10 van Emde Boas Trees

Dynamic Set Data Structure S:

- S.insert(x)
- ► S.delete(x)
- $S.\operatorname{search}(x)$
- ► *S*.min()
- ► *S*.max()
- $S.\operatorname{succ}(x)$
- S.pred(x)

10 van Emde Boas Trees

For this chapter we ignore the problem of storing satellite data:

- S. insert(x): Inserts x into S.
- S. delete(x): Deletes x from S. Usually assumes that $x \in S$.
- S. member(x): Returns 1 if $x \in S$ and 0 otw.
- **S. min():** Returns the value of the minimum element in *S*.
- **S. max():** Returns the value of the maximum element in *S*.
- S. succ(x): Returns successor of x in S. Returns null if x is maximum or larger than any element in S. Note that x needs not to be in S.
- S. pred(x): Returns the predecessor of x in S. Returns null if x is minimum or smaller than any element in S. Note that x needs not to be in S.

Can we improve the existing algorithms when the keys are from a restricted set?

In the following we assume that the keys are from $\{0, 1, \ldots, u-1\}$, where u denotes the size of the universe.

one array of u bits

Use an array that encodes the indicator function of the dynamic set.

10 van Emde Boas Trees

▲ 個 ト ▲ 臣 ト ▲ 臣 ト 398/612

Algorithm 1 array.insert(x)

1: content[x] \leftarrow 1:

Algorithm 2 array.delete(x) 1: content[x] \leftarrow 0;

Algorithm 3 array.member(*x*)

1: **return** content[*x*];

- Note that we assume that x is valid, i.e., it falls within the array boundaries.
- Obviously(?) the running time is constant. ►

Algorithm 4 array.max()

- 1: for $(i = size 1; i \ge 0; i--)$ do
- 2: **if** content[i] = 1 **then return** i;
- 3: return null;

```
Algorithm 5 array.min()

1: for (i = 0; i < size; i++) do

2: if content[i] = 1 then return i;

3: return null;
```

• Running time is $\mathcal{O}(u)$ in the worst case.

Algorithm 4 array.max()

- 1: **for** $(i = \text{size} 1; i \ge 0; i -)$ **do**
- 2: **if** content[i] = 1 **then return** i;
- 3: return null;

Algorithm 5 array.min()

- 1: **for** (i = 0; i < size; i++) **do**
- 2: **if** content[i] = 1 **then return** i;
- 3: return null;

• Running time is $\mathcal{O}(u)$ in the worst case.

Algorithm 4 array.max()

- 1: for $(i = \text{size} 1; i \ge 0; i -)$ do 2: if content[i] = 1 then return i;
- 3: return null;

Algorithm 5 array.min()

- for (i = 0; i < size; i++) do
 if content[i] = 1 then return i;
- 3: return null;
- Running time is $\mathcal{O}(u)$ in the worst case.

Algorithm 6 array.succ(*x*)

- for (i = x + 1; i < size; i++) do
 if content[i] = 1 then return i;
- 3: return null;

- Algorithm 7 array.pred(x)1: for $(i = x 1; i \ge 0; i -)$ do2: if content[i] = 1 then return i;
 - 3: return null;
- Running time is $\mathcal{O}(u)$ in the worst case.

- \sqrt{u} cluster-arrays of \sqrt{u} bits.
- One summary-array of \sqrt{u} bits. The *i*-th bit in the summary array stores the bit-wise or of the bits in the *i*-th cluster.

10 van Emde Boas Trees

The bit for a key x is contained in cluster number $\left\lfloor \frac{x}{\sqrt{u}} \right\rfloor$.

Within the cluster-array the bit is at position $x \mod \sqrt{u}$.

For simplicity we assume that $u = 2^{2k}$ for some $k \ge 1$. Then we can compute the cluster-number for an entry x as high(x) (the upper half of the dual representation of x) and the position of x within its cluster as low(x) (the lower half of the dual representation).

The bit for a key x is contained in cluster number $\left\lfloor \frac{x}{\sqrt{u}} \right\rfloor$.

Within the cluster-array the bit is at position $x \mod \sqrt{u}$.

For simplicity we assume that $u = 2^{2k}$ for some $k \ge 1$. Then we can compute the cluster-number for an entry x as high(x) (the upper half of the dual representation of x) and the position of x within its cluster as low(x) (the lower half of the dual representation).

The bit for a key x is contained in cluster number $\left\lfloor \frac{x}{\sqrt{u}} \right\rfloor$.

Within the cluster-array the bit is at position $x \mod \sqrt{u}$.

