10 van Emde Boas Trees

Dynamic Set Data Structure S :

- S.insert (x)
- S.delete (x)
- S. $\operatorname{search}(x)$
-S.min()
- S.max()
- $S . \operatorname{succ}(x)$
- $S . \operatorname{pred}(x)$

10 van Emde Boas Trees

For this chapter we ignore the problem of storing satellite data:

- S. insert (x) : Inserts x into S.
- S. delete(\boldsymbol{x}): Deletes x from S. Usually assumes that $x \in S$.
- S. member (\boldsymbol{x}) : Returns 1 if $x \in S$ and 0 otw.
- $S . \min ():$ Returns the value of the minimum element in S.
- S. $\max ():$ Returns the value of the maximum element in S.
- \boldsymbol{S}. $\operatorname{succ}(\boldsymbol{x})$: Returns successor of x in S. Returns null if x is maximum or larger than any element in S. Note that x needs not to be in S.
- S. pred(x): Returns the predecessor of x in S. Returns null if x is minimum or smaller than any element in S. Note that x needs not to be in S.

10 van Emde Boas Trees

Can we improve the existing algorithms when the keys are from a restricted set?

In the following we assume that the keys are from $\{0,1, \ldots, u-1\}$, where u denotes the size of the universe.

Implementation 1: Array

one array of u bits

Use an array that encodes the indicator function of the dynamic set.

Implementation 1: Array

$$
\frac{\text { Algorithm } 1 \text { array.insert }(x)}{1: \text { content }[x] \leftarrow 1 ;}
$$

Algorithm 2 array.delete (x)
1: content $[x] \leftarrow 0$;

Algorithm 3 array.member (x)
1: return content[$x]$;

- Note that we assume that x is valid, i.e., it falls within the array boundaries.
- Obviously(?) the running time is constant.

Implementation 1: Array

> | Algorithm 4 array.max () |
| :--- |
| 1: for $(i=\operatorname{size}-1 ; i \geq 0 ; i--)$ do |
| 2: if content $[i]=1$ then return i; |
| 3: return null; |

Implementation 1: Array

```
Algorithm 4 array.max()
1: for ( \(i=\) size \(-1 ; i \geq 0\); \(i--\) ) do
2: if content \([i]=1\) then return \(i\);
3: return null;
```

```
Algorithm 5 array.min()
    1: for ( \(i=0 ; i<\) size; \(i++\) ) do
    2: if content \([i]=1\) then return \(i\);
    3: return null;
```


Implementation 1: Array

$$
\begin{aligned}
& \text { Algorithm } 4 \text { array.max }() \\
& \hline \text { 1: for }(i=\operatorname{size}-1 ; i \geq 0 ; i--) \text { do } \\
& \text { 2: if content }[i]=1 \text { then return } i ; \\
& \text { 3: return null; }
\end{aligned}
$$

```
Algorithm 5 array.min()
    1: for ( \(i=0 ; i<\) size; \(i++\) ) do
    2: if content \([i]=1\) then return \(i\);
    3: return null;
```

- Running time is $\mathcal{O}(u)$ in the worst case.

Implementation 1: Array

> | Algorithm 6 array $\operatorname{succ}(x)$ |
| :--- |
| 1: for $(i=x+1 ; i<\operatorname{size} ; i++)$ do |
| 2: if content $[i]=1$ then return $i ;$ |
| 3: return null; |

```
Algorithm 7 array.pred \((x)\)
    1: for ( \(i=x-1 ; i \geq 0 ; i--\) ) do
    2: if content \([i]=1\) then return \(i\);
    3: return null;
```

- Running time is $\mathcal{O}(u)$ in the worst case.

Implementation 2: Summary Array

- \sqrt{u} cluster-arrays of \sqrt{u} bits.
- One summary-array of \sqrt{u} bits. The i-th bit in the summary array stores the bit-wise or of the bits in the i-th cluster.

Implementation 2: Summary Array

Implementation 2: Summary Array

The bit for a key x is contained in cluster number $\left\lfloor\frac{x}{\sqrt{u}}\right\rfloor$.

Implementation 2: Summary Array

The bit for a key x is contained in cluster number $\left\lfloor\frac{x}{\sqrt{u}}\right\rfloor$.
Within the cluster-array the bit is at position $x \bmod \sqrt{u}$.

Implementation 2: Summary Array

The bit for a key x is contained in cluster number $\left\lfloor\frac{x}{\sqrt{u}}\right\rfloor$.
Within the cluster-array the bit is at position $x \bmod \sqrt{u}$.
For simplicity we assume that $u=2^{2 k}$ for some $k \geq 1$. Then we can compute the cluster-number for an entry x as high (x) (the upper half of the dual representation of x) and the position of x within its cluster as low (x) (the lower half of the dual representation).

