
A Fast Matching Algorithm

We call one iteration of the repeat-loop a phase of the algorithm.

Lemma 4

Given a matching M and a maximal matching M^* there exist $|M^*| - |M|$ vertex-disjoint augmenting path w.r.t. M.

- Similar to the proof that a matching is optimal iff it does not contain an augmenting paths.
- Consider the graph General Consider the markedges in this graph blue if they are in 14 and red if they are in 14
- The connected components of G are cycles and paths.
- The graph contains (2001) 2000 more red edges than a blue edges.
- Hence, there are at least 5 components that form a patho starting and ending with a blue edge. These are

Lemma 4

Given a matching M and a maximal matching M^* there exist $|M^*| - |M|$ vertex-disjoint augmenting path w.r.t. M.

- Similar to the proof that a matching is optimal iff it does not contain an augmenting paths.
- Consider the graph G = (V, M ⊕ M*), and mark edges in this graph blue if they are in M and red if they are in M*.
- The connected components of G are cycles and paths.
- ► The graph contains $k \cong |M^*| |M|$ more red edges than blue edges.
- Hence, there are at least k components that form a path starting and ending with a blue edge. These are augmenting paths w.r.t. M.

Lemma 4

Given a matching M and a maximal matching M^* there exist $|M^*| - |M|$ vertex-disjoint augmenting path w.r.t. M.

- Similar to the proof that a matching is optimal iff it does not contain an augmenting paths.
- Consider the graph G = (V, M ⊕ M*), and mark edges in this graph blue if they are in M and red if they are in M*.
- The connected components of G are cycles and paths.
- ► The graph contains $k \cong |M^*| |M|$ more red edges than blue edges.
- Hence, there are at least k components that form a path starting and ending with a blue edge. These are augmenting paths w.r.t. M.

Lemma 4

Given a matching M and a maximal matching M^* there exist $|M^*| - |M|$ vertex-disjoint augmenting path w.r.t. M.

- Similar to the proof that a matching is optimal iff it does not contain an augmenting paths.
- Consider the graph G = (V, M ⊕ M*), and mark edges in this graph blue if they are in M and red if they are in M*.
- The connected components of *G* are cycles and paths.
- ► The graph contains $k \cong |M^*| |M|$ more red edges than blue edges.
- Hence, there are at least k components that form a path starting and ending with a blue edge. These are augmenting paths w.r.t. M.

Lemma 4

Given a matching M and a maximal matching M^* there exist $|M^*| - |M|$ vertex-disjoint augmenting path w.r.t. M.

- Similar to the proof that a matching is optimal iff it does not contain an augmenting paths.
- Consider the graph G = (V, M ⊕ M*), and mark edges in this graph blue if they are in M and red if they are in M*.
- The connected components of *G* are cycles and paths.
- ► The graph contains k ≝ |M*| |M| more red edges than blue edges.
- Hence, there are at least k components that form a path starting and ending with a blue edge. These are augmenting paths w.r.t. M.

Lemma 4

Given a matching M and a maximal matching M^* there exist $|M^*| - |M|$ vertex-disjoint augmenting path w.r.t. M.

- Similar to the proof that a matching is optimal iff it does not contain an augmenting paths.
- Consider the graph G = (V, M ⊕ M*), and mark edges in this graph blue if they are in M and red if they are in M*.
- The connected components of *G* are cycles and paths.
- ► The graph contains $k \triangleq |M^*| |M|$ more red edges than blue edges.
- Hence, there are at least k components that form a path starting and ending with a blue edge. These are augmenting paths w.r.t. M.

- ► Let $P_1, ..., P_k$ be a maximal collection of vertex-disjoint, shortest augmenting paths w.r.t. *M* (let $\ell = |P_i|$).
- $M' \cong M \oplus (P_1 \cup \cdots \cup P_k) = M \oplus P_1 \oplus \cdots \oplus P_k.$
- ▶ Let *P* be an augmenting path in *M*′.

Lemma 5

- ► Let $P_1, ..., P_k$ be a maximal collection of vertex-disjoint, shortest augmenting paths w.r.t. *M* (let $\ell = |P_i|$).
- $M' \stackrel{\text{\tiny def}}{=} M \oplus (P_1 \cup \cdots \cup P_k) = M \oplus P_1 \oplus \cdots \oplus P_k.$
- ▶ Let *P* be an augmenting path in *M*′.

Lemma 5

- ► Let $P_1, ..., P_k$ be a maximal collection of vertex-disjoint, shortest augmenting paths w.r.t. *M* (let $\ell = |P_i|$).
- $M' \stackrel{\text{\tiny def}}{=} M \oplus (P_1 \cup \cdots \cup P_k) = M \oplus P_1 \oplus \cdots \oplus P_k.$
- ▶ Let *P* be an augmenting path in *M*′.

