subgraph with two components:

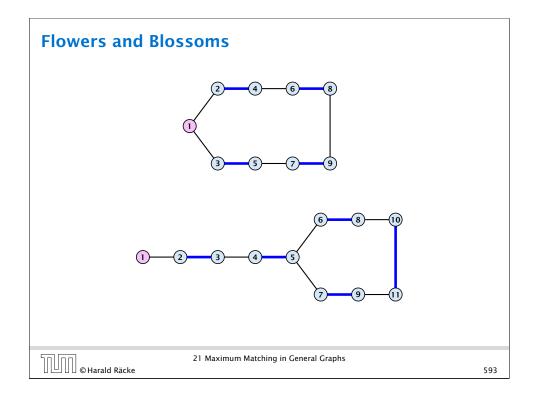
- A stem is an even length alternating path that starts at the root node *r* and terminates at some node *w*. We permit the possibility that *r* = *w* (empty stem).
- A blossom is an odd length alternating cycle that starts and terminates at the terminal node w of a stem and has no other node in common with the stem. w is called the base of the blossom.

T	J	Π	Π	© Harald	Päcko
U.	-			© Haraid	каске

21 Maximum Matching in General Graphs

592





Flowers and Blossoms

Properties:

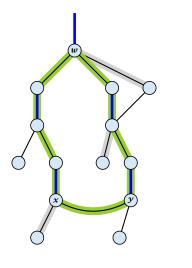
- **4.** Every node *x* in the blossom (except its base) is reachable from the root (or from the base of the blossom) through two distinct alternating paths; one with even and one with odd length.
- 5. The even alternating path to x terminates with a matched edge and the odd path with an unmatched edge.

Flowers and Blossoms

Shrinking Blossoms

U © Harald Räcke

- Edges of T that connect a node u not in B to a node in B become tree edges in T' connecting u to b.
- Matching edges (there is at most one) that connect a node u not in B to a node in B become matching edges in M'.
- Nodes that are connected in G to at least one node in B become connected to b in G'.



Shrinking Blossoms

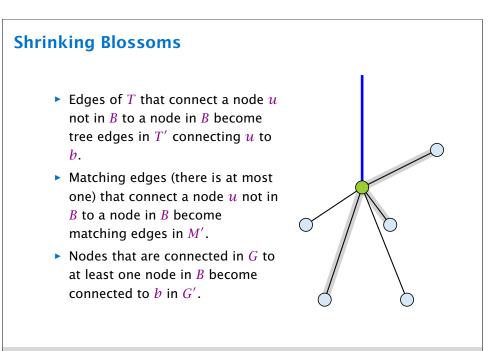
When during the alternating tree construction we discover a blossom *B* we replace the graph *G* by G' = G/B, which is obtained from *G* by contracting the blossom *B*.

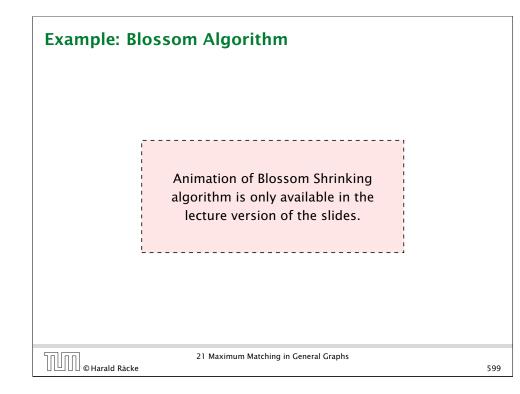
- ▶ Delete all vertices in *B* (and its incident edges) from *G*.
- Add a new (pseudo-)vertex b. The new vertex b is connected to all vertices in V \ B that had at least one edge to a vertex from B.

Marald Räcke

GHarald Räcke

21 Maximum Matching in General Graphs





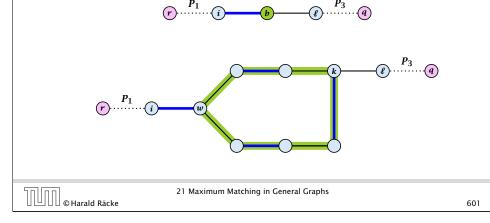
Correctness

Proof.