For simplicity we assume that $u = 2^{2k}$ for some $k \ge 1$. Then we can compute the cluster-number for an entry x as high(x) (the upper half of the dual representation of x) and the position of x within its cluster as low(x) (the lower half of the dual representation).

10 van Emde Boas Trees

The bit for a key x is contained in cluster number $\left\lfloor \frac{x}{\sqrt{u}} \right\rfloor$.

Within the cluster-array the bit is at position $x \mod \sqrt{u}$.

For simplicity we assume that $u = 2^{2k}$ for some $k \ge 1$. Then we can compute the cluster-number for an entry x as high(x) (the upper half of the dual representation of x) and the position of x within its cluster as low(x) (the lower half of the dual representation).

Algorithm 8 member(*x*)

1: **return** cluster[high(*x*)].member(low(*x*));

Algorithm 9 insert(x)

1: cluster[high(x)].insert(low(x));

2: summary.insert(high(x));

The running times are constant, because the corresponding array-functions have constant running times.

Algorithm 8 member(*x*)

1: **return** cluster[high(x)].member(low(x));

Algorithm 9 insert(x)

- 1: cluster[high(x)].insert(low(x));
- 2: summary.insert(high(x));
- The running times are constant, because the corresponding array-functions have constant running times.

◆ 圖 ▶ 《 圖 ▶ 《 圖 ▶ 404/612

Algorithm 8 member(*x*)

1: **return** cluster[high(*x*)].member(low(*x*));

Algorithm 9 insert(x)

- 1: cluster[high(x)].insert(low(x));
- 2: summary.insert(high(x));
- The running times are constant, because the corresponding array-functions have constant running times.

Algorithm 10 delete(x)

- 1: cluster[high(x)].delete(low(x));
- 2: **if** cluster[high(x)].min() = null **then**
- 3: summary.delete(high(x));

• The running time is dominated by the cost of a minimum computation on an array of size \sqrt{u} . Hence, $\mathcal{O}(\sqrt{u})$.

10 van Emde Boas Trees

▲ @ ▶ ▲ 클 ▶ ▲ 클 ▶ 405/612

Algorithm 10 delete(x)

- 1: cluster[high(x)].delete(low(x));
- 2: **if** cluster[high(x)].min() = null **then**
- 3: summary.delete(high(x));

• The running time is dominated by the cost of a minimum computation on an array of size \sqrt{u} . Hence, $\mathcal{O}(\sqrt{u})$.

Algorithm 11 max()

- 1: *maxcluster* ← summary.max();
- 2: **if** *maxcluster* = null **return** null;
- 3: *offs* ← cluster[*maxcluster*].max()
- 4: return maxcluster offs;

Algorithm 12 min()

- 1: *mincluster* ← summary.min();
- 2: if mincluster = null return null;
- 3: *offs* ← cluster[*mincluster*].min();
- 4: return mincluster offs;

• Running time is roughly $2\sqrt{u} = O(\sqrt{u})$ in the worst case.

Algorithm 11 max()

- 1: *maxcluster* ← summary.max();
- 2: if maxcluster = null return null;
 3: offs ← cluster[maxcluster].max()
- 4: return maxcluster offs;

Algorithm 12 min()

- 1: *mincluster* ← summary.min();
- 2: **if** *mincluster* = null **return** null;
- 3: offs \leftarrow cluster[mincluster].min();
- 4: return mincluster offs;

Algorithm 11 max()

- maxcluster ← summary.max();
 if maxcluster = null return null;
 offs ← cluster[maxcluster].max()
 return maxcluster ∘ offs;

Algorithm 12 min()

- *mincluster* ← summary.min();
 if mincluster = null **return** null;
 offs ← cluster[*mincluster*].min();
 return mincluster ∘ *offs*;
- Running time is roughly $2\sqrt{u} = \mathcal{O}(\sqrt{u})$ in the worst case.

Algorithm 13 succ(x)

- 1: $m \leftarrow \text{cluster}[\text{high}(\mathbf{x})]. \operatorname{succ}(\operatorname{low}(x))$
- 2: if $m \neq$ null then return high $(x) \circ m$;
- 3: *succluster* \leftarrow summary.succ(high(x));
- 4: **if** *succcluster* ≠ null **then**
- 5: $offs \leftarrow cluster[succeluster].min();$
- 6: **return** *succeluster offs*;

7: return null;

• Running time is roughly $3\sqrt{u} = \mathcal{O}(\sqrt{u})$ in the worst case.