Implementation 2: Summary Array

$$
\frac{\text { Algorithm } 8 \text { member }(x)}{1: \text { return cluster }[\operatorname{high}(x)] . \operatorname{member}(\operatorname{low}(x))}
$$

Implementation 2: Summary Array

```
Algorithm 8 member(x)
    1: return cluster[high(x)].member(low(x));
```

Algorithm 9 insert (x)
1: cluster[high (x)]. insert $(\operatorname{low}(x))$;
2: summary.insert $(\operatorname{high}(x))$;

Implementation 2: Summary Array

```
Algorithm 8 member(x)
    1: return cluster[high(x)].member(low(x));
```

```
Algorithm 9 insert(x)
    1: cluster[high(x)].insert(low(x));
    2: summary.insert(high(x));
```

- The running times are constant, because the corresponding array-functions have constant running times.

Implementation 2: Summary Array

Algorithm 10 delete (x)
1: cluster[high $(x)]$. delete $(\operatorname{low}(x))$;
2: if cluster $[\operatorname{high}(x)] \cdot \min ()=$ null then
3: \quad summary.delete $(\operatorname{high}(x))$;

Implementation 2: Summary Array

```
Algorithm 10 delete(x)
    1: cluster[high(x)].delete(low(x));
    2: if cluster[high(x)].min() = null then
    3: summary.delete(high(x));
```

- The running time is dominated by the cost of a minimum computation on an array of size \sqrt{u}. Hence, $\mathcal{O}(\sqrt{u})$.

Implementation 2: Summary Array

Algorithm 11 max()

1: maxcluster \leftarrow summary. max();
2: if maxcluster = null return null;
3: offs \leftarrow cluster[maxcluster]. max()
4: return maxcluster \circ offs;

Implementation 2: Summary Array

Algorithm 11 max()
1: maxcluster \leftarrow summary. max();
2: if maxcluster = null return null;
3: offs \leftarrow cluster[maxcluster]. max()
4: return maxcluster \circ offs;

Algorithm 12 min()
1: mincluster \leftarrow summary. min();
2: if mincluster = null return null;
3: offs \leftarrow cluster[mincluster]. min();
4: return mincluster \circ offs;

Implementation 2: Summary Array

Algorithm 11 max()
1: maxcluster \leftarrow summary.max();
2: if maxcluster = null return null;
3: offs \leftarrow cluster[maxcluster]. max()
4: return maxcluster \circ offs;

Algorithm 12 min()

1: mincluster \leftarrow summary. min();
2: if mincluster = null return null;
3: offs \leftarrow cluster[mincluster]. min();
4: return mincluster \circ offs;

- Running time is roughly $2 \sqrt{u}=\mathcal{O}(\sqrt{u})$ in the worst case.

Implementation 2: Summary Array

```
Algorithm 13 succ(x)
    1:m\leftharpoondowncluster[high(x)]. succ(low(x))
    2: if }m\not=\mathrm{ null then return high(x)}\circm\mathrm{ ;
    3: succcluster }\leftarrow\operatorname{summary.\operatorname{succ}(\operatorname{high}(x));
    4: if succcluster = null then
    5: offs }\leftarrow\mathrm{ cluster[succcluster].min();
    6: return succcluster \circoffs;
    7: return null;
```


Implementation 2: Summary Array

```
Algorithm 13 succ(x)
    1:m\leftarrowcluster[high(x)].\operatorname{succ}(\operatorname{low}(x))
    2: if }m\not=\mathrm{ null then return high }(x)\circm\mathrm{ ;
    3: succcluster }\leftarrow\operatorname{summary.\operatorname{succ}(\operatorname{high}(x));
    4: if succcluster = null then
    5: offs }\leftarrow\mathrm{ cluster[succcluster].min();
        return succcluster \circ offs;
    7: return null;
```

- Running time is roughly $3 \sqrt{u}=\mathcal{O}(\sqrt{u})$ in the worst case.

Implementation 2: Summary Array

```
Algorithm 14 pred(x)
    1:m\leftarrowcluster[high(x)].pred(low(x))
    2: if m\not= null then return high(x)\circm;
    3: predcluster }\leftarrow\operatorname{summary.pred}(\operatorname{high}(x))\mathrm{ ;
    4: if predcluster # null then
    5: offs \leftarrow cluster[predcluster].max();
    return predcluster \circoffs;
    7: return null;
```

- Running time is roughly $3 \sqrt{u}=\mathcal{O}(\sqrt{u})$ in the worst case.

Implementation 3: Recursion

Instead of using sub-arrays, we build a recursive data-structure.
$S(u)$ is a dynamic set data-structure representing u bits:

Implementation 3: Recursion

We assume that $u=2^{2^{k}}$ for some k.
The data-structure $S(2)$ is defined as an array of 2-bits (end of the recursion).

Implementation 3: Recursion

Implementation 3: Recursion

The code from Implementation 2 can be used unchanged. We only need to redo the analysis of the running time.

