7.5 (a, b)-trees

Definition 1

For $b \ge 2a-1$ an (a,b)-tree is a search tree with the following properties

- 1. all leaves have the same distance to the root
- 2. every internal non-root vertex v has at least a and at most b children
- **3.** the root has degree at least 2 if the tree is non-empty
- 4. the internal vertices do not contain data, but only keys (external search tree)
- 5. there is a special dummy leaf node with key-value ∞

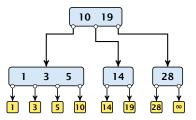
© Harald Räcke

192

194

7.5 (*a*, *b*)-trees

Example 2



7.5 (a, b)-trees

Each internal node v with d(v) children stores d-1 keys k_1,\ldots,k_{d-1} . The i-th subtree of v fulfills

$$k_{i-1} < \text{key in } i\text{-th sub-tree } \leq k_i$$
,

where we use $k_0 = -\infty$ and $k_d = \infty$.

© Harald Räcke

7.5 (a, b)-trees

193

7.5 (a, b)-trees

Variants

- ► The dummy leaf element may not exist; it only makes implementation more convenient.
- ▶ Variants in which b = 2a are commonly referred to as B-trees.
- ► A *B*-tree usually refers to the variant in which keys and data are stored at internal nodes.
- ▶ A B⁺ tree stores the data only at leaf nodes as in our definition. Sometimes the leaf nodes are also connected in a linear list data structure to speed up the computation of successors and predecessors.
- ▶ A B^* tree requires that a node is at least 2/3-full as opposed to 1/2-full (the requirement of a B-tree).

Lemma 3

Let T be an (a, b)-tree for n > 0 elements (i.e., n + 1 leaf nodes) and height h (number of edges from root to a leaf vertex). Then

- 1. $2a^{h-1} \le n+1 \le b^h$
- **2.** $\log_h(n+1) \le h \le 1 + \log_a(\frac{n+1}{2})$

Proof.

- ▶ If n > 0 the root has degree at least 2 and all other nodes have degree at least a. This gives that the number of leaf nodes is at least $2a^{h-1}$.
- ▶ Analogously, the degree of any node is at most b and, hence, the number of leaf nodes at most b^h .

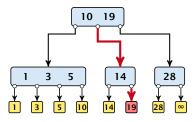
7.5 (a, b)-trees

196

197

Search

Search(19)

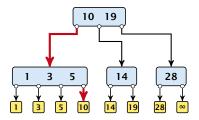


The search is straightforward. It is only important that you need to go all the way to the leaf.

Time: $\mathcal{O}(b \cdot h) = \mathcal{O}(b \cdot \log n)$, if the individual nodes are organized as linear lists.

Search

Search(8)



The search is straightforward. It is only important that you need to go all the way to the leaf.

Time: $\mathcal{O}(b \cdot h) = \mathcal{O}(b \cdot \log n)$, if the individual nodes are organized as linear lists.

© Harald Räcke

7.5 (a, b)-trees

197

Insert

Insert element x:

- Follow the path as if searching for key[x].
- If this search ends in leaf ℓ , insert x before this leaf.
- ► For this add key[x] to the key-list of the last internal node \boldsymbol{v} on the path.
- If after the insert v contains b nodes, do Rebalance(v).

Insert

Rebalance(v):

- Let k_i , i = 1, ..., b denote the keys stored in v.
- ▶ Let $j := \lfloor \frac{b+1}{2} \rfloor$ be the middle element.
- Create two nodes v_1 , and v_2 . v_1 gets all keys k_1, \ldots, k_{j-1} and v_2 gets keys k_{i+1}, \ldots, k_b .
- ▶ Both nodes get at least $\lfloor \frac{b-1}{2} \rfloor$ keys, and have therefore degree at least $\lfloor \frac{b-1}{2} \rfloor + 1 \ge a$ since $b \ge 2a 1$.
- ▶ They get at most $\lceil \frac{b-1}{2} \rceil$ keys, and have therefore degree at most $\lceil \frac{b-1}{2} \rceil + 1 \le b$ (since $b \ge 2$).
- ▶ The key k_i is promoted to the parent of v. The current pointer to v is altered to point to v_1 , and a new pointer (to the right of k_i) in the parent is added to point to v_2 .
- ► Then, re-balance the parent.