Algorithm 13 succ(x)

- 1: $m \leftarrow \text{cluster}[\text{high}(\mathbf{x})]. \operatorname{succ}(\operatorname{low}(x))$
- 2: if $m \neq$ null then return high $(x) \circ m$;
- 3: *succluster* \leftarrow summary.succ(high(x));
- 4: **if** *succcluster* ≠ null **then**
- 5: $offs \leftarrow cluster[succeluster].min();$
- 6: **return** *succeluster offs*;

7: return null;

• Running time is roughly $3\sqrt{u} = O(\sqrt{u})$ in the worst case.

Algorithm 14 pred(x)

- 1: $m \leftarrow \text{cluster}[\text{high}(x)]. \text{pred}(\text{low}(x))$
- 2: if $m \neq$ null then return high $(x) \circ m$;
- 3: *predcluster* \leftarrow summary.pred(high(x));
- 4: **if** *predcluster* ≠ null **then**
- 5: $offs \leftarrow cluster[predcluster].max();$
- 6: **return** *predcluster offs*;

7: return null;

• Running time is roughly $3\sqrt{u} = O(\sqrt{u})$ in the worst case.

Instead of using sub-arrays, we build a recursive data-structure.

S(u) is a dynamic set data-structure representing u bits:

We assume that $u = 2^{2^k}$ for some *k*.

The data-structure S(2) is defined as an array of 2-bits (end of the recursion).

The code from Implementation 2 can be used unchanged. We only need to redo the analysis of the running time.

Note that in the code we do not need to specifically address the non-recursive case. This is achieved by the fact that an S(4) will contain S(2)'s as sub-datastructures, which are arrays. Hence, a call like cluster[1].min() from within the data-structure S(4) is not a recursive call as it will call the function array.min().

The code from Implementation 2 can be used unchanged. We only need to redo the analysis of the running time.

Note that in the code we do not need to specifically address the non-recursive case. This is achieved by the fact that an S(4) will contain S(2)'s as sub-datastructures, which are arrays. Hence, a call like cluster[1].min() from within the data-structure S(4) is not a recursive call as it will call the function array.min().

The code from Implementation 2 can be used unchanged. We only need to redo the analysis of the running time.

Note that in the code we do not need to specifically address the non-recursive case. This is achieved by the fact that an S(4) will contain S(2)'s as sub-datastructures, which are arrays. Hence, a call like cluster[1].min() from within the data-structure S(4) is not a recursive call as it will call the function array.min().

The code from Implementation 2 can be used unchanged. We only need to redo the analysis of the running time.

Note that in the code we do not need to specifically address the non-recursive case. This is achieved by the fact that an S(4) will contain S(2)'s as sub-datastructures, which are arrays. Hence, a call like cluster[1].min() from within the data-structure S(4) is not a recursive call as it will call the function array.min().

Algorithm 15 member(*x*)

1: **return** cluster[high(*x*)].member(low(*x*));

• $T_{\text{mem}}(u) = T_{\text{mem}}(\sqrt{u}) + 1$.

10 van Emde Boas Trees

▲ 個 ▶ ▲ 필 ▶ ▲ 필 ▶ 412/612

Algorithm 16 insert(x)

- 1: cluster[high(x)].insert(low(x));
- 2: summary.insert(high(x));

•
$$T_{ins}(u) = 2T_{ins}(\sqrt{u}) + 1.$$

Algorithm 17 delete(x)

- 1: cluster[high(x)].delete(low(x));
- 2: **if** cluster[high(x)].min() = null **then**
- 3: summary.delete(high(x));

•
$$T_{\text{del}}(u) = 2T_{\text{del}}(\sqrt{u}) + T_{\min}(\sqrt{u}) + 1.$$

Algorithm 18 min()

- 1: *mincluster* ← summary.min();
- 2: **if** *mincluster* = null **return** null;
- 3: *offs* ← cluster[*mincluster*].min();
- 4: **return** *mincluster offs*;

•
$$T_{\min}(u) = 2T_{\min}(\sqrt{u}) + 1.$$

Algorithm 19 succ(x)

- 1: $m \leftarrow \text{cluster}[\text{high}(\mathbf{x})]. \operatorname{succ}(\operatorname{low}(x))$
- 2: if $m \neq$ null then return high $(x) \circ m$;
- 3: *succluster* \leftarrow summary.succ(high(x));
- 4: **if** *succeluster* ≠ null **then**
- 5: *offs* ← cluster[*succeluster*].min();
- 6: **return** *succeluster offs*;

7: return null;

•
$$T_{\text{succ}}(u) = 2T_{\text{succ}}(\sqrt{u}) + T_{\min}(\sqrt{u}) + 1.$$

 $T_{\text{mem}}(u) = T_{\text{mem}}(\sqrt{u}) + 1$:

10 van Emde Boas Trees

▲ @ ▶ ▲ 클 ▶ ▲ 클 ▶ 417/612

 $T_{\text{mem}}(u) = T_{\text{mem}}(\sqrt{u}) + 1$:

Set $\ell := \log u$ and $X(\ell) := T_{\text{mem}}(2^{\ell})$.