Implementation 3: Recursion

The code from Implementation 2 can be used unchanged. We only need to redo the analysis of the running time.

Note that in the code we do not need to specifically address the non-recursive case. This is achieved by the fact that an $S(4)$ will contain $S(2)$'s as sub-datastructures, which are arrays. Hence, a call like cluster[1]. min() from within the data-structure $S(4)$ is not a recursive call as it will call the function array. min().

Implementation 3: Recursion

The code from Implementation 2 can be used unchanged. We only need to redo the analysis of the running time.

Note that in the code we do not need to specifically address the non-recursive case. This is achieved by the fact that an $S(4)$ will contain S (2)'s as sub-datastructures, which are arrays. Hence, a call like cluster[1]. min() from within the data-structure $S(4)$ is not a recursive call as it will call the function array. min().

This means that the non-recursive case is been dealt with while initializing the data-structure.

Implementation 3: Recursion

$$
\frac{\text { Algorithm } 15 \operatorname{member}(x)}{1: \text { return cluster }[\operatorname{high}(x)] . \operatorname{member}(\operatorname{low}(x)) ;}
$$

- $T_{\mathrm{mem}}(u)=T_{\mathrm{mem}}(\sqrt{u})+1$.

Implementation 3: Recursion

```
Algorithm 16 insert(x)
    1: cluster[high(x)].insert(low(x));
    2: summary.insert(high(x));
```

- $T_{\text {ins }}(u)=2 T_{\text {ins }}(\sqrt{u})+1$.

Implementation 3: Recursion

```
Algorithm 17 delete(x)
    1: cluster[high(x)]. delete(low(x));
    2: if cluster[high(x)].min()= null then
    3: summary.delete(high(x));
```

- $T_{\text {del }}(u)=2 T_{\text {del }}(\sqrt{u})+T_{\min }(\sqrt{u})+1$.

Implementation 3: Recursion

$$
\begin{aligned}
& \text { Algorithm } 18 \mathrm{~min}() \\
& \hline \text { 1: mincluster } \leftarrow \text { summary. } \min () ; \\
& \text { 2: if mincluster }=\text { null return null; } \\
& \text { 3: offs } \leftarrow \text { cluster }[\text { mincluster }] . \min () ; \\
& \text { 4: return mincluster } \circ \text { offs; }
\end{aligned}
$$

- $T_{\min }(u)=2 T_{\min }(\sqrt{u})+1$.

Implementation 3: Recursion

```
Algorithm 19 succ(x)
1: m
2: if }m\not=\mathrm{ null then return high (x)}\circm\mathrm{ ;
3: succcluster }\leftarrow\operatorname{summary.\operatorname{succ}(\operatorname{high}(x));
4: if succcluster = null then
5: offs }\leftarrow\mathrm{ cluster[succcluster].min();
6: return succcluster \circoffs;
7: return null;
```

- $T_{\text {succ }}(u)=2 T_{\text {succ }}(\sqrt{u})+T_{\min }(\sqrt{u})+1$.

Implementation 3: Recursion

$T_{\text {mem }}(u)=T_{\text {mem }}(\sqrt{u})+1:$

Implementation 3: Recursion

$T_{\mathrm{mem}}(u)=T_{\mathrm{mem}}(\sqrt{u})+1:$
Set $\ell:=\log u$ and $X(\ell):=T_{\mathrm{mem}}\left(2^{\ell}\right)$.

Implementation 3: Recursion

$T_{\text {mem }}(u)=T_{\text {mem }}(\sqrt{u})+1:$
Set $\ell:=\log u$ and $X(\ell):=T_{\text {mem }}\left(2^{\ell}\right)$.Then

Implementation 3: Recursion

$T_{\text {mem }}(u)=T_{\text {mem }}(\sqrt{u})+1:$
Set $\ell:=\log u$ and $X(\ell):=T_{\text {mem }}\left(2^{\ell}\right)$.Then

$$
X(\ell)
$$

Implementation 3: Recursion

$T_{\mathrm{mem}}(u)=T_{\mathrm{mem}}(\sqrt{u})+1:$
Set $\ell:=\log u$ and $X(\ell):=T_{\text {mem }}\left(2^{\ell}\right)$.Then

$$
X(\ell)=T_{\mathrm{mem}}\left(2^{\ell}\right)
$$

Implementation 3: Recursion

$T_{\text {mem }}(u)=T_{\text {mem }}(\sqrt{u})+1:$

Set $\ell:=\log u$ and $X(\ell):=T_{\text {mem }}\left(2^{\ell}\right)$.Then

$$
X(\ell)=T_{\mathrm{mem}}\left(2^{\ell}\right)=T_{\mathrm{mem}}(u)
$$

Implementation 3: Recursion

$T_{\text {mem }}(u)=T_{\text {mem }}(\sqrt{u})+1:$
Set $\ell:=\log u$ and $X(\ell):=T_{\mathrm{mem}}\left(2^{\ell}\right)$.Then

$$
X(\ell)=T_{\mathrm{mem}}\left(2^{\ell}\right)=T_{\mathrm{mem}}(u)=T_{\mathrm{mem}}(\sqrt{u})+1
$$