Lemma 5

- ► Let $P_1, ..., P_k$ be a maximal collection of vertex-disjoint, shortest augmenting paths w.r.t. *M* (let $\ell = |P_i|$).
- $M' \stackrel{\text{\tiny def}}{=} M \oplus (P_1 \cup \cdots \cup P_k) = M \oplus P_1 \oplus \cdots \oplus P_k.$
- ▶ Let *P* be an augmenting path in *M*′.

Lemma 5

- ► The set describes exactly the symmetric difference between matchings M and $M' \oplus P$.
- ▶ Hence, the set contains at least k + 1 vertex-disjoint augmenting paths w.r.t. M as |M'| = |M| + k + 1.
- Each of these paths is of length at least ℓ .

- The set describes exactly the symmetric difference between matchings M and $M' \oplus P$.
- ► Hence, the set contains at least k + 1 vertex-disjoint augmenting paths w.r.t. M as |M'| = |M| + k + 1.
- Each of these paths is of length at least ℓ .

- The set describes exactly the symmetric difference between matchings M and $M' \oplus P$.
- ► Hence, the set contains at least k + 1 vertex-disjoint augmenting paths w.r.t. M as |M'| = |M| + k + 1.
- Each of these paths is of length at least ℓ .

Lemma 6

P is of length at least $\ell + 1$. This shows that the length of a shortest augmenting path increases between two phases of the Hopcroft-Karp algorithm.

- If it does not intersect any of the iteration is follows from the maximality of the set if iterations.
- Otherwise, at least one edge from C coincides with an edge from paths (C) = (0).
- This edge is not contained in A.
- \geq Hence, $|A| \geq |A| \geq |A| 1$.
- The lower bound on (b) gives (i.e. 1) is a bit of the lower bound on (b) gives (i.e. 1) is a bit of the lower bound on the second s

Lemma 6

P is of length at least $\ell + 1$. This shows that the length of a shortest augmenting path increases between two phases of the Hopcroft-Karp algorithm.

- ► If P does not intersect any of the P₁,..., P_k, this follows from the maximality of the set {P₁,..., P_k}.
- Otherwise, at least one edge from P coincides with an edge from paths {P₁,..., P_k}.
- ► This edge is not contained in *A*.
- Hence, $|A| \leq k\ell + |P| 1$.
- ► The lower bound on |A| gives $(k+1)\ell \le |A| \le k\ell + |P| 1$, and hence $|P| \ge \ell + 1$.

Lemma 6

P is of length at least $\ell + 1$. This shows that the length of a shortest augmenting path increases between two phases of the Hopcroft-Karp algorithm.

- ► If P does not intersect any of the P₁,..., P_k, this follows from the maximality of the set {P₁,..., P_k}.
- ► Otherwise, at least one edge from *P* coincides with an edge from paths {*P*₁,...,*P_k*}.
- ► This edge is not contained in *A*.
- Hence, $|A| \leq k\ell + |P| 1$.
- ► The lower bound on |A| gives $(k+1)\ell \le |A| \le k\ell + |P| 1$, and hence $|P| \ge \ell + 1$.

Lemma 6

P is of length at least $\ell + 1$. This shows that the length of a shortest augmenting path increases between two phases of the Hopcroft-Karp algorithm.

- ► If P does not intersect any of the P₁,..., P_k, this follows from the maximality of the set {P₁,..., P_k}.
- ► Otherwise, at least one edge from *P* coincides with an edge from paths {*P*₁,...,*P_k*}.
- This edge is not contained in A.
- Hence, $|A| \le k\ell + |P| 1$.
- ► The lower bound on |A| gives $(k+1)\ell \le |A| \le k\ell + |P| 1$, and hence $|P| \ge \ell + 1$.

Lemma 6

P is of length at least $\ell + 1$. This shows that the length of a shortest augmenting path increases between two phases of the Hopcroft-Karp algorithm.

- ► If P does not intersect any of the P₁,..., P_k, this follows from the maximality of the set {P₁,..., P_k}.
- ► Otherwise, at least one edge from *P* coincides with an edge from paths {*P*₁,...,*P_k*}.
- This edge is not contained in A.
- Hence, $|A| \le k\ell + |P| 1$.
- ► The lower bound on |A| gives $(k + 1)\ell \le |A| \le k\ell + |P| 1$, and hence $|P| \ge \ell + 1$.

Lemma 6

P is of length at least $\ell + 1$. This shows that the length of a shortest augmenting path increases between two phases of the Hopcroft-Karp algorithm.

