Definition 1

A red black tree is a balanced binary search tree in which each internal node has two children. Each internal node has a color, such that

- 1. The root is black.
- 2. All leaf nodes are black.
- **3.** For each node, all paths to descendant leaves contain the same number of black nodes.
- 4. If a node is red then both its children are black.

Definition 1

A red black tree is a balanced binary search tree in which each internal node has two children. Each internal node has a color, such that

- 1. The root is black.
- 2. All leaf nodes are black.
- **3.** For each node, all paths to descendant leaves contain the same number of black nodes.
- 4. If a node is red then both its children are black.

Definition 1

A red black tree is a balanced binary search tree in which each internal node has two children. Each internal node has a color, such that

- 1. The root is black.
- 2. All leaf nodes are black.
- **3.** For each node, all paths to descendant leaves contain the same number of black nodes.
- 4. If a node is red then both its children are black.

Definition 1

A red black tree is a balanced binary search tree in which each internal node has two children. Each internal node has a color, such that

- 1. The root is black.
- 2. All leaf nodes are black.
- **3.** For each node, all paths to descendant leaves contain the same number of black nodes.
- 4. If a node is red then both its children are black.

Definition 1

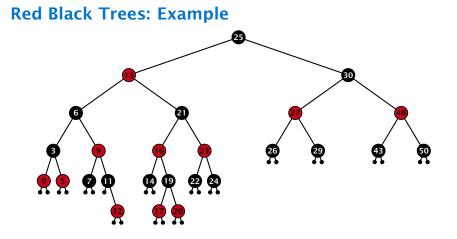
A red black tree is a balanced binary search tree in which each internal node has two children. Each internal node has a color, such that

- 1. The root is black.
- 2. All leaf nodes are black.
- **3.** For each node, all paths to descendant leaves contain the same number of black nodes.
- 4. If a node is red then both its children are black.

Definition 1

A red black tree is a balanced binary search tree in which each internal node has two children. Each internal node has a color, such that

- 1. The root is black.
- 2. All leaf nodes are black.
- **3.** For each node, all paths to descendant leaves contain the same number of black nodes.
- 4. If a node is red then both its children are black.



▲ 個 ▶ ▲ 필 ▶ ▲ 필 ▶ 137/612

Lemma 2

A red-black tree with n internal nodes has height at most $\mathcal{O}(\log n)$.

Definition 3

The black height bh(v) of a node v in a red black tree is the number of black nodes on a path from v to a leaf vertex (not counting v).

We first show:

Lemma 4

A sub-tree of black height bh(v) in a red black tree contains at least $2^{bh(v)} - 1$ internal vertices.

Lemma 2

A red-black tree with n internal nodes has height at most $O(\log n)$.

Definition 3

The black height bh(v) of a node v in a red black tree is the number of black nodes on a path from v to a leaf vertex (not counting v).

We first show: **Lemma 4** *A sub-tree of black height* bh(v) *in a red black tree contains at least* $2^{bh(v)} - 1$ *internal vertices.*

Lemma 2

A red-black tree with n internal nodes has height at most $\mathcal{O}(\log n)$.

Definition 3

The black height bh(v) of a node v in a red black tree is the number of black nodes on a path from v to a leaf vertex (not counting v).

We first show:

Lemma 4

A sub-tree of black height bh(v) in a red black tree contains at least $2^{bh(v)} - 1$ internal vertices.

Proof of Lemma 4.

Induction on the height of v.

- If Subjects (maximum distance btw. --- and a node in the sub-tree rooted at ->) is 0 then or is a leaf.
- The black height of *v* is 0.
- The sub-tree rooted at a contains () = 2³⁰⁰⁰⁰ = 2 inner a vertices.

Proof of Lemma 4.

Induction on the height of v.

- **base case (**height(v) = 0)
 - If beight (maximum distance bbw, w and a node in the sub-tree rooted at w) is withen wis a leaf.
 - The black height of wis 0.
 - The sub-tree rooted at a contains () = 2⁰⁰⁰⁰⁰ = 0 inner vertices.

Proof of Lemma 4.

Induction on the height of v.

- If height(v) (maximum distance btw. v and a node in the sub-tree rooted at v) is 0 then v is a leaf.
- The black height of v is 0.
- ► The sub-tree rooted at v contains 0 = 2^{bh(v)} 1 inner vertices.

Proof of Lemma 4.

Induction on the height of *v*.

- If height(v) (maximum distance btw. v and a node in the sub-tree rooted at v) is 0 then v is a leaf.
- The black height of v is 0.
- ► The sub-tree rooted at v contains 0 = 2^{bh(v)} 1 inner vertices.

Proof of Lemma 4.

Induction on the height of *v*.

- If height(v) (maximum distance btw. v and a node in the sub-tree rooted at v) is 0 then v is a leaf.
- The black height of v is 0.
- ► The sub-tree rooted at v contains 0 = 2^{bh(v)} 1 inner vertices.

Proof (cont.)

- Supose this a node with height (when 0.
- what two children with strictly smaller height.
- These children (G, G) either have bblock a bblock or bblock a bblock a b

Proof (cont.)

- Supose v is a node with height(v) > 0.
- v has two children with strictly smaller height.
- ► These children (c_1, c_2) either have $bh(c_i) = bh(v)$ or $bh(c_i) = bh(v) 1$.
- By induction hypothesis both sub-trees contain at least $2^{bh(v)-1} 1$ internal vertices.
- ► Then T_v contains at least $2(2^{bh(v)-1} 1) + 1 \ge 2^{bh(v)} 1$ vertices.

Proof (cont.)

- Supose v is a node with height(v) > 0.
- v has two children with strictly smaller height.
- ► These children (c₁, c₂) either have bh(c_i) = bh(v) or bh(c_i) = bh(v) 1.
- By induction hypothesis both sub-trees contain at least $2^{bh(v)-1} 1$ internal vertices.
- ► Then T_v contains at least $2(2^{bh(v)-1} 1) + 1 \ge 2^{bh(v)} 1$ vertices.

Proof (cont.)

- Supose v is a node with height(v) > 0.
- v has two children with strictly smaller height.
- ► These children (c_1 , c_2) either have $bh(c_i) = bh(v)$ or $bh(c_i) = bh(v) 1$.
- By induction hypothesis both sub-trees contain at least $2^{bh(v)-1} 1$ internal vertices.
- ► Then T_v contains at least $2(2^{bh(v)-1} 1) + 1 \ge 2^{bh(v)} 1$ vertices.

Proof (cont.)