Implementation 3: Recursion

$T_{\text {mem }}(u)=T_{\text {mem }}(\sqrt{u})+1:$
Set $\ell:=\log u$ and $X(\ell):=T_{\mathrm{mem}}\left(2^{\ell}\right)$.Then

$$
\begin{aligned}
X(\ell)=T_{\mathrm{mem}}\left(2^{\ell}\right) & =T_{\mathrm{mem}}(u)=T_{\mathrm{mem}}(\sqrt{u})+1 \\
& =T_{\mathrm{mem}}\left(2^{\frac{\ell}{2}}\right)+1
\end{aligned}
$$

Implementation 3: Recursion

$T_{\mathrm{mem}}(u)=T_{\mathrm{mem}}(\sqrt{u})+1:$
Set $\ell:=\log u$ and $X(\ell):=T_{\text {mem }}\left(2^{\ell}\right)$.Then

$$
\begin{aligned}
X(\ell)=T_{\mathrm{mem}}\left(2^{\ell}\right) & =T_{\mathrm{mem}}(u)=T_{\mathrm{mem}}(\sqrt{u})+1 \\
& =T_{\mathrm{mem}}\left(2^{\frac{\ell}{2}}\right)+1=X\left(\frac{\ell}{2}\right)+1 .
\end{aligned}
$$

Implementation 3: Recursion

$T_{\text {mem }}(u)=T_{\text {mem }}(\sqrt{u})+1:$
Set $\ell:=\log u$ and $X(\ell):=T_{\mathrm{mem}}\left(2^{\ell}\right)$.Then

$$
\begin{aligned}
X(\ell)=T_{\mathrm{mem}}\left(2^{\ell}\right) & =T_{\mathrm{mem}}(u)=T_{\mathrm{mem}}(\sqrt{u})+1 \\
& =T_{\mathrm{mem}}\left(2^{\frac{\ell}{2}}\right)+1=X\left(\frac{\ell}{2}\right)+1 .
\end{aligned}
$$

Using Master theorem gives $X(\ell)=\mathcal{O}(\log \ell)$, and hence $T_{\text {mem }}(u)=\mathcal{O}(\log \log u)$.

Implementation 3: Recursion

$$
T_{\mathrm{ins}}(u)=2 T_{\mathrm{ins}}(\sqrt{ } \bar{u})+1
$$

Implementation 3: Recursion

$$
\begin{aligned}
& \boldsymbol{T}_{\mathrm{ins}}(\boldsymbol{u})=2 \boldsymbol{T}_{\mathrm{ins}}(\sqrt{\boldsymbol{u}})+\mathbf{1} \\
& \text { Set } \ell:=\log u \text { and } X(\ell):=T_{\mathrm{ins}}\left(2^{\ell}\right) .
\end{aligned}
$$

Implementation 3: Recursion

$T_{\mathrm{ins}}(u)=2 T_{\mathrm{ins}}(\sqrt{u})+1$.
Set $\ell:=\log u$ and $X(\ell):=T_{\text {ins }}\left(2^{\ell}\right)$. Then

Implementation 3: Recursion

$T_{\mathrm{ins}}(u)=2 T_{\mathrm{ins}}(\sqrt{u})+1$.
Set $\ell:=\log u$ and $X(\ell):=T_{\text {ins }}\left(2^{\ell}\right)$. Then

$$
X(\ell)
$$

Implementation 3: Recursion

$T_{\mathrm{ins}}(u)=2 T_{\mathrm{ins}}(\sqrt{u})+1$.
Set $\ell:=\log u$ and $X(\ell):=T_{\text {ins }}\left(2^{\ell}\right)$. Then

$$
X(\ell)=T_{\text {ins }}\left(2^{\ell}\right)
$$

Implementation 3: Recursion

$T_{\mathrm{ins}}(u)=2 T_{\mathrm{ins}}(\sqrt{u})+1$.
Set $\ell:=\log u$ and $X(\ell):=T_{\text {ins }}\left(2^{\ell}\right)$. Then

$$
X(\ell)=T_{\mathrm{ins}}\left(2^{\ell}\right)=T_{\mathrm{ins}}(u)
$$

Implementation 3: Recursion

$T_{\mathrm{ins}}(u)=2 T_{\mathrm{ins}}(\sqrt{u})+1$.
Set $\ell:=\log u$ and $X(\ell):=T_{\text {ins }}\left(2^{\ell}\right)$. Then

$$
X(\ell)=T_{\text {ins }}\left(2^{\ell}\right)=T_{\text {ins }}(u)=2 T_{\text {ins }}(\sqrt{u})+1
$$