- ► If P does not intersect any of the P₁,..., P_k, this follows from the maximality of the set {P₁,..., P_k}.
- ► Otherwise, at least one edge from *P* coincides with an edge from paths {*P*₁,...,*P*_k}.
- This edge is not contained in A.
- Hence, $|A| \le k\ell + |P| 1$.
- ► The lower bound on |A| gives $(k+1)\ell \le |A| \le k\ell + |P| 1$, and hence $|P| \ge \ell + 1$.

If the shortest augmenting path w.r.t. a matching M has ℓ edges then the cardinality of the maximum matching is of size at most $|M| + \frac{|V|}{\ell+1}$.

Proof.

The symmetric difference between M and M^* contains $|M^*| - |M|$ vertex-disjoint augmenting paths. Each of these paths contains at least $\ell + 1$ vertices. Hence, there can be at most $\frac{|V|}{\ell+1}$ of them.

20 The Hopcroft-Karp Algorithm

If the shortest augmenting path w.r.t. a matching M has ℓ edges then the cardinality of the maximum matching is of size at most $|M| + \frac{|V|}{\ell+1}$.

Proof.

The symmetric difference between M and M^* contains $|M^*| - |M|$ vertex-disjoint augmenting paths. Each of these paths contains at least $\ell + 1$ vertices. Hence, there can be at most $\frac{|V|}{\ell+1}$ of them.

Lemma 7

The Hopcroft-Karp algorithm requires at most $2\sqrt{|V|}$ phases.

- ► After iteration $\lfloor \sqrt{|V|} \rfloor$ the length of a shortest augmenting path must be at least $\lfloor \sqrt{|V|} \rfloor + 1 \ge \sqrt{|V|}$.
- ► Hence, there can be at most $|V|/(\sqrt{|V|} + 1) \le \sqrt{|V|}$ additional augmentations.

Lemma 7

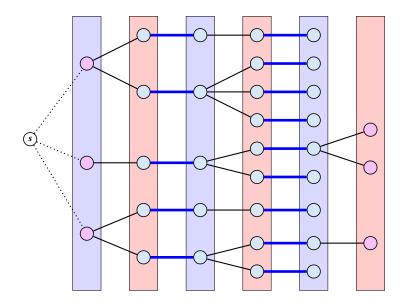
The Hopcroft-Karp algorithm requires at most $2\sqrt{|V|}$ phases.

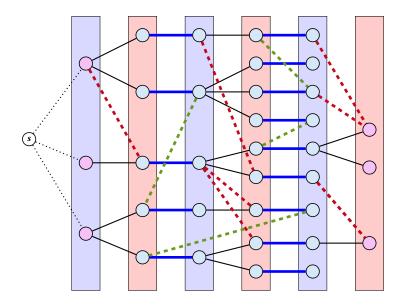
- ► After iteration $\lfloor \sqrt{|V|} \rfloor$ the length of a shortest augmenting path must be at least $\lfloor \sqrt{|V|} \rfloor + 1 \ge \sqrt{|V|}$.
- ► Hence, there can be at most $|V|/(\sqrt{|V|} + 1) \le \sqrt{|V|}$ additional augmentations.

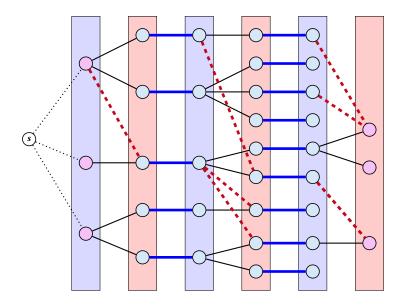
Lemma 8

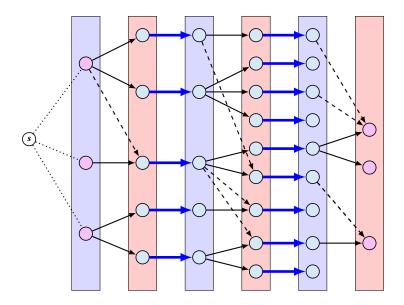
One phase of the Hopcroft-Karp algorithm can be implemented in time O(m).

Do a breadth first search starting at all free vertices in the left side L.


(alternatively add a super-startnode; connect it to all free vertices in L and start breadth first search from there)


The search stops when reaching a free vertex. However, the current level of the BFS tree is still finished in order to find a set *F* of free vertices (on the right side) that can be reached via shortest augmenting paths.




- Then a maximal set of shortest path from the leftmost layer of the tree construction to nodes in F needs to be computed.
- Any such path must visit the layers of the BFS-tree from left to right.
- To go from an odd layer to an even layer it must use a matching edge.
- To go from an even layer to an odd layer edge it can use edges in the BFS-tree or edges that have been ignored during BFS-tree construction.
- We direct all edges btw. an even node in some layer ℓ to an odd node in layer $\ell + 1$ from left to right.
- A DFS search in the resulting graph gives us a maximal set of vertex disjoint path from left to right in the resulting graph.