- Supose v is a node with height(v) > 0.
- v has two children with strictly smaller height.
- ► These children (c_1 , c_2) either have $bh(c_i) = bh(v)$ or $bh(c_i) = bh(v) 1$.
- ▶ By induction hypothesis both sub-trees contain at least $2^{bh(v)-1} 1$ internal vertices.
- ► Then T_v contains at least $2(2^{bh(v)-1} 1) + 1 \ge 2^{bh(v)} 1$ vertices.

Proof (cont.)

- Supose v is a node with height(v) > 0.
- v has two children with strictly smaller height.
- ► These children (c_1 , c_2) either have $bh(c_i) = bh(v)$ or $bh(c_i) = bh(v) 1$.
- ▶ By induction hypothesis both sub-trees contain at least $2^{bh(v)-1} 1$ internal vertices.
- ► Then T_v contains at least $2(2^{bh(v)-1} 1) + 1 \ge 2^{bh(v)} 1$ vertices.

Proof of Lemma 2.

Let h denote the height of the red-black tree, and let P denote a path from the root to the furthest leaf.

At least half of the node on *P* must be black, since a red node must be followed by a black node.

Hence, the black height of the root is at least h/2.

The tree contains at least $2^{h/2} - 1$ internal vertices. Hence, $2^{h/2} - 1 \le n$.

Hence, $h \leq 2\log(n+1) = O(\log n)$.

7.2 Red Black Trees

▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 ▶ 141/612

Proof of Lemma 2.

Let h denote the height of the red-black tree, and let P denote a path from the root to the furthest leaf.

At least half of the node on *P* must be black, since a red node must be followed by a black node.

Hence, the black height of the root is at least h/2.

The tree contains at least $2^{h/2} - 1$ internal vertices. Hence, $2^{h/2} - 1 \le n$.

Hence, $h \leq 2\log(n+1) = O(\log n)$.

7.2 Red Black Trees

▲ □ ▶ ▲ □ ▶ ▲ □ ▶
141/612

Proof of Lemma 2.

Let h denote the height of the red-black tree, and let P denote a path from the root to the furthest leaf.

At least half of the node on P must be black, since a red node must be followed by a black node.

Hence, the black height of the root is at least h/2.

The tree contains at least $2^{h/2} - 1$ internal vertices. Hence, $2^{h/2} - 1 \le n$.

Hence, $h \leq 2\log(n+1) = O(\log n)$.

7.2 Red Black Trees

▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 ▶ 141/612

Proof of Lemma 2.

Let h denote the height of the red-black tree, and let P denote a path from the root to the furthest leaf.

At least half of the node on P must be black, since a red node must be followed by a black node.

Hence, the black height of the root is at least h/2.

The tree contains at least $2^{h/2} - 1$ internal vertices. Hence, $2^{h/2} - 1 \le n$.

Hence, $h \leq 2\log(n+1) = O(\log n)$.

Proof of Lemma 2.

Let h denote the height of the red-black tree, and let P denote a path from the root to the furthest leaf.

At least half of the node on P must be black, since a red node must be followed by a black node.

Hence, the black height of the root is at least h/2.

The tree contains at least $2^{h/2} - 1$ internal vertices. Hence, $2^{h/2} - 1 \le n$.

Hence, $h \leq 2\log(n+1) = O(\log n)$.

Proof of Lemma 2.

Let h denote the height of the red-black tree, and let P denote a path from the root to the furthest leaf.

At least half of the node on P must be black, since a red node must be followed by a black node.

Hence, the black height of the root is at least h/2.

The tree contains at least $2^{h/2} - 1$ internal vertices. Hence, $2^{h/2} - 1 \le n$.

Hence, $h \leq 2\log(n+1) = O(\log n)$.

Definition 1

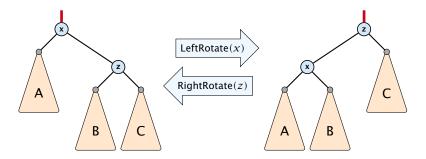
A red black tree is a balanced binary search tree in which each internal node has two children. Each internal node has a color, such that

- 1. The root is black.
- 2. All leaf nodes are black.
- **3.** For each node, all paths to descendant leaves contain the same number of black nodes.
- 4. If a node is red then both its children are black.

We need to adapt the insert and delete operations so that the red black properties are maintained.

Rotations

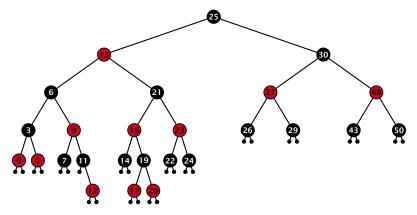
The properties will be maintained through rotations:



7.2 Red Black Trees

◆ 個 ▶ ◆ 臣 ▶ ◆ 臣 ▶ 144/612

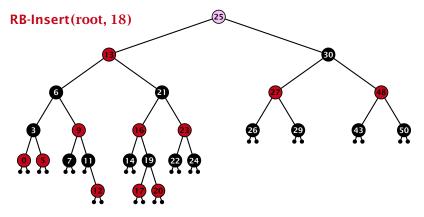
Red Black Trees: Insert



Insert:

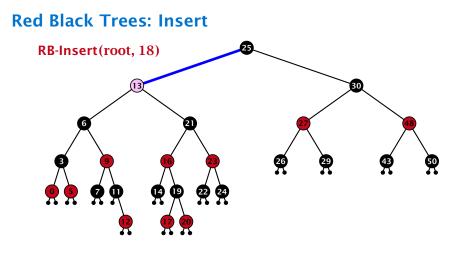
- first make a normal insert into a binary search tree
- then fix red-black properties

Red Black Trees: Insert

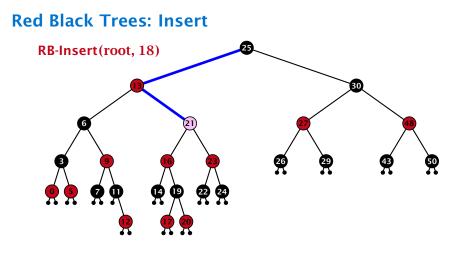


Insert:

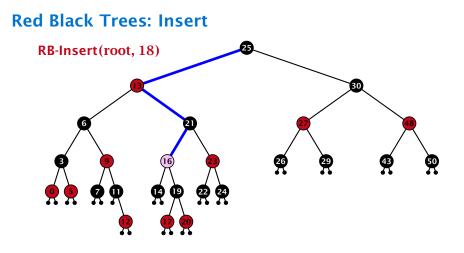
- first make a normal insert into a binary search tree
- then fix red-black properties