Implementation 3: Recursion

$T_{\mathrm{ins}}(u)=2 T_{\mathrm{ins}}(\sqrt{u})+1$.
Set $\ell:=\log u$ and $X(\ell):=T_{\text {ins }}\left(2^{\ell}\right)$. Then

$$
\begin{aligned}
X(\ell)=T_{\mathrm{ins}}\left(2^{\ell}\right) & =T_{\mathrm{ins}}(u)=2 T_{\mathrm{ins}}(\sqrt{u})+1 \\
& =2 T_{\mathrm{ins}}\left(2^{\frac{\ell}{2}}\right)+1
\end{aligned}
$$

Implementation 3: Recursion

$T_{\mathrm{ins}}(u)=2 T_{\mathrm{ins}}(\sqrt{u})+1$.
Set $\ell:=\log u$ and $X(\ell):=T_{\text {ins }}\left(2^{\ell}\right)$. Then

$$
\begin{aligned}
X(\ell)=T_{\text {ins }}\left(2^{\ell}\right) & =T_{\text {ins }}(u)=2 T_{\text {ins }}(\sqrt{u})+1 \\
& =2 T_{\text {ins }}\left(2^{\frac{\ell}{2}}\right)+1=2 X\left(\frac{\ell}{2}\right)+1 .
\end{aligned}
$$

Implementation 3: Recursion

$T_{\mathrm{ins}}(u)=2 T_{\mathrm{ins}}(\sqrt{u})+1$.
Set $\ell:=\log u$ and $X(\ell):=T_{\text {ins }}\left(2^{\ell}\right)$. Then

$$
\begin{aligned}
X(\ell)=T_{\text {ins }}\left(2^{\ell}\right) & =T_{\text {ins }}(u)=2 T_{\text {ins }}(\sqrt{u})+1 \\
& =2 T_{\text {ins }}\left(2^{\frac{\ell}{2}}\right)+1=2 X\left(\frac{\ell}{2}\right)+1 .
\end{aligned}
$$

Using Master theorem gives $X(\ell)=\mathcal{O}(\ell)$, and hence $T_{\text {ins }}(u)=\mathcal{O}(\log u)$.

Implementation 3: Recursion

$T_{\mathrm{ins}}(u)=2 T_{\mathrm{ins}}(\sqrt{u})+1$.
Set $\ell:=\log u$ and $X(\ell):=T_{\text {ins }}\left(2^{\ell}\right)$. Then

$$
\begin{aligned}
X(\ell)=T_{\text {ins }}\left(2^{\ell}\right) & =T_{\text {ins }}(u)=2 T_{\text {ins }}(\sqrt{u})+1 \\
& =2 T_{\text {ins }}\left(2^{\frac{\ell}{2}}\right)+1=2 X\left(\frac{\ell}{2}\right)+1 .
\end{aligned}
$$

Using Master theorem gives $X(\ell)=\mathcal{O}(\ell)$, and hence $T_{\text {ins }}(u)=\mathcal{O}(\log u)$.

The same holds for $T_{\max }(u)$ and $T_{\min }(u)$.

Implementation 3: Recursion

$$
T_{\mathrm{del}}(u)=2 T_{\mathrm{del}}(\sqrt{u})+T_{\min }(\sqrt{ } \bar{u})+1 \leq 2 T_{\mathrm{del}}(\sqrt{u})+c \log (u) .
$$

Implementation 3: Recursion

$T_{\text {del }}(u)=2 T_{\text {del }}(\sqrt{\bar{u}})+T_{\min }(\sqrt{u})+1 \leq 2 T_{\text {del }}(\sqrt{u})+c \log (u)$.
Set $\ell:=\log u$ and $X(\ell):=T_{\text {del }}\left(2^{\ell}\right)$.

Implementation 3: Recursion

$T_{\text {del }}(u)=2 T_{\text {del }}(\sqrt{\bar{u}})+T_{\min }(\sqrt{u})+1 \leq 2 T_{\text {del }}(\sqrt{u})+c \log (u)$.
Set $\ell:=\log u$ and $X(\ell):=T_{\text {del }}\left(2^{\ell}\right)$. Then

