### **Algorithm 6** highest-label(G, s, t)

- 1: initialize preflow
- 2: foreach  $u \in V \setminus \{s, t\}$  do
- 3:  $u.current-neighbour \leftarrow u.neighbour-list-head$
- 4: **while**  $\exists$  active node u **do**
- select active node u with highest label
- 6:  $\operatorname{discharge}(u)$



#### Lemma 1

When using highest label the number of non-saturating pushes is only  $\mathcal{O}(n^3)$ .

A push from a node on level  $\ell$  can only "activate" nodes on levels strictly less than  $\ell$ .

This means, after a non-saturating push from  $\boldsymbol{u}$  a relabel is required to make  $\boldsymbol{u}$  active again.

Hence, after n non-saturating pushes without an intermediate relabel there are no active nodes left.

Therefore, the number of non-saturating pushes is at most  $n(\#relabels + 1) = \mathcal{O}(n^3)$ .

Since a discharge-operation is terminated by a non-saturating push this gives an upper bound of  $\mathcal{O}(n^3)$  on the number of discharge-operations.

The cost for relabels and saturating pushes can be estimated in exactly the same way as in the case of the generic push-relabel algorithm.

#### Question:

How do we find the next node for a discharge operation?



Maintain lists  $L_i$ ,  $i \in \{0, ..., 2n\}$ , where list  $L_i$  contains active nodes with label i (maintaining these lists induces only constant additional cost for every push-operation and for every relabel-operation).

After a discharge operation terminated for a node u with label k, traverse the lists  $L_k, L_{k-1}, \ldots, L_0$ , (in that order) until you find a non-empty list.

Unless the last (non-saturating) push was to s or t the list k-1 must be non-empty (i.e., the search takes constant time).



Hence, the total time required for searching for active nodes is at most

$$O(n^3) + n(\#non\text{-}saturating\text{-}pushes\text{-}to\text{-}s\text{-}or\text{-}t)$$

#### Lemma 2

The number of non-saturating pushes to s or t is at most  $\mathcal{O}(n^2)$ .

With this lemma we get

#### Theorem 3

The push-relabel algorithm with the rule highest-label takes time  $\mathcal{O}(n^3)$ .



#### Proof of the Lemma.

- ▶ We only show that the number of pushes to the source is at most  $\mathcal{O}(n^2)$ . A similar argument holds for the target.
- After a node v (which must have  $\ell(v) = n+1$ ) made a non-saturating push to the source there needs to be another node whose label is increased from  $\leq n+1$  to n+2 before v can become active again.
- This happens for every push that v makes to the source. Since, every node can pass the threshold n+2 at most once, v can make at most n pushes to the source.
- As this holds for every node the total number of pushes to the source is at most  $\mathcal{O}(n^2)$ .