10 van Emde Boas Trees

▲ **御 ▶ ▲ 臣 ▶ ▲ 臣 ▶** 417/612

 $T_{\rm mem}(u) = T_{\rm mem}(\sqrt{u}) + 1:$

Set $\ell := \log u$ and $X(\ell) := T_{\text{mem}}(2^{\ell})$. Then

10 van Emde Boas Trees

▲ @ ▶ ▲ 클 ▶ ▲ 클 ▶ 417/612

 $T_{\text{mem}}(u) = T_{\text{mem}}(\sqrt{u}) + 1$:

Set $\ell := \log u$ and $X(\ell) := T_{\text{mem}}(2^{\ell})$. Then

 $X(\ell)$

10 van Emde Boas Trees

 $T_{\rm mem}(u) = T_{\rm mem}(\sqrt{u}) + 1:$

Set $\ell := \log u$ and $X(\ell) := T_{\text{mem}}(2^{\ell})$. Then

 $X(\ell) = T_{\rm mem}(2^\ell)$

 $T_{\rm mem}(u) = T_{\rm mem}(\sqrt{u}) + 1:$

Set $\ell := \log u$ and $X(\ell) := T_{\text{mem}}(2^{\ell})$. Then

 $X(\ell) = T_{\text{mem}}(2^{\ell}) = T_{\text{mem}}(u)$

10 van Emde Boas Trees

 $T_{\rm mem}(u) = T_{\rm mem}(\sqrt{u}) + 1:$

Set $\ell := \log u$ and $X(\ell) := T_{\text{mem}}(2^{\ell})$. Then

 $X(\ell) = T_{\text{mem}}(2^{\ell}) = T_{\text{mem}}(u) = T_{\text{mem}}(\sqrt{u}) + 1$

10 van Emde Boas Trees

 $T_{\text{mem}}(u) = T_{\text{mem}}(\sqrt{u}) + 1:$

Set $\ell := \log u$ and $X(\ell) := T_{\text{mem}}(2^{\ell})$. Then

$$X(\ell) = T_{\text{mem}}(2^{\ell}) = T_{\text{mem}}(u) = T_{\text{mem}}(\sqrt{u}) + 1$$
$$= T_{\text{mem}}(2^{\frac{\ell}{2}}) + 1$$

 $T_{\text{mem}}(u) = T_{\text{mem}}(\sqrt{u}) + 1:$

Set $\ell := \log u$ and $X(\ell) := T_{\text{mem}}(2^{\ell})$. Then

$$X(\ell) = T_{\text{mem}}(2^{\ell}) = T_{\text{mem}}(u) = T_{\text{mem}}(\sqrt{u}) + 1$$
$$= T_{\text{mem}}(2^{\frac{\ell}{2}}) + 1 = X(\frac{\ell}{2}) + 1 .$$

10 van Emde Boas Trees

 $T_{\rm mem}(u) = T_{\rm mem}(\sqrt{u}) + 1:$

Set $\ell := \log u$ and $X(\ell) := T_{\text{mem}}(2^{\ell})$. Then

$$X(\ell) = T_{\text{mem}}(2^{\ell}) = T_{\text{mem}}(u) = T_{\text{mem}}(\sqrt{u}) + 1$$
$$= T_{\text{mem}}(2^{\frac{\ell}{2}}) + 1 = X(\frac{\ell}{2}) + 1 .$$

Using Master theorem gives $X(\ell) = O(\log \ell)$, and hence $T_{\text{mem}}(u) = O(\log \log u)$.

$$T_{\rm ins}(u) = 2T_{\rm ins}(\sqrt{u}) + 1.$$

10 van Emde Boas Trees

◆聞▶◆聖▶◆聖 418/612

$$T_{\rm ins}(u) = 2T_{\rm ins}(\sqrt{u}) + 1.$$

Set $\ell := \log u$ and $X(\ell) := T_{ins}(2^{\ell})$.