Implementation 3: Recursion

$T_{\text {del }}(u)=2 T_{\text {del }}(\sqrt{\bar{u}})+T_{\min }(\sqrt{u})+1 \leq 2 T_{\text {del }}(\sqrt{u})+c \log (u)$.
Set $\ell:=\log u$ and $X(\ell):=T_{\text {del }}\left(2^{\ell}\right)$. Then

$$
X(\ell)
$$

Implementation 3: Recursion

$T_{\text {del }}(u)=2 T_{\text {del }}(\sqrt{u})+T_{\min }(\sqrt{u})+1 \leq 2 T_{\text {del }}(\sqrt{u})+c \log (u)$.
Set $\ell:=\log u$ and $X(\ell):=T_{\text {del }}\left(2^{\ell}\right)$. Then

$$
X(\ell)=T_{\mathrm{del}}\left(2^{\ell}\right)
$$

Implementation 3: Recursion

$T_{\text {del }}(u)=2 T_{\text {del }}(\sqrt{u})+T_{\min }(\sqrt{u})+1 \leq 2 T_{\text {del }}(\sqrt{u})+c \log (u)$.
Set $\ell:=\log u$ and $X(\ell):=T_{\text {del }}\left(2^{\ell}\right)$. Then

$$
X(\ell)=T_{\mathrm{del}}\left(2^{\ell}\right)=T_{\mathrm{del}}(u)
$$

Implementation 3: Recursion

$T_{\text {del }}(u)=2 T_{\text {del }}(\sqrt{\bar{u}})+T_{\min }(\sqrt{u})+1 \leq 2 T_{\text {del }}(\sqrt{u})+c \log (u)$.
Set $\ell:=\log u$ and $X(\ell):=T_{\text {del }}\left(2^{\ell}\right)$. Then

$$
X(\ell)=T_{\mathrm{del}}\left(2^{\ell}\right)=T_{\mathrm{del}}(u)=2 T_{\operatorname{del}}(\sqrt{u})+c \log u
$$

Implementation 3: Recursion

$$
T_{\mathrm{del}}(u)=2 T_{\mathrm{del}}(\sqrt{ } \bar{u})+T_{\min }(\sqrt{ } \bar{u})+1 \leq 2 T_{\mathrm{del}}(\sqrt{ } \bar{u})+c \log (u)
$$

Set $\ell:=\log u$ and $X(\ell):=T_{\text {del }}\left(2^{\ell}\right)$. Then

$$
\begin{aligned}
X(\ell)=T_{\mathrm{del}}\left(2^{\ell}\right) & =T_{\mathrm{del}}(u)=2 T_{\mathrm{del}}(\sqrt{u})+c \log u \\
& =2 T_{\mathrm{del}}\left(2^{\frac{\ell}{2}}\right)+c \ell
\end{aligned}
$$

Implementation 3: Recursion

$$
T_{\mathrm{del}}(u)=2 T_{\mathrm{del}}(\sqrt{ } \bar{u})+T_{\min }(\sqrt{ } \bar{u})+1 \leq 2 T_{\mathrm{del}}(\sqrt{u})+c \log (u)
$$

Set $\ell:=\log u$ and $X(\ell):=T_{\text {del }}\left(2^{\ell}\right)$. Then

$$
\begin{aligned}
X(\ell)=T_{\mathrm{del}}\left(2^{\ell}\right) & =T_{\mathrm{del}}(u)=2 T_{\mathrm{del}}(\sqrt{u})+c \log u \\
& =2 T_{\mathrm{del}}\left(2^{\frac{\ell}{2}}\right)+c \ell=2 X\left(\frac{\ell}{2}\right)+c \ell .
\end{aligned}
$$

Implementation 3: Recursion

$T_{\text {del }}(u)=2 T_{\text {del }}(\sqrt{ } \bar{u})+T_{\min }(\sqrt{ } \bar{u})+1 \leq 2 T_{\text {del }}(\sqrt{ } \bar{u})+c \log (u)$.
Set $\ell:=\log u$ and $X(\ell):=T_{\text {del }}\left(2^{\ell}\right)$. Then

$$
\begin{aligned}
X(\ell)=T_{\mathrm{del}}\left(2^{\ell}\right) & =T_{\mathrm{del}}(u)=2 T_{\mathrm{del}}(\sqrt{u})+c \log u \\
& =2 T_{\mathrm{del}}\left(2^{\frac{\ell}{2}}\right)+c \ell=2 X\left(\frac{\ell}{2}\right)+c \ell
\end{aligned}
$$

Using Master theorem gives $X(\ell)=\Theta(\ell \log \ell)$, and hence $T_{\text {del }}(u)=\mathcal{O}(\log u \log \log u)$.

Implementation 3: Recursion

$T_{\text {del }}(u)=2 T_{\text {del }}(\sqrt{u})+T_{\min }(\sqrt{u})+1 \leq 2 T_{\text {del }}(\sqrt{u})+c \log (u)$.
Set $\ell:=\log u$ and $X(\ell):=T_{\text {del }}\left(2^{\ell}\right)$. Then

$$
\begin{aligned}
X(\ell)=T_{\mathrm{del}}\left(2^{\ell}\right) & =T_{\mathrm{del}}(u)=2 T_{\mathrm{del}}(\sqrt{u})+c \log u \\
& =2 T_{\mathrm{del}}\left(2^{\frac{\ell}{2}}\right)+c \ell=2 X\left(\frac{\ell}{2}\right)+c \ell .
\end{aligned}
$$

Using Master theorem gives $X(\ell)=\Theta(\ell \log \ell)$, and hence $T_{\text {del }}(u)=\mathcal{O}(\log u \log \log u)$.

