7.3 AVL-Trees

Definition 1

AVL-trees are binary search trees that fulfill the following balance condition. For every node v

 $|\text{height}(\text{left sub-tree}(v)) - \text{height}(\text{right sub-tree}(v))| \le 1$.

Lemma 2

An AVL-tree of height h contains at least $F_{h+2} - 1$ and at most $2^{h} - 1$ internal nodes, where F_{n} is the *n*-th Fibonacci number ($F_0 = 0$, $F_1 = 1$), and the height is the maximal number of edges from the root to an (empty) dummy leaf.

© Harald	
© Harald	Räcke

161

AVL trees

Proof (cont.)

Induction (base cases):

- **1.** an AVL-tree of height h = 1 contains at least one internal node, $1 \ge F_3 - 1 = 2 - 1 = 1$.
- **2.** an AVL tree of height h = 2 contains at least two internal nodes, $2 \ge F_4 - 1 = 3 - 1 = 2$

\mathcal{Q}

AVL trees

Proof.

The upper bound is clear, as a binary tree of height *h* can only contain

 $\sum_{i=0}^{h-1} 2^j = 2^h - 1$

internal nodes.

Induction step:

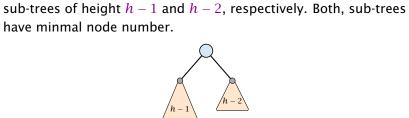
have minmal node number.

Warald Räcke

7.3 AVL-Trees

An AVL-tree of height $h \ge 2$ of minimal size has a root with

162



Let

 $g_h := 1 + \text{minimal size of AVL-tree of height } h$.

Then

$g_1 = 2$	$= F_3$
$g_2 = 3$	$= F_4$
$g_h - 1 = 1 + g_{h-1} - 1 + g_{h-2} - 1$,	hence
$g_h = g_{h-1} + g_{h-2}$	$= F_{h+2}$

∏∐∏∏| © Harald Räcke

7.3 AVL-Trees

7.3 AVL-Trees

An AVL-tree of height h contains at least $F_{h+2} - 1$ internal nodes. Since

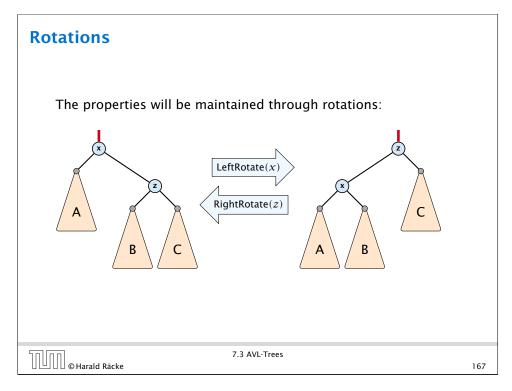
 $n+1 \ge F_{h+2} = \Omega\left(\left(rac{1+\sqrt{5}}{2}
ight)^h
ight)$,

we get

$$n \ge \Omega\left(\left(\frac{1+\sqrt{5}}{2}\right)^h\right)$$

and, hence, $h = O(\log n)$.

© Harald Räcke	7.3 AVL-Trees	



7.3 AVL-Trees

We need to maintain the balance condition through rotations.

For this we store in every internal tree-node v the balance of the node. Let v denote a tree node with left child c_{ℓ} and right child c_r .

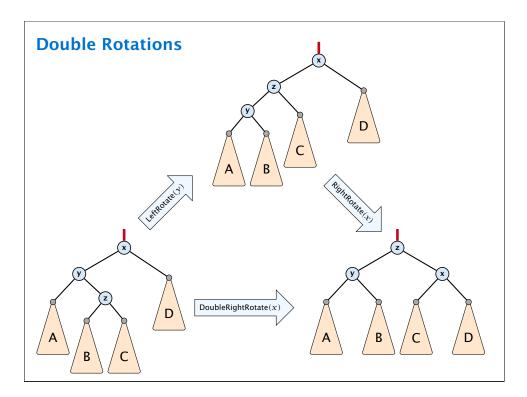
 $balance[v] := height(T_{c_{\ell}}) - height(T_{c_{r}})$,

where $T_{c_{\ell}}$ and $T_{c_{r}}$, are the sub-trees rooted at c_{ℓ} and c_{r} , respectively.

C Harald Räcke

165

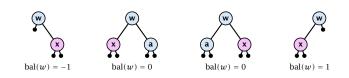
7.3 AVL-Trees



AVL-trees: Insert

Note that before the insertion w is right above the leaf level, i.e., x replaces a child of w that was a dummy leaf.