If P' does not contain b it is also an augmenting path in G.

Case 1: non-empty stem

Next suppose that the stem is non-empty.



Correctness

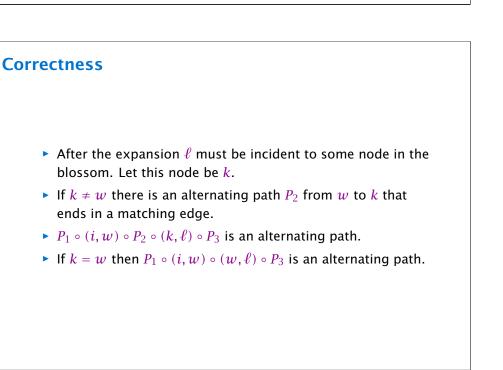
Assume that in *G* we have a flower w.r.t. matching *M*. Let *r* be the root, *B* the blossom, and *w* the base. Let graph G' = G/B with pseudonode *b*. Let *M'* be the matching in the contracted graph.

Lemma 10

If G' contains an augmenting path P' starting at r (or the pseudo-node containing r) w.r.t. the matching M' then G contains an augmenting path starting at r w.r.t. matching M.

G Harald Räcke

21 Maximum Matching in General Graphs

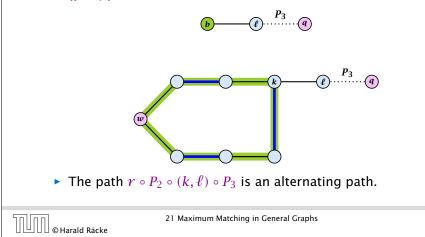


Correctness

Proof.

Case 2: empty stem

• If the stem is empty then after expanding the blossom, w = r.



Correctness

Proof.

- If P does not contain a node from B there is nothing to prove.
- We can assume that r and q are the only free nodes in G.

Case 1: empty stem

Let i be the last node on the path P that is part of the blossom.

P is of the form $P_1 \circ (i,j) \circ P_2$, for some node j and (i,j) is unmatched.

 $(b, j) \circ P_2$ is an augmenting path in the contracted network.

Correctness

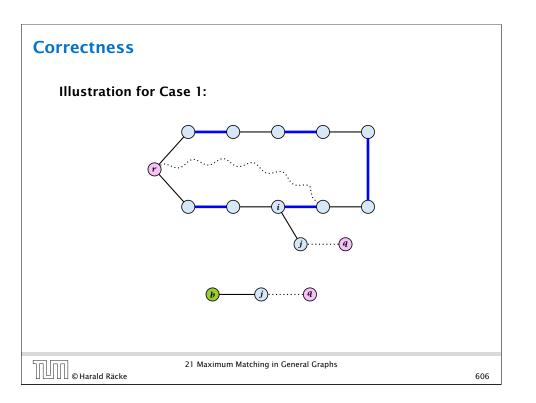
Lemma 11

If G contains an augmenting path P from r to q w.r.t. matching M then G' contains an augmenting path from r (or the pseudo-node containing r) to q w.r.t. M'.

© Harald Räcke

21 Maximum Matching in General Graphs

604



Correctness

Case 2: non-empty stem

Let P_3 be alternating path from r to w; this exists because r and w are root and base of a blossom. Define $M_+ = M \oplus P_3$.

In M_+ , r is matched and w is unmatched.

G must contain an augmenting path w.r.t. matching M_+ , since M and M_+ have same cardinality.

This path must go between w and q as these are the only unmatched vertices w.r.t. M_+ .

For M'_+ the blossom has an empty stem. Case 1 applies.

G' has an augmenting path w.r.t. M'_+ . It must also have an augmenting path w.r.t. M', as both matchings have the same cardinality.

This path must go between r and q.