The same holds for $T_{\text {pred }}(u)$ and $T_{\text {succ }}(u)$.

Implementation 4: van Emde Boas Trees

- The bit referenced by min is not set within sub-datastructures.
- The bit referenced by max is set within sub-datastructures (if $\max \neq \mathrm{min}$).

Implementation 4: van Emde Boas Trees

Advantages of having max/min pointers:

Implementation 4: van Emde Boas Trees

Advantages of having max/min pointers:

- Recursive calls for min and max are constant time.

Implementation 4: van Emde Boas Trees

Advantages of having max/min pointers:

- Recursive calls for min and max are constant time.
- min $=$ null means that the data-structure is empty.

Implementation 4: van Emde Boas Trees

Advantages of having max/min pointers:

- Recursive calls for min and max are constant time.
- min = null means that the data-structure is empty.
- $\min =\max \neq$ null means that the data-structure contains exactly one element.

Implementation 4: van Emde Boas Trees

Advantages of having max/min pointers:

- Recursive calls for min and max are constant time.
- min = null means that the data-structure is empty.
- $\min =\max \neq$ null means that the data-structure contains exactly one element.
- We can insert into an empty datastructure in constant time by only setting $\min =\max =x$.

Implementation 4: van Emde Boas Trees

Advantages of having max/min pointers:

- Recursive calls for min and max are constant time.
- min $=$ null means that the data-structure is empty.
- $\min =\max \neq$ null means that the data-structure contains exactly one element.
- We can insert into an empty datastructure in constant time by only setting $\min =\max =x$.
- We can delete from a data-structure that just contains one element in constant time by setting min $=$ max $=$ null.

Implementation 4: van Emde Boas Trees

```
Algorithm 20 max()
    1: return max;
```

Algorithm 21 min()
1: return min;

- Constant time.

Implementation 4: van Emde Boas Trees

Algorithm 22 member (x)

1: if $x=\min$ then return 1 ; // TRUE
2: return cluster $[\operatorname{high}(x)]$. member $(\operatorname{low}(x))$;

- $T_{\text {mem }}(u)=T_{\text {mem }}(\sqrt{u})+1 \Longrightarrow T(u)=\mathcal{O}(\log \log u)$.

Implementation 4: van Emde Boas Trees

```
Algorithm 23 succ(x)
    1: if min # null }\wedgex<\mathrm{ min then return min;
    2: maxincluster }\leftarrow\mathrm{ cluster[high(x)].max();
    3: if maxincluster }\not=\mathrm{ null }\wedge low(x)<maxincluster then
    4: offs }\leftarrow\operatorname{cluster[high (x)].\operatorname{succ}(\operatorname{low}(x));
    5: return high(x)\circoffs;
    6: else
    7: succcluster }\leftarrow\operatorname{summary.succ(high ( }x\mathrm{ ) );
    8: if succcluster = null then return null;
    9: offs }\leftarrow\mathrm{ cluster[succcluster].min();
10: return succcluster ○ offs;
```

- $T_{\text {succ }}(u)=T_{\text {succ }}(\sqrt{u})+1 \Longrightarrow T_{\text {succ }}(u)=\mathcal{O}(\log \log u)$.

Implementation 4: van Emde Boas Trees

```
Algorithm 44 insert \((x)\)
    1: if \(\min =\) null then
    2: \(\quad \min =x ; \max =x\);
    3: else
    4: \(\quad\) if \(x<\min\) then exchange \(x\) and min;
    5: \(\quad\) if cluster \([\operatorname{high}(x)]\). min \(=\) null; then
    6: \(\quad\) summary.insert(high \((x))\);
    7: \(\quad\) cluster[high \((x)\) ].insert \((\operatorname{low}(x))\);
    8: else
    9: \(\quad\) cluster \([\operatorname{high}(x)]\).insert \((\operatorname{low}(x))\);
    10: \(\quad\) if \(x>\) max then \(\max =x\);
```

- $T_{\text {ins }}(u)=T_{\text {ins }}(\sqrt{u})+1 \Longrightarrow T_{\text {ins }}(u)=\mathcal{O}(\log \log u)$.

Implementation 4: van Emde Boas Trees

Note that the recusive call in Line 7 takes constant time as the if-condition in Line 5 ensures that we are inserting in an empty sub-tree.

The only non-constant recursive calls are the call in Line 6 and in Line 9. These are mutually exclusive, i.e., only one of these calls will actually occur.

From this we get that $T_{\text {ins }}(u)=T_{\text {ins }}(\sqrt{u})+1$.