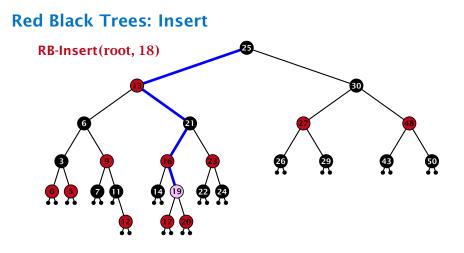
- first make a normal insert into a binary search tree
- then fix red-black properties



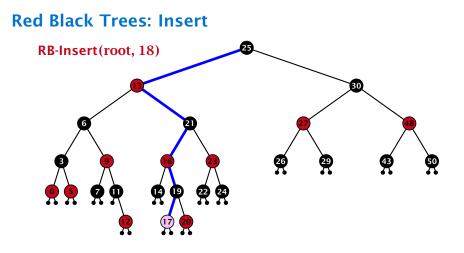
- first make a normal insert into a binary search tree
- then fix red-black properties



- first make a normal insert into a binary search tree
- then fix red-black properties

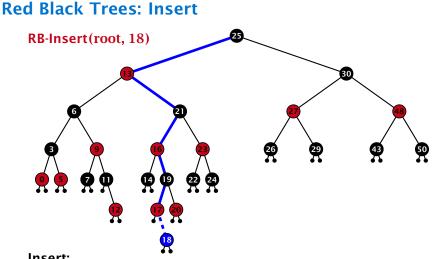


- first make a normal insert into a binary search tree
- then fix red-black properties

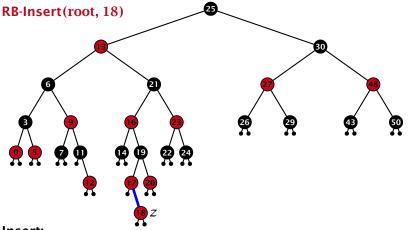


Insert:

- first make a normal insert into a binary search tree
- then fix red-black properties



- Insert:
 - first make a normal insert into a binary search tree
 - then fix red-black properties



Insert:

- first make a normal insert into a binary search tree
- then fix red-black properties

Invariant of the fix-up algorithm:

z is a red node

- the black-height property is fulfilled at every node
- the only violation of red-black properties occurs at z and parent[z]
 - either both of them are red
 - (most important case)
 - or the parent does not exist
 - (violation since root must be black)
- If z has a parent but no grand-parent we could simply color the parent/root black; however this case never happens.

Invariant of the fix-up algorithm:

- z is a red node
- the black-height property is fulfilled at every node
- the only violation of red-black properties occurs at z and parent[z]

either both of them are red (most important case) or the parent does not exist (violation since root must be black)

Invariant of the fix-up algorithm:

- z is a red node
- the black-height property is fulfilled at every node
- the only violation of red-black properties occurs at z and parent[z]
 - either both of them are red (most important case)
 - or the parent does not exist (violation since root must be black)

Invariant of the fix-up algorithm:

- z is a red node
- the black-height property is fulfilled at every node
- the only violation of red-black properties occurs at z and parent[z]
 - either both of them are red (most important case)
 - or the parent does not exist (violation since root must be black)

Invariant of the fix-up algorithm:

- z is a red node
- the black-height property is fulfilled at every node
- the only violation of red-black properties occurs at z and parent[z]
 - either both of them are red (most important case)
 - or the parent does not exist (violation since root must be black)

Invariant of the fix-up algorithm:

- z is a red node
- the black-height property is fulfilled at every node
- the only violation of red-black properties occurs at z and parent[z]
 - either both of them are red (most important case)
 - or the parent does not exist (violation since root must be black)

Alg	Algorithm 10 InsertFix (z)		
1:	while $parent[z] \neq null$ and $col[parent[z]] = red$ do		
2:	if $parent[z] = left[gp[z]]$ then		
3:	$uncle \leftarrow right[grandparent[z]]$		
4:	<pre>if col[uncle] = red then</pre>		
5:	$col[p[z]] \leftarrow black; col[u] \leftarrow black;$		
6:	$col[gp[z]] \leftarrow red; z \leftarrow grandparent[z];$		
7:	else		
8:	if $z = right[parent[z]]$ then		
9:	$z \leftarrow p[z]$; LeftRotate(z);		
10:	$col[p[z]] \leftarrow black; col[gp[z]] \leftarrow red;$		
11:	RightRotate $(gp[z]);$		
12:	else same as then-clause but right and left exchanged		
13:	$col(root[T]) \leftarrow black;$		

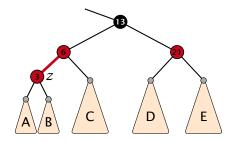
Algorithm 10 InsertFix(<i>z</i>)			
1: V	1: while parent[z] \neq null and col[parent[z]] = red do		
2:	if parent[z] = left[gp[z]] then z in left subtree of grandparent		
3:	$uncle \leftarrow right[grandparent[z]]$		
4:	if col[<i>uncle</i>] = red then		
5:	$col[p[z]] \leftarrow black; col[u] \leftarrow black;$		
6:	$col[gp[z]] \leftarrow red; z \leftarrow grandparent[z];$		
7:	else		
8:	<pre>if z = right[parent[z]] then</pre>		
9:	$z \leftarrow p[z]$; LeftRotate (z) ;		
10:	$col[p[z]] \leftarrow black; col[gp[z]] \leftarrow red;$		
11:	RightRotate($gp[z]$);		
12:	else same as then-clause but right and left exchanged		
13: 0	$\operatorname{col}(\operatorname{root}[T]) \leftarrow \operatorname{black};$		

Alg	Algorithm 10 InsertFix (z)		
1:	while $parent[z] \neq null and col[parent[z]] = red do$		
2:	if $parent[z] = left[gp[z]]$ then		
3:	$uncle \leftarrow right[grandparent[z]]$		
4:	if col[<i>uncle</i>] = red then Case 1: uncle red		
5:	$col[p[z]] \leftarrow black; col[u] \leftarrow black;$		
6:	$col[gp[z]] \leftarrow red; z \leftarrow grandparent[z];$		
7:	else		
8:	if $z = right[parent[z]]$ then		
9:	$z \leftarrow p[z]$; LeftRotate(z);		
10:	$col[p[z]] \leftarrow black; col[gp[z]] \leftarrow red;$		
11:	RightRotate($gp[z]$);		
12:	else same as then-clause but right and left exchanged		
13:	$col(root[T]) \leftarrow black;$		