	 ©Harald	
	© Harald	Däcko
니니	 ⊡⊓araiu	каске

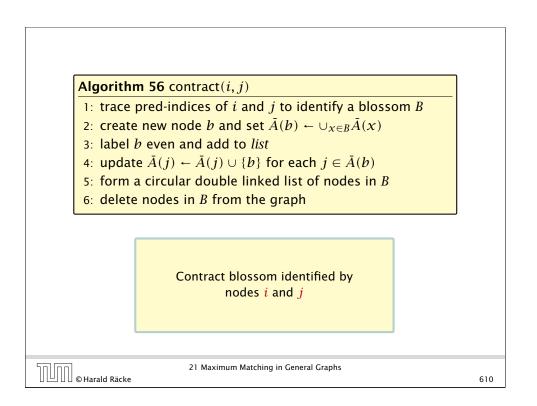
21 Maximum Matching in General Graphs

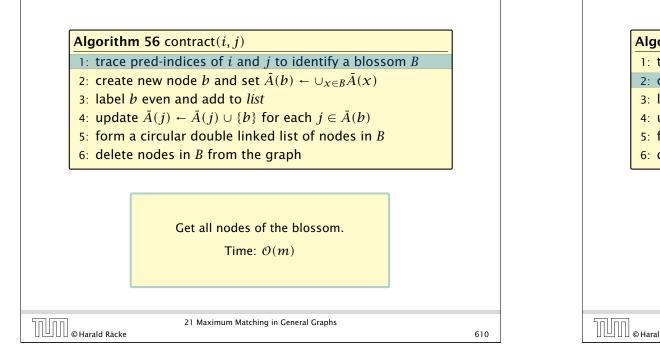
607

nation.

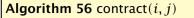
1: f	or all $j\in ar{A}(i)$ do	
2:	if j is even then contract (i, j) and return	1
3:	if <i>j</i> is unmatched then	
4:	$q \leftarrow j;$	
5:	$\operatorname{pred}(q) \leftarrow i;$	
6:	<i>found</i> ← true;	
7:	return	
8:	if <i>j</i> is matched and unlabeled then	
9:	$\operatorname{pred}(j) \leftarrow i;$	
10:	$pred(mate(j)) \leftarrow j;$	
11:	add mate (j) to $list$	

Algorithm 54 search(*r*, *found*) 1: set $\overline{A}(i) \leftarrow A(i)$ for all nodes i 2: *found* \leftarrow false 3: unlabel all nodes; 4: give an even label to r and initialize *list* \leftarrow {r} 5: while *list* $\neq \emptyset$ do delete a node *i* from *list* 6: examine(*i*, *found*) 7: **if** *found* = true **then return** 8: Search for an augmenting path starting at r. The lecture version of the slides has a step by step explanation.





		n
Algorith	m 56 contract (i, j)	
1: trace	pred-indices of i and j to identify a blossom B	
2: create	e new node <i>b</i> and set $\bar{A}(b) \leftarrow \bigcup_{x \in B} \bar{A}(x)$	
3: label	b even and add to <i>list</i>	
4: updat	e $\overline{A}(j) \leftarrow \overline{A}(j) \cup \{b\}$ for each $j \in \overline{A}(b)$	
5: form	a circular double linked list of nodes in B	
6: delete	e nodes in <i>B</i> from the graph	
		J
	Identify all neighbours of <i>b</i> .	
	Time: $\mathcal{O}(m)$ (how?)	
	21 Maximum Matching in General Graphs	
© Harald Räcke	21 Maximum Matching in General Graphs	61



