6.5 Transformation of the Recurrence

Example 6

$$
\begin{aligned}
& f_{0}=1 \\
& f_{1}=2 \\
& f_{n}=f_{n-1} \cdot f_{n-2} \text { for } n \geq 2 .
\end{aligned}
$$

Define

$$
g_{n}:=\log f_{n}
$$

Then

$$
\begin{aligned}
g_{n} & =g_{n-1}+g_{n-2} \text { for } n \geq 2 \\
g_{1} & =\log 2=1\left(\text { for } \log =\log _{2}\right), g_{0}=0 \\
g_{n} & =F_{n}(n \text {-th Fibonacci number }) \\
f_{n} & =2^{F_{n}}
\end{aligned}
$$

6.5 Transformation of the Recurrence

Example 7

$$
\begin{aligned}
& f_{1}=1 \\
& f_{n}=3 f_{\frac{n}{2}}+n ; \text { for } n=2^{k}, k \geq 1
\end{aligned}
$$

Define

$$
g_{k}:=f_{2^{k}}
$$

Then:

$$
\begin{aligned}
& g_{0}=1 \\
& g_{k}=3 g_{k-1}+2^{k}, k \geq 1
\end{aligned}
$$

6 Recurrences

We get

$$
\begin{aligned}
g_{k} & =3\left[g_{k-1}\right]+2^{k} \\
& =3\left[3 g_{k-2}+2^{k-1}\right]+2^{k} \\
& =3^{2}\left[g_{k-2}\right]+32^{k-1}+2^{k} \\
& =3^{2}\left[3 g_{k-3}+2^{k-2}\right]+32^{k-1}+2^{k} \\
& =3^{3} g_{k-3}+3^{2} 2^{k-2}+32^{k-1}+2^{k} \\
& =2^{k} \cdot \sum_{i=0}^{k}\left(\frac{3}{2}\right)^{i} \\
& =2^{k} \cdot \frac{\left(\frac{3}{2}\right)^{k+1}-1}{1 / 2}=3^{k+1}-2^{k+1}
\end{aligned}
$$

6 Recurrences

Let $n=2^{k}$:

$$
\begin{aligned}
g_{k} & =3^{k+1}-2^{k+1}, \text { hence } \\
f_{n} & =3 \cdot 3^{k}-2 \cdot 2^{k} \\
& =3\left(2^{\log 3}\right)^{k}-2 \cdot 2^{k} \\
& =3\left(2^{k}\right)^{\log 3}-2 \cdot 2^{k} \\
& =3 n^{\log 3}-2 n
\end{aligned}
$$

6 Recurrences

Bibliography

[MS08] Kurt Mehlhorn, Peter Sanders:
Algorithms and Data Structures - The Basic Toolbox, Springer, 2008
[CLRS90] Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest, Clifford Stein:
Introduction to algorithms (3rd ed.),
MIT Press and McGraw-Hill, 2009
[Liu85] Chung Laung Liu:
Elements of Discrete Mathematics
McGraw-Hill, 1985

The Karatsuba method can be found in [MS08] Chapter 1. Chapter 4.3 of [CLRS90] covers the "Substitution method" which roughly corresponds to "Guessing+induction". Chapters 4.4, 4.5, 4.6 of this book cover the master theorem. Methods using the characteristic polynomial and generating functions can be found in [Liu85] Chapter 10.