Alg	Algorithm 10 InsertFix(<i>z</i>)		
1:	while $parent[z] \neq null and col[parent[z]] = red do$		
2:	if $parent[z] = left[gp[z]]$ then		
3:	$uncle \leftarrow right[grandparent[z]]$		
4:	<pre>if col[uncle] = red then</pre>		
5:	$col[p[z]] \leftarrow black; col[u] \leftarrow black;$		
6:	$col[gp[z]] \leftarrow red; z \leftarrow grandparent[z];$		
7:	else Case 2: uncle black		
8:	if $z = right[parent[z]]$ then		
9:	$z \leftarrow p[z]$; LeftRotate(z);		
10:	$col[p[z]] \leftarrow black; col[gp[z]] \leftarrow red;$		
11:	RightRotate $(gp[z]);$		
12:	else same as then-clause but right and left exchanged		
13:	$col(root[T]) \leftarrow black;$		

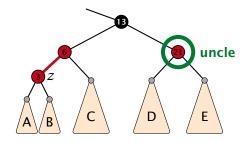
Alg	Algorithm 10 InsertFix(z)		
1:	1: while parent[z] \neq null and col[parent[z]] = red do		
2:	if $parent[z] = left[gp[z]]$ then		
3:	$uncle \leftarrow right[grandparent[z]]$		
4:	<pre>if col[uncle] = red then</pre>		
5:	$col[p[z]] \leftarrow black; col[u] \leftarrow black;$		
6:	$col[gp[z]] \leftarrow red; z \leftarrow grandparent[z];$		
7:	else		
8:	if $z = right[parent[z]]$ then 2a: z right child		
9:	$z \leftarrow p[z]$; LeftRotate(z);		
10:	$\operatorname{col}[p[z]] \leftarrow \operatorname{black}; \operatorname{col}[gp[z]] \leftarrow \operatorname{red};$		
11:	RightRotate(gp[z]);		
12:	else same as then-clause but right and left exchanged		
13:	$col(root[T]) \leftarrow black;$		

Algo	Algorithm 10 InsertFix(z)		
1: V	1: while parent[z] \neq null and col[parent[z]] = red do		
2:	if $parent[z] = left[gp[z]]$ then		
3:	$uncle \leftarrow right[grandparent[z]]$		
4:	if col[<i>uncle</i>] = red then		
5:	$col[p[z]] \leftarrow black; col[u] \leftarrow black;$		
6:	$col[gp[z]] \leftarrow red; z \leftarrow grandparent[z];$		
7:	else		
8:	if <i>z</i> = right[parent[<i>z</i>]] then		
9:	$z \leftarrow p[z]$; LeftRotate (z) ;		
10:	$\operatorname{col}[p[z]] \leftarrow \operatorname{black}; \operatorname{col}[\operatorname{gp}[z]] \leftarrow \operatorname{red}; \operatorname{2b}: z \text{ left child}$		
11:	RightRotate $(gp[z]);$		
12:	else same as then-clause but right and left exchanged		
13: 0	$col(root[T]) \leftarrow black;$		



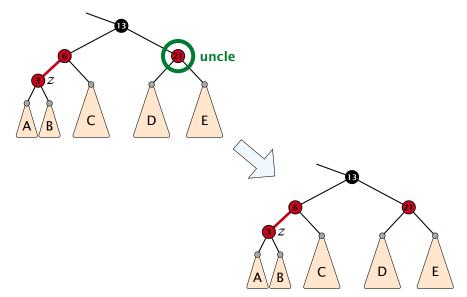
7.2 Red Black Trees

▲ 個 ▶ ▲ ■ ▶ ▲ ■ ▶ 148/612



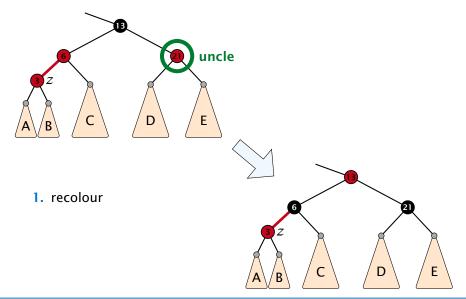
7.2 Red Black Trees

▲ □ → < ≥ → < ≥ → 148/612



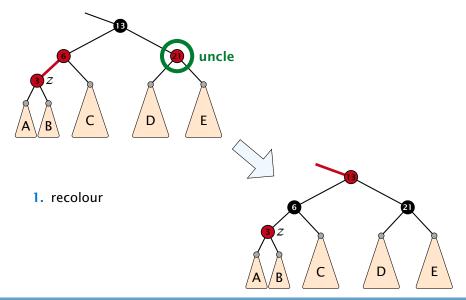
7.2 Red Black Trees

◆ □ ▶ ◆ 三 ▶ ◆ 三 ▶ 148/612



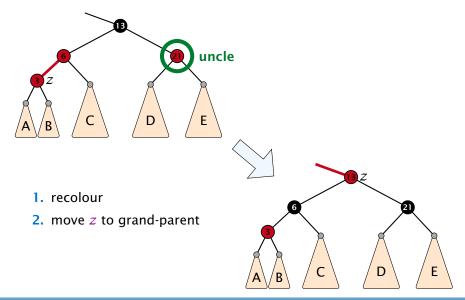
7.2 Red Black Trees

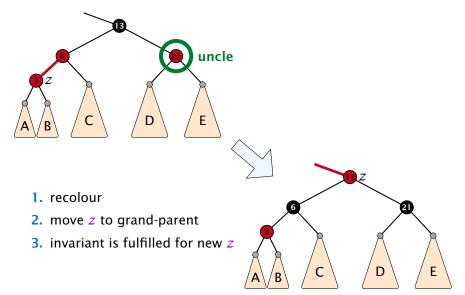
◆ □ → < □ → < □ →
148/612

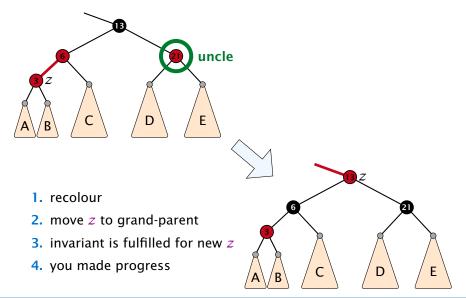


7.2 Red Black Trees

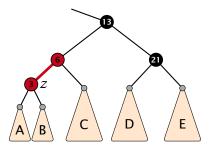
◆ □ → < □ → < □ →
148/612







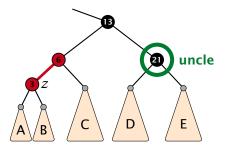
- 1. rotate around grandparent
- 2. re-colour to ensure that black height property holds
- 3. you have a red black tree