Implementation 4: van Emde Boas Trees

- Assumes that x is contained in the structure.

```
Algorithm 45 delete \((x)\)
    1: if \(\min =\max\) then
    2: \(\quad \min =\) null; \(\max =\) null;
    3: else
    4: \(\quad\) if \(x=\min\) then
        firstcluster \(\leftarrow\) summary. \(\min ()\);
        offs \(\leftarrow\) cluster[firstcluster]. min();
        \(x \leftarrow\) firstcluster \(\circ\) offs;
        min \(\leftarrow x\);
            cluster[high \((x)\) ]. delete(low( \(x)\) );
                continued...
```


Implementation 4: van Emde Boas Trees

- Assumes that x is contained in the structure.

```
Algorithm 45 delete \((x)\)
    1: if \(\min =\max\) then
    2: \(\quad \min =\) null; \(\max =\) null;
    3: else
    4: \(\quad\) if \(x=\min\) then
                                    find new minimum
        firstcluster \(\leftarrow\) summary. \(\min ()\);
        offs \(\leftarrow\) cluster[firstcluster]. min();
        \(x \leftarrow\) firstcluster \(\circ\) offs;
        min \(\leftarrow x\);
            cluster[high \((x)\) ]. delete(low( \(x)\) );
                continued...
```


Implementation 4: van Emde Boas Trees

- Assumes that x is contained in the structure.

```
Algorithm 45 delete \((x)\)
    1: if \(\min =\max\) then
    2: \(\quad \min =\) null; \(\max =\) null;
    3: else
    4: \(\quad\) if \(x=\min\) then
        firstcluster \(\leftarrow\) summary. \(\min ()\);
        offs \(\leftarrow\) cluster[firstcluster]. min();
        \(x \leftarrow\) firstcluster \(\circ\) offs;
    min \(\leftarrow x\);
        cluster[high(x)]. delete(low(x));
        delete
        continued...
```


Implementation 4: van Emde Boas Trees

Algorithm 45 delete (x)	
	...continued if cluster[high $(x)] \cdot \min ()=$ null then
10:	
11:	summary.delete(high (x));
12:	if $x=$ max then
13:	summax \leftarrow summary. max();
14:	if summax $=$ null then max \leftarrow min;
15:	else
16:	offs \leftarrow cluster[summax]. max();
17:	max \leftarrow summax \circ offs
18:	else
19:	if $x=$ max then
20:	offs $\leftarrow \operatorname{cluster[high~}(x)]$. max () ;
21:	max $\leftarrow \operatorname{high}(x) \circ$ offs;

Implementation 4: van Emde Boas Trees

Algorithm 45 delete (x)	
	...continued fix maximum
10:	if cluster[high $(x)] . \min ()=$ null then
11:	summary.delete(high (x));
12:	if $x=$ max then
13:	summax \leftarrow summary. max ();
14:	if summax $=$ null then max \leftarrow min;
15:	else
16:	offs \leftarrow cluster[summax]. max ();
17:	max \leftarrow summax \circ offs
18:	else
19:	if $x=$ max then
20:	offs \leftarrow cluster $[\operatorname{high}(x)] . \max ()$;
21:	max $\leftarrow \operatorname{high}(x) \circ$ offs;

Implementation 4: van Emde Boas Trees

Note that only one of the possible recusive calls in Line 9 and Line 11 in the deletion-algorithm may take non-constant time.

To see this observe that the call in Line 11 only occurs if the cluster where x was deleted is now empty. But this means that the call in Line 9 deleted the last element in cluster[high (x)]. Such a call only takes constant time.

Hence, we get a recurrence of the form

$$
T_{\mathrm{del}}(u)=T_{\mathrm{del}}(\sqrt{u})+c .
$$

This gives $T_{\text {del }}(u)=\mathcal{O}(\log \log u)$.

10 van Emde Boas Trees

Space requirements:

- The space requirement fulfills the recurrence

$$
S(u)=(\sqrt{u}+1) S(\sqrt{u})+\mathcal{O}(\sqrt{u}) .
$$

- Note that we cannot solve this recurrence by the Master theorem as the branching factor is not constant.
- One can show by induction that the space requirement is $S(u)=\mathcal{O}(u)$. Exercise.
- Let the "real" recurrence relation be

$$
S\left(k^{2}\right)=(k+1) S(k)+c_{1} \cdot k ; S(4)=c_{2}
$$

- Replacing $S(k)$ by $R(k):=S(k) / c_{2}$ gives the recurrence

$$
R\left(k^{2}\right)=(k+1) R(k)+c k ; R(4)=1
$$

where $c=c_{1} / c_{2}<1$.

- Now, we show $R(k) \leq k-2$ for squares $k \geq 4$.
- Obviously, this holds for $k=4$.
- For $k=\ell^{2}>4$ with ℓ integral we have

$$
\begin{aligned}
R(k) & =(1+\ell) R(\ell)+c \ell \\
& \leq(1+\ell)(\ell-2)+\ell \leq k-2
\end{aligned}
$$

- This shows that $R(k)$ and, hence, $S(k)$ grows linearly.