10 van Emde Boas Trees

▲ **御 ▶ ▲ 臣 ▶ ▲ 臣 ▶** 418/612

 $T_{\rm ins}(u) = 2T_{\rm ins}(\sqrt{u}) + 1.$

Set $\ell := \log u$ and $X(\ell) := T_{ins}(2^{\ell})$. Then

10 van Emde Boas Trees

▲ **御 ▶ ▲ 臣 ▶ ▲ 臣 ▶** 418/612

$$T_{\rm ins}(u) = 2T_{\rm ins}(\sqrt{u}) + 1.$$

Set $\ell := \log u$ and $X(\ell) := T_{ins}(2^{\ell})$. Then $X(\ell)$

10 van Emde Boas Trees

▲ **御 ▶ ▲ 臣 ▶ ▲ 臣 ▶** 418/612

$$T_{\rm ins}(u) = 2T_{\rm ins}(\sqrt{u}) + 1.$$

Set $\ell := \log u$ and $X(\ell) := T_{ins}(2^{\ell})$. Then

 $X(\ell) = T_{\rm ins}(2^\ell)$

$$T_{\rm ins}(u) = 2T_{\rm ins}(\sqrt{u}) + 1.$$

Set $\ell := \log u$ and $X(\ell) := T_{ins}(2^{\ell})$. Then

 $X(\ell) = T_{\rm ins}(2^\ell) = T_{\rm ins}(u)$

$$T_{\rm ins}(u) = 2T_{\rm ins}(\sqrt{u}) + 1.$$

Set $\ell := \log u$ and $X(\ell) := T_{ins}(2^{\ell})$. Then

 $X(\ell) = T_{ins}(2^{\ell}) = T_{ins}(u) = 2T_{ins}(\sqrt{u}) + 1$

$$T_{\rm ins}(u) = 2T_{\rm ins}(\sqrt{u}) + 1.$$

Set $\ell := \log u$ and $X(\ell) := T_{ins}(2^{\ell})$. Then

$$X(\ell) = T_{\text{ins}}(2^{\ell}) = T_{\text{ins}}(u) = 2T_{\text{ins}}(\sqrt{u}) + 1$$
$$= 2T_{\text{ins}}(2^{\frac{\ell}{2}}) + 1$$

10 van Emde Boas Trees

$$T_{\rm ins}(u) = 2T_{\rm ins}(\sqrt{u}) + 1.$$

Set $\ell := \log u$ and $X(\ell) := T_{ins}(2^{\ell})$. Then

$$X(\ell) = T_{\text{ins}}(2^{\ell}) = T_{\text{ins}}(u) = 2T_{\text{ins}}(\sqrt{u}) + 1$$
$$= 2T_{\text{ins}}(2^{\frac{\ell}{2}}) + 1 = 2X(\frac{\ell}{2}) + 1$$

10 van Emde Boas Trees

▲ 個 ▶ ▲ 필 ▶ ▲ 필 ▶ 418/612

$$T_{\rm ins}(u) = 2T_{\rm ins}(\sqrt{u}) + 1.$$

Set $\ell := \log u$ and $X(\ell) := T_{ins}(2^{\ell})$. Then

$$X(\ell) = T_{\text{ins}}(2^{\ell}) = T_{\text{ins}}(u) = 2T_{\text{ins}}(\sqrt{u}) + 1$$
$$= 2T_{\text{ins}}(2^{\frac{\ell}{2}}) + 1 = 2X(\frac{\ell}{2}) + 1$$

Using Master theorem gives $X(\ell) = O(\ell)$, and hence $T_{ins}(u) = O(\log u)$.

$$T_{\rm ins}(u) = 2T_{\rm ins}(\sqrt{u}) + 1.$$

Set $\ell := \log u$ and $X(\ell) := T_{ins}(2^{\ell})$. Then

$$X(\ell) = T_{\text{ins}}(2^{\ell}) = T_{\text{ins}}(u) = 2T_{\text{ins}}(\sqrt{u}) + 1$$
$$= 2T_{\text{ins}}(2^{\frac{\ell}{2}}) + 1 = 2X(\frac{\ell}{2}) + 1$$

Using Master theorem gives $X(\ell) = \mathcal{O}(\ell)$, and hence $T_{\text{ins}}(u) = \mathcal{O}(\log u)$.

The same holds for $T_{\max}(u)$ and $T_{\min}(u)$.

 $T_{\text{del}}(u) = 2T_{\text{del}}(\sqrt{u}) + T_{\min}(\sqrt{u}) + 1 \le 2T_{\text{del}}(\sqrt{u}) + \frac{c}{\log(u)}.$

10 van Emde Boas Trees

◆ @ ▶ ◆ 聖 ▶ **◆** 聖 ▶ 419/612

 $T_{\text{del}}(u) = 2T_{\text{del}}(\sqrt{u}) + T_{\min}(\sqrt{u}) + 1 \le 2T_{\text{del}}(\sqrt{u}) + \frac{c}{\log(u)}.$

Set $\ell := \log u$ and $X(\ell) := T_{del}(2^{\ell})$.