7.2 Red Black Trees

▲ 個 ▶ ▲ 문 ▶ ▲ 문 ▶ 149/612

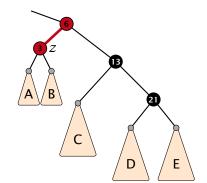
- 1. rotate around grandparent
- 2. re-colour to ensure that black height property holds
- 3. you have a red black tree

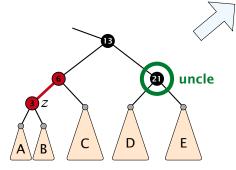


7.2 Red Black Trees

◆ □ → < = → < = → 149/612

- 1. rotate around grandparent
- re-colour to ensure that black height property holds
 you have a red black tree

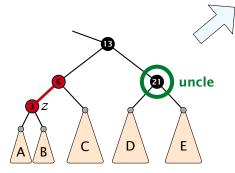


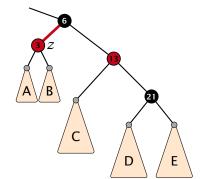


7.2 Red Black Trees

▲ @ ▶ ▲ 클 ▶ ▲ 클 ▶ 149/612

- 1. rotate around grandparent
- 2. re-colour to ensure that black height property holds
- 3. you have a red black tree

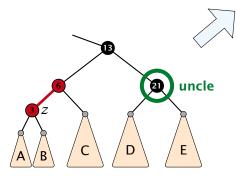


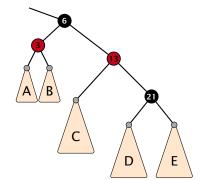


7.2 Red Black Trees

▲ □ ▶ ▲ ■ ▶ ▲ ■ ▶ 149/612

- 1. rotate around grandparent
- 2. re-colour to ensure that black height property holds
- 3. you have a red black tree

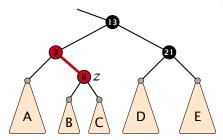




7.2 Red Black Trees

▲ □ ▶ ▲ ■ ▶ ▲ ■ ▶ 149/612

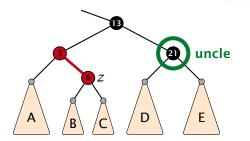
- 1. rotate around parent
- 2. move z downwards
- 3. you have Case 2b.

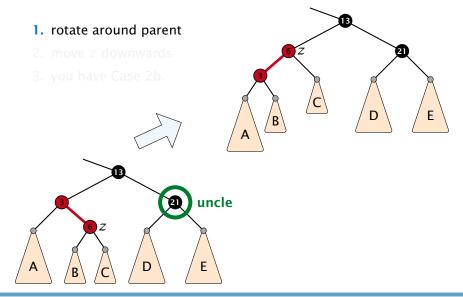


7.2 Red Black Trees

▲ 個 ▶ ▲ 필 ▶ ▲ 필 ▶ 150/612

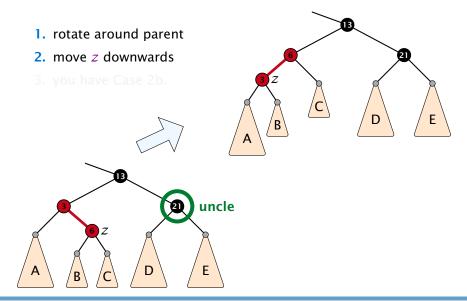
- 1. rotate around parent
- 2. move z downwards
- 3. you have Case 2b.





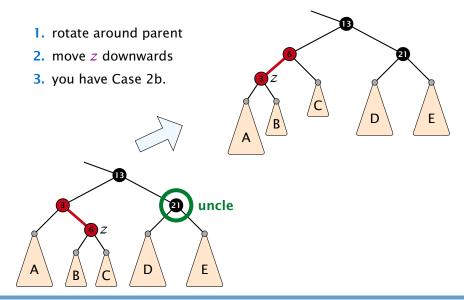
7.2 Red Black Trees

▲ 個 ▶ ▲ 필 ▶ ▲ 필 ▶ 150/612



7.2 Red Black Trees

▲ 個 ▶ ▲ 필 ▶ ▲ 필 ▶ 150/612



7.2 Red Black Trees

▲ □ ▶ ▲ ■ ▶ ▲ ■ ▶ 150/612

Running time:

- Only Case 1 may repeat; but only h/2 many steps, where h is the height of the tree.
- Case 2a → Case 2b → red-black tree
- Case 2b → red-black tree

Performing Case 1 at most $O(\log n)$ times and every other case at most once, we get a red-black tree. Hence $O(\log n)$ re-colorings and at most 2 rotations.

Running time:

- Only Case 1 may repeat; but only h/2 many steps, where h is the height of the tree.
- Case 2a → Case 2b → red-black tree

• Case $2b \rightarrow red$ -black tree

Performing Case 1 at most $O(\log n)$ times and every other case at most once, we get a red-black tree. Hence $O(\log n)$ re-colorings and at most 2 rotations.

Running time:

- Only Case 1 may repeat; but only h/2 many steps, where h is the height of the tree.
- Case 2a → Case 2b → red-black tree
- Case 2b → red-black tree

Performing Case 1 at most $O(\log n)$ times and every other case at most once, we get a red-black tree. Hence $O(\log n)$ re-colorings and at most 2 rotations.

Red Black Trees: Insert

Running time:

- Only Case 1 may repeat; but only h/2 many steps, where h is the height of the tree.
- Case 2a → Case 2b → red-black tree
- Case 2b → red-black tree

Performing Case 1 at most $O(\log n)$ times and every other case at most once, we get a red-black tree. Hence $O(\log n)$ re-colorings and at most 2 rotations.

First do a standard delete.

If the spliced out node x was red everything is fine.

- Parent and child of a were red; two adjacent red vertices.
- If you delete the root, the root may now be red.
- Every path from an ancestor of pito a descendant leaf of pi changes the number of black nodes. Black height property might be violated.

First do a standard delete.

If the spliced out node x was red everything is fine.

If it was black there may be the following problems.

- Parent and child of a were red; two adjacent red vertices.
- If you delete the root, the root may now be red.
- Every path from an ancestor of pito a descendant leaf of pi changes the number of black nodes. Black height property might be violated.

7.2 Red Black Trees

First do a standard delete.