7.5 (a, b)-trees

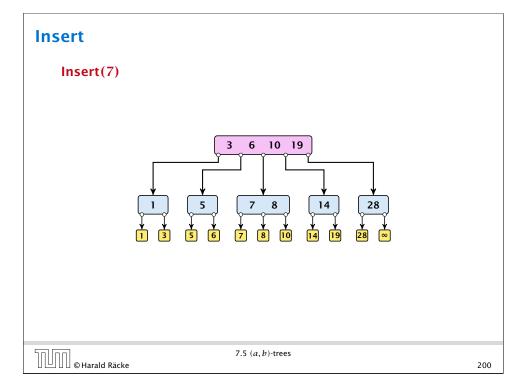
199

Insert Insert(7) 3 10 19 **Marald Räcke**

7.5 (a, b)-trees

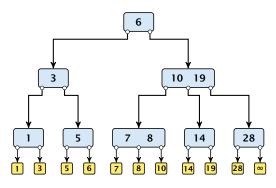
200

Insert Insert(7) 10 19 7.5 (a, b)-trees 200



Insert

Insert(7)



© Harald Räcke

7.5 (a, b)-trees

200

202

Delete

Delete element *x* (pointer to leaf vertex):

- Let v denote the parent of x. If key[x] is contained in v, remove the key from v, and delete the leaf vertex.
- ▶ Otherwise delete the key of the predecessor of x from v; delete the leaf vertex; and replace the occurrence of key[x] in internal nodes by the predecessor key. (Note that it appears in exactly one internal vertex).
- ▶ If now the number of keys in v is below a-1 perform Rebalance'(v).

© Harald Räcke

7.5 (a, b)-trees

201

Delete

Rebalance'(v):

- ▶ If there is a neighbour of v that has at least a keys take over the largest (if right neighbor) or smallest (if left neighbour) and the corresponding sub-tree.
- ightharpoonup If not: merge v with one of its neighbours.
- ► The merged node contains at most (a-2) + (a-1) + 1 keys, and has therefore at most $2a 1 \le b$ successors.
- ► Then rebalance the parent.
- During this process the root may become empty. In this case the root is deleted and the height of the tree decreases.

Delete

Animation for deleting in an (a,b)-tree is only available in the lecture version of the slides.

Marald © Harald

7.5 (a, b)-trees

חווחר

7.5 (a, b)-trees

203

(2, 4)-trees and red black trees There is a close relation between red-black trees and (2,4)-trees: 20 25 41 First make it into an internal search tree by moving the satellite-data from the leaves to internal nodes. Add dummy leaves. © Harald Räcke 7.5 (a, b)-trees

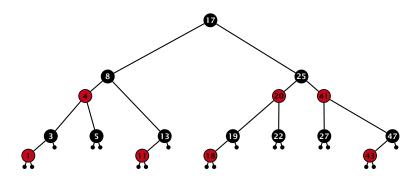
204

(2, 4)-trees and red black trees There is a close relation between red-black trees and (2,4)-trees: Re-attach the pointers to individual keys. A pointer that is between two keys is attached as a child of the red key. The incoming pointer, points to the black key. 7.5 (a, b)-trees 204

(2, 4)-trees and red black trees There is a close relation between red-black trees and (2,4)-trees: Then, color one key in each internal node vblack. If v contains 3 keys you need to select the middle key otherwise choose a black key arbitrarily. The other keys are colored red. © Harald Räcke 7.5 (a, b)-trees

(2, 4)-trees and red black trees

There is a close relation between red-black trees and (2,4)-trees:



Note that this correspondence is not unique. In particular, there are different red-black trees that correspond to the same (2,4)-tree.

7.5 (a, b)-trees

204

Augmenting Data Structures Bibliography [MS08] Kurt Mehlhorn, Peter Sanders: Algorithms and Data Structures — The Basic Toolbox, Springer, 2008 [CLRS90] Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest, Clifford Stein: Introduction to algorithms (3rd ed.), MIT Press and McGraw-Hill, 2009 A description of B-trees (a specific variant of (a, b)-trees) can be found in Chapter 18 of [CLRS90]. Chapter 7.2 of [MS08] discusses (a, b)-trees as discussed in the lecture. © Harald Räcke 7.5 (a, b)-trees 205