10 van Emde Boas Trees

▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 ▶ 419/612

 $T_{\text{del}}(u) = 2T_{\text{del}}(\sqrt{u}) + T_{\min}(\sqrt{u}) + 1 \leq 2T_{\text{del}}(\sqrt{u}) + c \log(u).$

Set $\ell := \log u$ and $X(\ell) := T_{del}(2^{\ell})$. Then

10 van Emde Boas Trees

▲ 個 ▶ ▲ 필 ▶ ▲ 필 ▶ 419/612

 $T_{del}(u) = 2T_{del}(\sqrt{u}) + T_{min}(\sqrt{u}) + 1 \le 2T_{del}(\sqrt{u}) + c \log(u).$ Set $\ell := \log u$ and $X(\ell) := T_{del}(2^{\ell})$. Then $X(\ell)$

10 van Emde Boas Trees

▲ **御 ▶ ▲ 臣 ▶ ▲ 臣 ▶** 419/612

 $T_{\text{del}}(u) = 2T_{\text{del}}(\sqrt{u}) + T_{\min}(\sqrt{u}) + 1 \leq 2T_{\text{del}}(\sqrt{u}) + c \log(u).$

Set $\ell := \log u$ and $X(\ell) := T_{del}(2^{\ell})$. Then

 $X(\ell) = T_{\text{del}}(2^{\ell})$

 $T_{\text{del}}(u) = 2T_{\text{del}}(\sqrt{u}) + T_{\min}(\sqrt{u}) + 1 \leq 2T_{\text{del}}(\sqrt{u}) + c \log(u).$

Set $\ell := \log u$ and $X(\ell) := T_{del}(2^{\ell})$. Then

 $X(\ell) = T_{\text{del}}(2^{\ell}) = T_{\text{del}}(u)$

 $T_{\text{del}}(u) = 2T_{\text{del}}(\sqrt{u}) + T_{\min}(\sqrt{u}) + 1 \le 2T_{\text{del}}(\sqrt{u}) + c \log(u).$

Set $\ell := \log u$ and $X(\ell) := T_{del}(2^{\ell})$. Then

 $X(\ell) = T_{del}(2^{\ell}) = T_{del}(u) = 2T_{del}(\sqrt{u}) + c \log u$

 $T_{del}(u) = 2T_{del}(\sqrt{u}) + T_{min}(\sqrt{u}) + 1 \le 2T_{del}(\sqrt{u}) + c \log(u).$ Set $\ell := \log u$ and $X(\ell) := T_{del}(2^{\ell})$. Then $X(\ell) = T_{del}(2^{\ell}) = T_{del}(u) = 2T_{del}(\sqrt{u}) + c \log u$ $= 2T_{del}(2^{\frac{\ell}{2}}) + c\ell$

10 van Emde Boas Trees

▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 ▶ 419/612

 $T_{del}(u) = 2T_{del}(\sqrt{u}) + T_{min}(\sqrt{u}) + 1 \le 2T_{del}(\sqrt{u}) + c \log(u).$ Set $\ell := \log u$ and $X(\ell) := T_{del}(2^{\ell})$. Then $X(\ell) = T_{del}(2^{\ell}) = T_{del}(u) = 2T_{del}(\sqrt{u}) + c \log u$

$$= 2T_{\rm del}(2^{\frac{\ell}{2}}) + c\ell = 2X(\frac{\ell}{2}) + c\ell .$$

10 van Emde Boas Trees

▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 ▶ 419/612

 $T_{\rm del}(u) = 2T_{\rm del}(\sqrt{u}) + T_{\rm min}(\sqrt{u}) + 1 \le 2T_{\rm del}(\sqrt{u}) + \frac{c}{\log(u)}.$

Set $\ell := \log u$ and $X(\ell) := T_{del}(2^{\ell})$. Then

$$\begin{aligned} X(\ell) &= T_{\rm del}(2^{\ell}) = T_{\rm del}(u) = 2T_{\rm del}(\sqrt{u}) + c \log u \\ &= 2T_{\rm del}(2^{\frac{\ell}{2}}) + c\ell = 2X(\frac{\ell}{2}) + c\ell \end{aligned}$$

Using Master theorem gives $X(\ell) = \Theta(\ell \log \ell)$, and hence $T_{del}(u) = O(\log u \log \log u)$.