If the spliced out node x was red everything is fine.

If it was black there may be the following problems.

- Parent and child of > were red; two adjacent red vertices.
- If you delete the root, the root may now be red.
- Every path from an ancestor of a to a descendant leaf of a changes the number of black nodes. Black height property might be violated.

7.2 Red Black Trees

First do a standard delete.

If the spliced out node x was red everything is fine.

- Parent and child of x were red; two adjacent red vertices.
- If you delete the root, the root may now be red.
- Every path from an ancestor of x to a descendant leaf of x changes the number of black nodes. Black height property might be violated.

First do a standard delete.

If the spliced out node x was red everything is fine.

- Parent and child of x were red; two adjacent red vertices.
- If you delete the root, the root may now be red.
- Every path from an ancestor of x to a descendant leaf of x changes the number of black nodes. Black height property might be violated.

First do a standard delete.

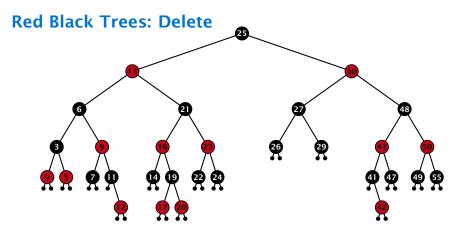
If the spliced out node x was red everything is fine.

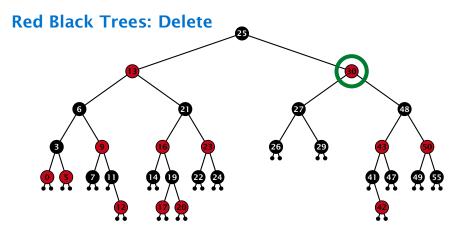
- Parent and child of x were red; two adjacent red vertices.
- If you delete the root, the root may now be red.
- Every path from an ancestor of x to a descendant leaf of x changes the number of black nodes. Black height property might be violated.

First do a standard delete.

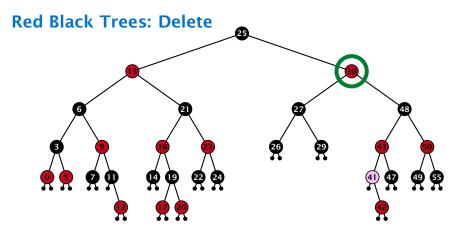
If the spliced out node x was red everything is fine.

- Parent and child of x were red; two adjacent red vertices.
- If you delete the root, the root may now be red.
- Every path from an ancestor of x to a descendant leaf of x changes the number of black nodes. Black height property might be violated.

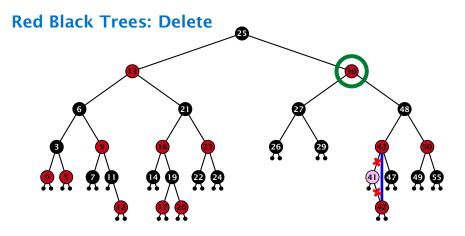




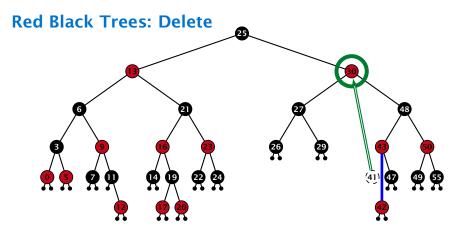
- do normal delete
- when replacing content by content of successor, don't change color of node



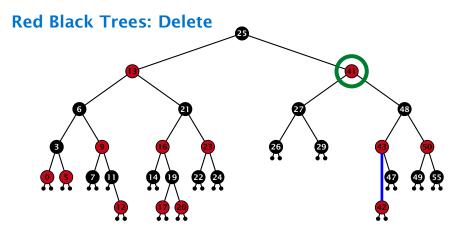
- do normal delete
- when replacing content by content of successor, don't change color of node



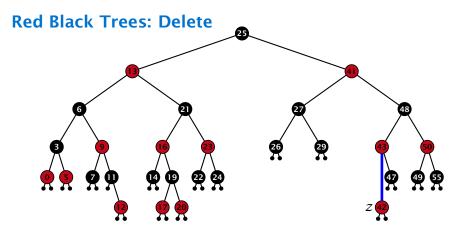
- do normal delete
- when replacing content by content of successor, don't change color of node



- do normal delete
- when replacing content by content of successor, don't change color of node

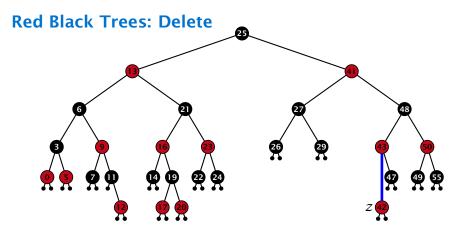


- do normal delete
- when replacing content by content of successor, don't change color of node



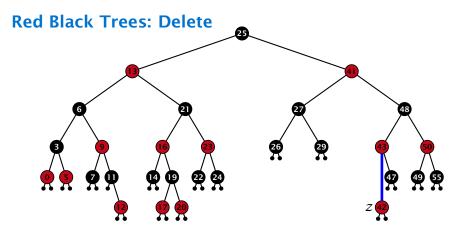
Delete:

- deleting black node messes up black-height property
- if z is red, we can simply color it black and everything is fine
- the problem is if z is black (e.g. a dummy-leaf); we call a fix-up procedure to fix the problem.



Delete:

- deleting black node messes up black-height property
- if z is red, we can simply color it black and everything is fine
- the problem is if z is black (e.g. a dummy-leaf); we call a fix-up procedure to fix the problem.



Delete:

- deleting black node messes up black-height property
- ▶ if *z* is red, we can simply color it black and everything is fine
- the problem is if z is black (e.g. a dummy-leaf); we call a fix-up procedure to fix the problem.

Invariant of the fix-up algorithm

- the node z is black
- if we "assign" a fake black unit to the edge from z to its parent then the black-height property is fulfilled

Goal: make rotations in such a way that you at some point can remove the fake black unit from the edge.

Invariant of the fix-up algorithm

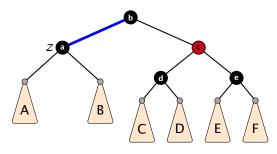
- the node z is black
- if we "assign" a fake black unit to the edge from z to its parent then the black-height property is fulfilled

Goal: make rotations in such a way that you at some point can remove the fake black unit from the edge.