- Insert like in a binary search tree.
- Let *w* denote the parent of the newly inserted node *x*.
- One of the following cases holds:

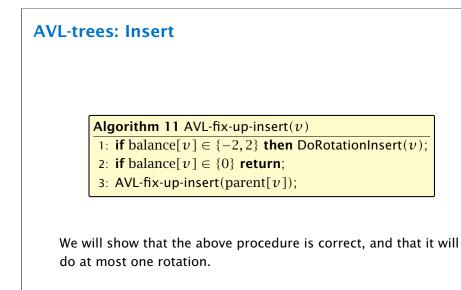


- If bal[w] ≠ 0, T_w has changed height; the balance-constraint may be violated at ancestors of w.
- Call AVL-fix-up-insert(parent[w]) to restore the balance-condition.

٦r	1	Γ	IΓ	1	©Harald	
	ΙU				© Harald	Räcke

7.3 AVL-Trees

169



AVL-trees: Insert

Invariant at the beginning of AVL-fix-up-insert(v):

- 1. The balance constraints hold at all descendants of v.
- **2.** A node has been inserted into T_c , where c is either the right or left child of v.
- **3.** T_c has increased its height by one (otw. we would already have aborted the fix-up procedure).
- **4.** The balance at node c fulfills balance $[c] \in \{-1, 1\}$. This holds because if the balance of c is 0, then T_c did not change its height, and the whole procedure would have been aborted in the previous step.

		Note that these constraints hold for the first call AVL-fix-up-insert(parent[w]).	÷
© Harald Räcke	7.3 AVL-Trees	17	'0

/l -tr	ees: Insert	
	Algorithm 12 DoRotationInsert(v)	
	1: if balance[v] = -2 then // insert in right sub-tree	
	2: if balance[right[v]] = -1 then	
	3: LeftRotate(v);	
	4: else	
	5: DoubleLeftRotate(v);	
	6: else // insert in left sub-tree	
	7: if balance[left[v]] = 1 then	
	8: RightRotate(v);	
	9: else	
	10: DoubleRightRotate (v) ;	
		1

7.3 AVL-Trees

الالله @ Harald Räcke

AVL-trees: Insert

It is clear that the invariant for the fix-up routine holds as long as no rotations have been done.

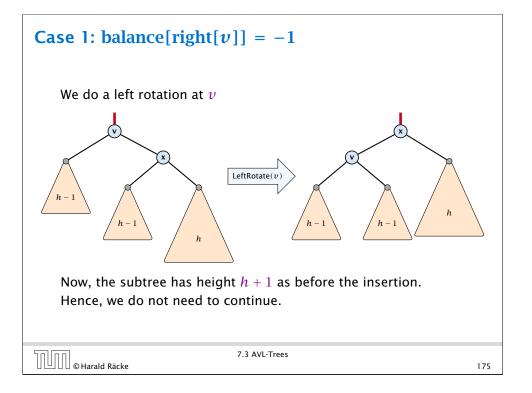
We have to show that after doing one rotation **all** balance constraints are fulfilled.

We show that after doing a rotation at v:

- \blacktriangleright *v* fulfills balance condition.
- All children of v still fulfill the balance condition.
- The height of T_v is the same as before the insert-operation took place.

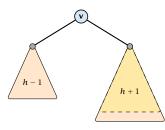
We only look at the case where the insert happened into the right sub-tree of v. The other case is symmetric.

	7.3 AVL-Trees	
U 🕒 U U © Harald Räcke		173



AVL-trees: Insert

We have the following situation:

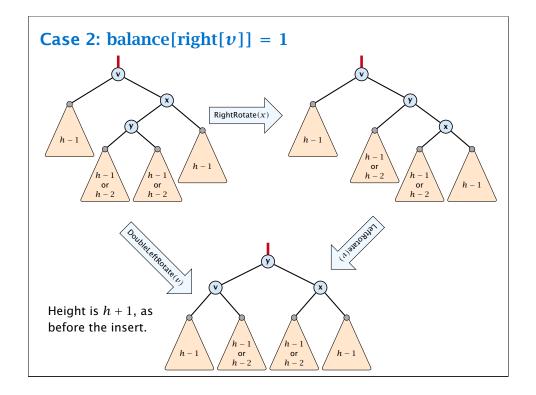


The right sub-tree of v has increased its height which results in a balance of -2 at v.

Before the insertion the height of T_v was h + 1.