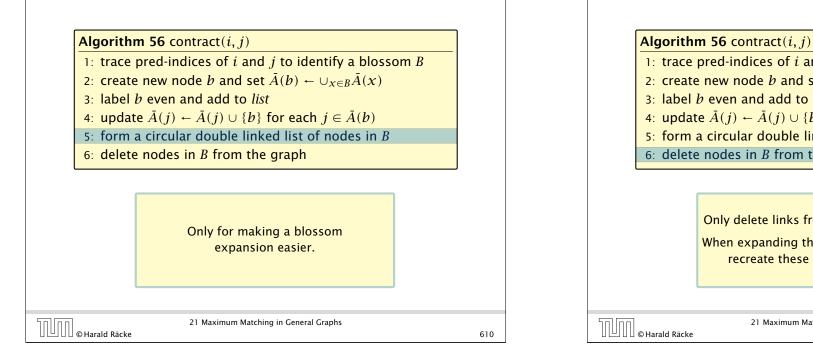
- 1: trace pred-indices of i and j to identify a blossom B
- 2: create new node *b* and set $\bar{A}(b) \leftarrow \bigcup_{x \in B} \bar{A}(x)$
- 3: label *b* even and add to *list*
- 4: update $\bar{A}(j) \leftarrow \bar{A}(j) \cup \{b\}$ for each $j \in \bar{A}(b)$
- 5: form a circular double linked list of nodes in B
- 6: delete nodes in *B* from the graph

b will be an even node, and it has unexamined neighbours.

1: trace pred-indices of <i>i</i> and <i>j</i> to identify a blossom <i>B</i> 2: create new node <i>b</i> and set $\bar{A}(b) \leftarrow \bigcup_{x \in B} \bar{A}(x)$ 3: label <i>b</i> even and add to <i>list</i> 4: update $\bar{A}(j) \leftarrow \bar{A}(j) \cup \{b\}$ for each $j \in \bar{A}(b)$ 5: form a circular double linked list of nodes in <i>B</i>
3: label <i>b</i> even and add to <i>list</i> 4: update $\bar{A}(j) \leftarrow \bar{A}(j) \cup \{b\}$ for each $j \in \bar{A}(b)$ 5: form a circular double linked list of nodes in <i>B</i>
4: update $\bar{A}(j) \leftarrow \bar{A}(j) \cup \{b\}$ for each $j \in \bar{A}(b)$ 5: form a circular double linked list of nodes in <i>B</i>
5: form a circular double linked list of nodes in B
6: delete nodes in <i>B</i> from the graph
Every node that was adjacent to a node in <i>B</i> is now adjacent to <i>b</i>

21 Maximum Matching in General Graphs

C Harald Räcke

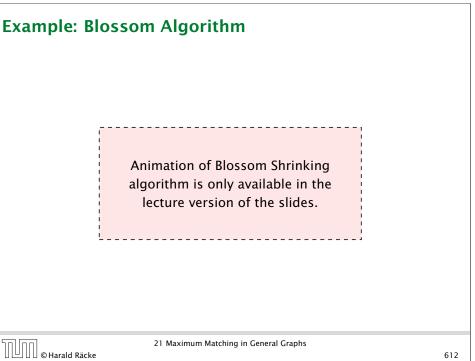


Analysis

- A contraction operation can be performed in time $\mathcal{O}(m)$. Note, that any graph created will have at most m edges.
- The time between two contraction-operation is basically a BFS/DFS on a graph. Hence takes time $\mathcal{O}(m)$.
- \blacktriangleright There are at most *n* contractions as each contraction reduces the number of vertices.
- The expansion can trivially be done in the same time as needed for all contractions.
- An augmentation requires time $\mathcal{O}(n)$. There are at most nof them.
- In total the running time is at most

 $n \cdot (\mathcal{O}(mn) + \mathcal{O}(n)) = \mathcal{O}(mn^2)$.

1: trace pred-indices of i and j to identify a blossom B2: create new node *b* and set $\bar{A}(b) \leftarrow \bigcup_{x \in B} \bar{A}(x)$ 3: label b even and add to list 4: update $\bar{A}(j) \leftarrow \bar{A}(j) \cup \{b\}$ for each $j \in \bar{A}(b)$ 5: form a circular double linked list of nodes in B 6: delete nodes in *B* from the graph Only delete links from nodes not in *B* to *B*. When expanding the blossom again we can recreate these links in time $\mathcal{O}(m)$. 21 Maximum Matching in General Graphs



21 Maximum Matching in General Graphs

611