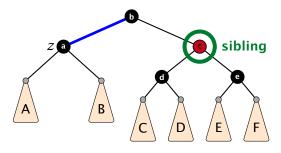
Invariant of the fix-up algorithm

- the node z is black
- if we "assign" a fake black unit to the edge from z to its parent then the black-height property is fulfilled

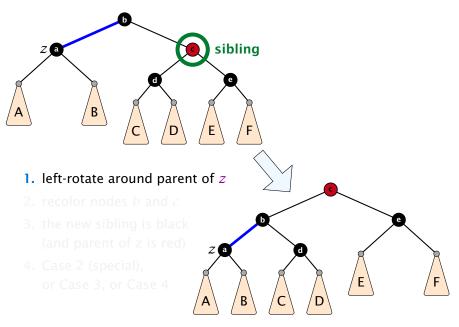
Goal: make rotations in such a way that you at some point can remove the fake black unit from the edge.

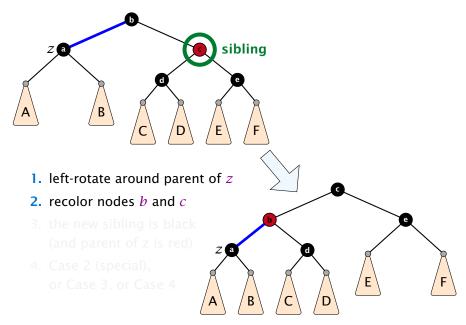


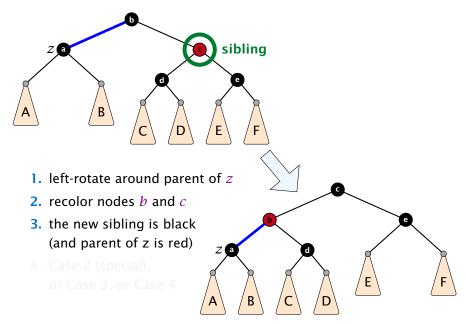
- 1. left-rotate around parent of z
- 2. recolor nodes b and c
- **3.** the new sibling is black (and parent of z is red)
- Case 2 (special), or Case 3, or Case 4

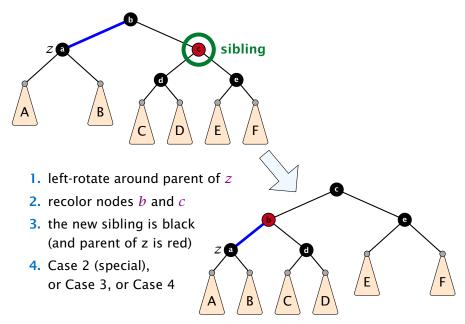


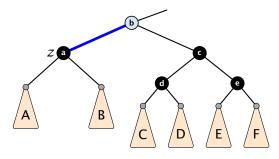
- 1. left-rotate around parent of z
- 2. recolor nodes b and c
- **3.** the new sibling is black (and parent of z is red)
- Case 2 (special), or Case 3, or Case 4



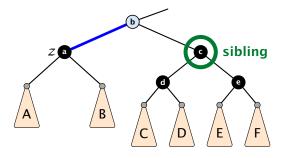




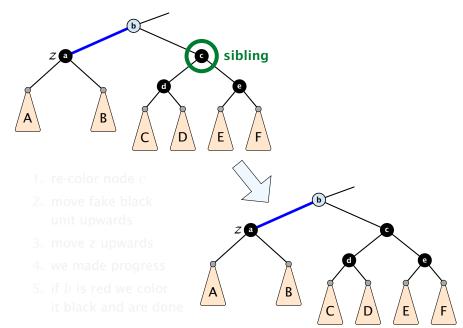


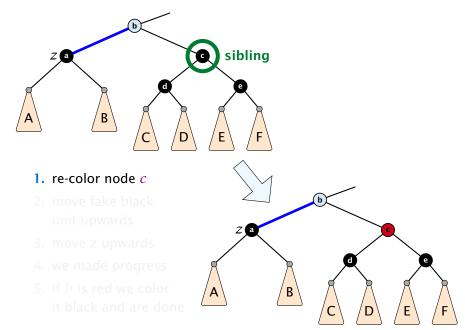


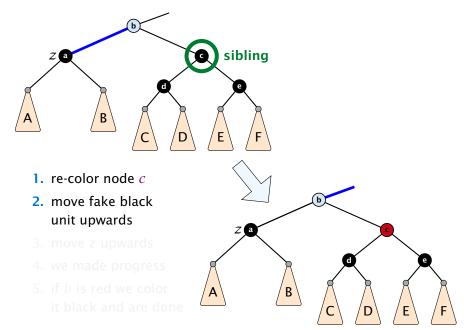
- 1. re-color node *c*
- move fake black unit upwards
- 3. move z upwards
- 4. we made progress
- 5. if *b* is red we color it black and are done

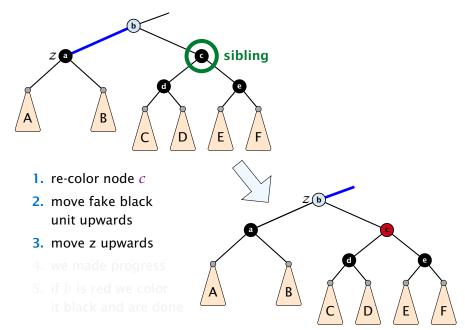


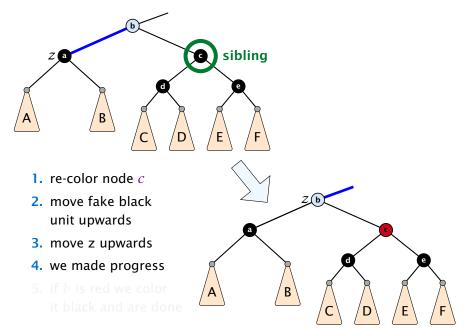
- 1. re-color node *c*
- move fake black unit upwards
- 3. move z upwards
- 4. we made progress
- 5. if *b* is red we color it black and are done

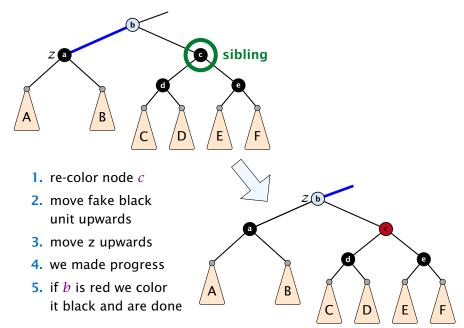






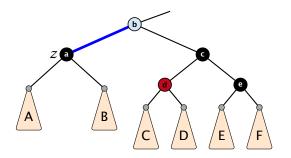






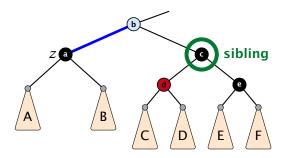
Case 3: Sibling black with one black child to the right