G Harald Räcke

7.3 AVL-Trees



AVL-trees: Delete

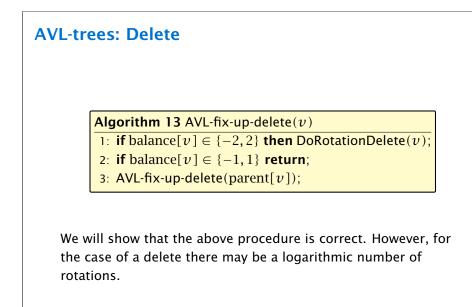
- Delete like in a binary search tree.
- Let v denote the parent of the node that has been spliced out.
- The balance-constraint may be violated at v, or at ancestors of v, as a sub-tree of a child of v has reduced its height.
- Initially, the node *c*—the new root in the sub-tree that has changed—is either a dummy leaf or a node with two dummy leafs as children.

In both cases bal[c] = 0.

► Call AVL-fix-up-delete(*v*) to restore the balance-condition.

7.3 AVL-Trees

© Harald	Räcke



AVL-trees: Delete

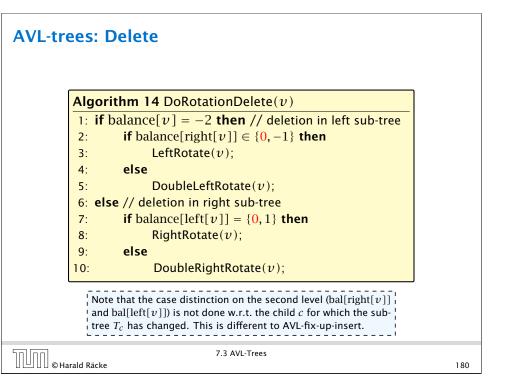
Invariant at the beginning AVL-fix-up-delete(v):

- 1. The balance constraints holds at all descendants of v.
- **2.** A node has been deleted from T_c , where c is either the right or left child of v.
- **3.** T_c has decreased its height by one.
- **4.** The balance at the node c fulfills balance[c] = 0. This holds because if the balance of c is in $\{-1, 1\}$, then T_c did not change its height, and the whole procedure would have been aborted in the previous step.

Marald Räcke

7.3 AVL-Trees

178



179

AVL-trees: Delete

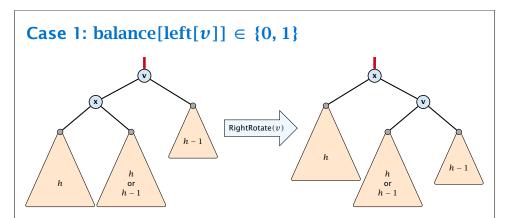
It is clear that the invariant for the fix-up routine hold as long as no rotations have been done.

We show that after doing a rotation at v:

- v fulfills the balance condition.
- All children of v still fulfill the balance condition.
- If now balance[v] ∈ {−1,1} we can stop as the height of T_v is the same as before the deletion.

We only look at the case where the deleted node was in the right sub-tree of v. The other case is symmetric.

החוחר	7.3 AVL-Trees	
🛛 💾 🛛 🖉 GHarald Räcke		181

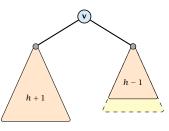


If the middle subtree has height h the whole tree has height h + 2 as before the deletion. The iteration stops as the balance at the root is non-zero.

If the middle subtree has height h - 1 the whole tree has decreased its height from h + 2 to h + 1. We do continue the fix-up procedure as the balance at the root is zero.

AVL-trees: Delete

We have the following situation:

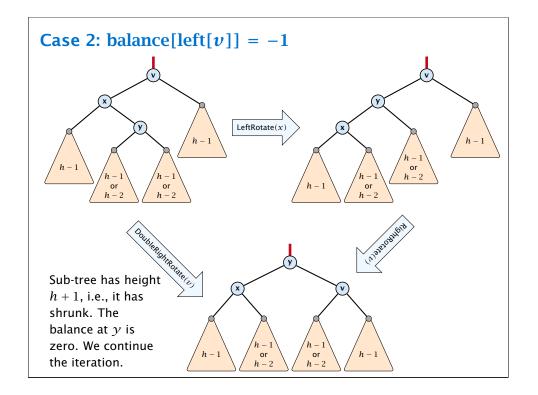


The right sub-tree of v has decreased its height which results in a balance of 2 at v.

Before the deletion the height of T_v was h + 2.

G Harald Räcke

7.3 AVL-Trees



VL Tr	ees	
Bibliogr	aphy	
[OW02]	Algorithmen und Datenstrukturen, Spektrum, 4th edition, 2002	
[GT98]	Michael T. Goodrich, Roberto Tamassia <i>Data Structures and Algorithms in JAVA</i> , John Wiley, 1998	
Chapter	5.2.1 of [OW02] contains a detailed description of AVL-trees, albeit only in German.	
AVL-tree	is are covered in [GT98] in Chapter 7.4. However, the coverage is a lot shorter than in [OW02].	
	7.3 AVL-Trees rald Räcke	185

1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	