 $T_{\text{del}}(u) = 2T_{\text{del}}(\sqrt{u}) + T_{\min}(\sqrt{u}) + 1 \leq 2T_{\text{del}}(\sqrt{u}) + \frac{c}{\log(u)}.$

Set $\ell := \log u$ and $X(\ell) := T_{del}(2^{\ell})$. Then

$$\begin{aligned} X(\ell) &= T_{\rm del}(2^{\ell}) = T_{\rm del}(u) = 2T_{\rm del}(\sqrt{u}) + c \log u \\ &= 2T_{\rm del}(2^{\frac{\ell}{2}}) + c\ell = 2X(\frac{\ell}{2}) + c\ell \end{aligned}$$

Using Master theorem gives $X(\ell) = \Theta(\ell \log \ell)$, and hence $T_{del}(u) = O(\log u \log \log u)$.

The same holds for $T_{\text{pred}}(u)$ and $T_{\text{succ}}(u)$.

- The bit referenced by min is not set within sub-datastructures.
- The bit referenced by max is set within sub-datastructures (if $max \neq min$).

10 van Emde Boas Trees

Advantages of having max/min pointers:

- Recursive calls for min and max are constant time.
- min = null means that the data-structure is empty.
- min = max ≠ null means that the data-structure contains exactly one element.
- We can insert into an empty datastructure in constant time by only setting min = max = x.
- We can delete from a data-structure that just contains one element in constant time by setting min = max = null.

Advantages of having max/min pointers:

- Recursive calls for min and max are constant time.
- min = null means that the data-structure is empty.
- min = max ≠ null means that the data-structure contains exactly one element.
- We can insert into an empty datastructure in constant time by only setting min = max = x.
- We can delete from a data-structure that just contains one element in constant time by setting min = max = null.

Advantages of having max/min pointers:

- Recursive calls for min and max are constant time.
- min = null means that the data-structure is empty.
- min = max ≠ null means that the data-structure contains exactly one element.
- We can insert into an empty datastructure in constant time by only setting min = max = x.
- We can delete from a data-structure that just contains one element in constant time by setting min = max = null.

Advantages of having max/min pointers:

- Recursive calls for min and max are constant time.
- min = null means that the data-structure is empty.
- min = max ≠ null means that the data-structure contains exactly one element.
- We can insert into an empty datastructure in constant time by only setting min = max = x.
- We can delete from a data-structure that just contains one element in constant time by setting min = max = null.

Advantages of having max/min pointers:

- Recursive calls for min and max are constant time.
- min = null means that the data-structure is empty.
- min = max ≠ null means that the data-structure contains exactly one element.
- We can insert into an empty datastructure in constant time by only setting min = max = x.
- We can delete from a data-structure that just contains one element in constant time by setting min = max = null.

Advantages of having max/min pointers:

- Recursive calls for min and max are constant time.
- min = null means that the data-structure is empty.
- min = max ≠ null means that the data-structure contains exactly one element.
- We can insert into an empty datastructure in constant time by only setting $\min = \max = x$.
- We can delete from a data-structure that just contains one element in constant time by setting min = max = null.

Algorithm 20 max()

1: return max;

Algorithm 21 min()

1: return min;

Constant time.

10 van Emde Boas Trees

▲ @ ▶ ▲ 클 ▶ ▲ 클 ▶ 422/612

Algorithm 22 member(*x*)

- 1: if x = min then return 1; // TRUE
 2: return cluster[high(x)].member(low(x));
- $T_{\text{mem}}(u) = T_{\text{mem}}(\sqrt{u}) + 1 \Longrightarrow T(u) = \mathcal{O}(\log \log u).$

10 van Emde Boas Trees

```
Algorithm 23 succ(x)
1: if min \neq null \land x < min then return min;
2: maxincluster \leftarrow cluster[high(x)].max();
3: if maxincluster \neq null \land low(x) < maxincluster then
         offs \leftarrow cluster[high(x)]. succ(low(x));
4:
        return high(x) \circ offs;
5:
6: else
7:
         succluster \leftarrow summary.succ(high(x));
        if succluster = null then return null:
8:
         offs \leftarrow cluster[succluster].min();
9:
         return succeluster \circ offs;
10:
```

• $T_{\text{succ}}(u) = T_{\text{succ}}(\sqrt{u}) + 1 \Longrightarrow T_{\text{succ}}(u) = \mathcal{O}(\log \log u).$

• $T_{\text{ins}}(u) = T_{\text{ins}}(\sqrt{u}) + 1 \Longrightarrow T_{\text{ins}}(u) = \mathcal{O}(\log \log u).$

Note that the recusive call in Line 7 takes constant time as the if-condition in Line 5 ensures that we are inserting in an empty sub-tree.