- 1. do a right-rotation at sibling
- 2. recolor c and d
- **3.** new sibling is black with red right child (Case 4)



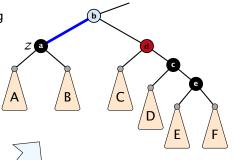
Case 3: Sibling black with one black child to the right

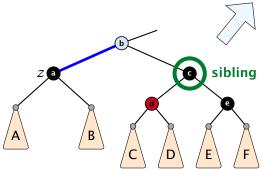
- 1. do a right-rotation at sibling
- 2. recolor c and d
- **3.** new sibling is black with red right child (Case 4)



Case 3: Sibling black with one black child to the right

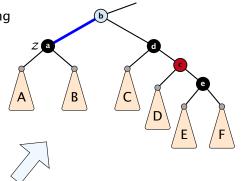
- recolor c and d
- **3.** new sibling is black with red right child (Case 4)

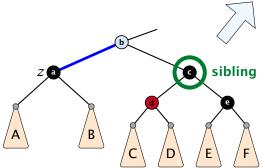




Case 3: Sibling black with one black child to the right

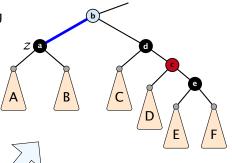
- 1. do a right-rotation at sibling
- **2.** recolor *c* and *d*
- **3.** new sibling is black with red right child (Case 4)

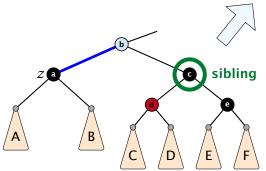


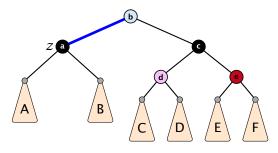


Case 3: Sibling black with one black child to the right

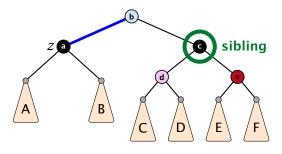
- 1. do a right-rotation at sibling
- **2.** recolor *c* and *d*
- 3. new sibling is black with red right child (Case 4)



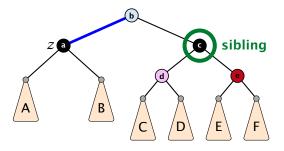




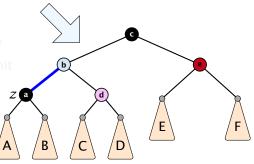
- 1. left-rotate around b
- 2. recolor nodes b, c, and e
- 3. remove the fake black unit
- you have a valid red black tree

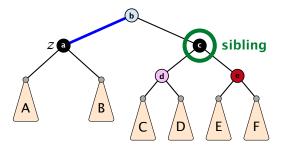


- 1. left-rotate around b
- 2. recolor nodes b, c, and e
- 3. remove the fake black unit
- you have a valid red black tree



- 1. left-rotate around *b*
- 2. recolor nodes b, c, and e
- 3. remove the fake black unit
- you have a valid red black tree

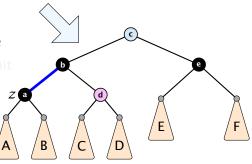


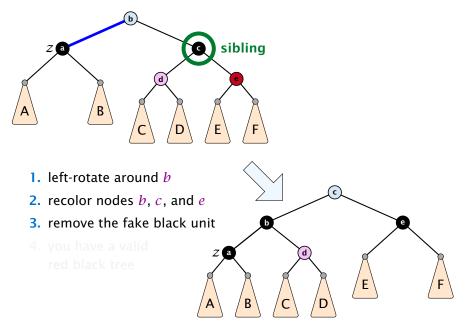


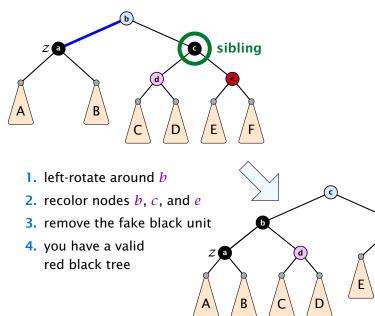
- 1. left-rotate around *b*
- 2. recolor nodes *b*, *c*, and *e*

3. remove the fake black unit

 you have a valid red black tree







- only Case 2 can repeat; but only h many steps, where h is the height of the tree
 - · Case 1 \rightarrow Case 2 (special) \rightarrow red black tree
 - Case 1 \rightarrow Case 3 \rightarrow Case 4 \rightarrow red black tree
 - Case 1 \rightarrow Case 4 \rightarrow red black tree
- Case $3 \rightarrow$ Case $4 \rightarrow$ red black tree
- Case 4 → red black tree

- only Case 2 can repeat; but only h many steps, where h is the height of the tree
- Case 1 → Case 2 (special) → red black tree
 - Case 1 \rightarrow Case 3 \rightarrow Case 4 \rightarrow red black tree
 - Case 1 \rightarrow Case 4 \rightarrow red black tree
- Case 3 → Case 4 → red black tree
- Case 4 → red black tree

- only Case 2 can repeat; but only h many steps, where h is the height of the tree
- Case 1 → Case 2 (special) → red black tree
 - Case 1 \rightarrow Case 3 \rightarrow Case 4 \rightarrow red black tree
 - Case 1 \rightarrow Case 4 \rightarrow red black tree
- Case $3 \rightarrow$ Case $4 \rightarrow$ red black tree

Case 4 → red black tree

- only Case 2 can repeat; but only h many steps, where h is the height of the tree
- Case 1 → Case 2 (special) → red black tree
 - Case 1 \rightarrow Case 3 \rightarrow Case 4 \rightarrow red black tree
 - Case 1 \rightarrow Case 4 \rightarrow red black tree
- Case $3 \rightarrow$ Case $4 \rightarrow$ red black tree
- Case 4 → red black tree

- only Case 2 can repeat; but only h many steps, where h is the height of the tree
- Case 1 → Case 2 (special) → red black tree
 - Case 1 \rightarrow Case 3 \rightarrow Case 4 \rightarrow red black tree
 - Case 1 \rightarrow Case 4 \rightarrow red black tree
- Case 3 → Case 4 → red black tree
- Case 4 → red black tree