The only non-constant recursive calls are the call in Line 6 and in Line 9. These are mutually exclusive, i.e., only one of these calls will actually occur.

From this we get that $T_{ins}(u) = T_{ins}(\sqrt{u}) + 1$.

Assumes that x is contained in the structure.

Algorithm 45 delete(<i>x</i>)		
1: if min = max then		
2:	min = null; max = null;	
3: else		
4:	if $x = \min$ then	
5:	firstcluster ← summary.min();	
6:	<pre>offs</pre>	
7:	$x \leftarrow firstcluster \circ offs;$	
8:	$\min \leftarrow x;$	
9:	cluster[high(x)]. delete(low(x));	
	continued	

Assumes that x is contained in the structure.

Algorithm 45 delete(x)		
1: if min = max then		
2:	$\min = \operatorname{null}; \max = \operatorname{null};$	
3: else		
4:	if $x = \min$ then find new minimum	
5:	<i>firstcluster</i> ← summary.min();	
6:	offs \leftarrow cluster[firstcluster].min();	
7:	$x \leftarrow firstcluster \circ offs;$	
8:	$\min \leftarrow x;$	
9:	cluster[high(x)]. delete(low(x));	
	continued	

Assumes that x is contained in the structure.

Algorithm 45 delete(x)		
1: if min = max then		
2: $\min = \operatorname{null}; \max = \operatorname{null};$		
3: else		
4: if $x = \min$ then		
5: <i>firstcluster</i> \leftarrow summary.min();		
6: $offs \leftarrow cluster[firstcluster].min();$		
7: $x \leftarrow firstcluster \circ offs;$		
8: $\min \leftarrow x;$		
9: $\operatorname{cluster}[\operatorname{high}(x)].\operatorname{delete}(\operatorname{low}(x));$	delete	
continued		

Algorithm 45 delete(<i>x</i>)		
	continued	
10:	if cluster[high(x)].min() = null then	
11:	summary.delete(high(x));	
12:	if $x = \max$ then	
13:	$summax \leftarrow summary.max();$	
14:	if $summax = null$ then max \leftarrow min;	
15:	else	
16:	offs \leftarrow cluster[summax].max();	
17:	$\max \leftarrow summax \circ offs$	
18:	else	
19:	if $x = \max$ then	
20:	offs \leftarrow cluster[high(x)].max();	
21:	$\max \leftarrow \operatorname{high}(x) \circ offs;$	

Algorithm 45 delete(x)		
	continued fix maximum	
10:	if cluster[high(x)].min() = null then	
11:	summary.delete(high(x));	
12:	if $x = \max$ then	
13:	$summax \leftarrow summary.max();$	
14:	if <i>summax</i> = null then max ← min;	
15:	else	
16:	offs \leftarrow cluster[summax].max();	
17:	$\max \leftarrow summax \circ offs$	
18:	else	
19:	if $x = \max$ then	
20:	offs \leftarrow cluster[high(x)].max();	
21:	$\max \leftarrow \operatorname{high}(x) \circ offs;$	

Note that only one of the possible recusive calls in Line 9 and Line 11 in the deletion-algorithm may take non-constant time.

To see this observe that the call in Line 11 only occurs if the cluster where x was deleted is now empty. But this means that the call in Line 9 deleted the last element in cluster[high(x)]. Such a call only takes constant time.

Hence, we get a recurrence of the form

 $T_{\text{del}}(u) = T_{\text{del}}(\sqrt{u}) + c$.

This gives $T_{del}(u) = O(\log \log u)$.

10 van Emde Boas Trees

Space requirements:

The space requirement fulfills the recurrence

$$S(u) = (\sqrt{u} + 1)S(\sqrt{u}) + \mathcal{O}(\sqrt{u}) .$$

- Note that we cannot solve this recurrence by the Master theorem as the branching factor is not constant.
- One can show by induction that the space requirement is S(u) = O(u). Exercise.

Let the "real" recurrence relation be

$$S(k^2) = (k+1)S(k) + c_1 \cdot k; S(4) = c_2$$

• Replacing S(k) by $R(k) := S(k)/c_2$ gives the recurrence

 $R(k^2) = (k+1)R(k) + ck; R(4) = 1$

where $c = c_1/c_2 < 1$.

- Now, we show $R(k) \le k 2$ for squares $k \ge 4$.
 - Obviously, this holds for k = 4.
 - For $k = \ell^2 > 4$ with ℓ integral we have

$$\begin{split} R(k) &= (1+\ell)R(\ell) + c\ell \\ &\leq (1+\ell)(\ell-2) + \ell \leq k-2 \end{split}$$

• This shows that R(k) and, hence, S(k) grows linearly.