Simulations between PRAMs

Theorem 1

We can simulate a p-processor priority CRCW PRAM on a p-processor EREW PRAM with slowdown $\mathcal{O}(\log p)$.

Simulations between PRAMs

Theorem 2

We can simulate a p-processor priority CRCW PRAM on a $p \log p$-processor common CRCW PRAM with slowdown $\mathcal{O}(1)$.

Simulations between PRAMs

Theorem 3

We can simulate a p-processor priority CRCW PRAM on a p-processor common CRCW PRAM with slowdown $\mathcal{O}\left(\frac{\log p}{\log \log p}\right)$.

Simulations between PRAMs

Theorem 4
We can simulate a p-processor priority CRCW PRAM on a p-processor arbitrary CRCW PRAM with slowdown $\mathcal{O}(\log \log p)$.

Lower Bounds for the CREW PRAM

Ideal PRAM:

- every processor has unbounded local memory

Lower Bounds for the CREW PRAM

Ideal PRAM:

- every processor has unbounded local memory
- in each step a processor reads a global variable

Lower Bounds for the CREW PRAM

Ideal PRAM:

- every processor has unbounded local memory
- in each step a processor reads a global variable
- then it does some (unbounded) computation on its local memory

Lower Bounds for the CREW PRAM

Ideal PRAM:

- every processor has unbounded local memory
- in each step a processor reads a global variable
- then it does some (unbounded) computation on its local memory
- then it writes a global variable

Lower Bounds for the CREW PRAM

Definition 5
An input index i affects a memory location M at time t on some input I if the content of M at time t differs between inputs I and $I(i)$ (i-th bit flipped).

Lower Bounds for the CREW PRAM

Definition 5
An input index i affects a memory location M at time t on some input I if the content of M at time t differs between inputs I and $I(i)$ (i-th bit flipped).
$L(M, t, I)=\{i \mid i$ affects M at time t on input $I\}$

Lower Bounds for the CREW PRAM

Definition 6
An input index i affects a processor P at time t on some input I if the state of P at time t differs between inputs I and $I(i)$ (i-th bit flipped).

Lower Bounds for the CREW PRAM

Definition 6
An input index i affects a processor P at time t on some input I if the state of P at time t differs between inputs I and $I(i)$ (i-th bit flipped).
$K(P, t, I)=\{i \mid i$ affects P at time t on input $I\}$

Lower Bounds for the CREW PRAM

Lemma 7

If $i \in K(P, t, I)$ with $t>1$ then either

- $i \in K(P, t-1, I)$, or
- P reads a global memory location M on input I at time t, and $i \in L(M, t-1, I)$.

Lower Bounds for the CREW PRAM

Lemma 8

If $i \in L(M, t, I)$ with $t>1$ then either

- A processor writes into M at time t on input I and $i \in K(P, t, I)$, or
- No processor writes into M at time t on input I and
- either $i \in L(M, t-1, I)$
- or a processor P writes into M at time t on input $I(i)$.

Let $k_{0}=0, \ell_{0}=1$ and define

$$
k_{t+1}=k_{t}+\ell_{t} \text { and } \ell_{t+1}=3 k_{t}+4 \ell_{t}
$$

Let $k_{0}=0, \ell_{0}=1$ and define

$$
k_{t+1}=k_{t}+\ell_{t} \text { and } \ell_{t+1}=3 k_{t}+4 \ell_{t}
$$

Lemma 9

$|K(P, t, I)| \leq k_{t}$ and $|L(M, t, I)| \leq \ell_{t}$ for any $t \geq 0$
base case ($\boldsymbol{t}=\mathbf{0}$):

- No index can influence the local memory/state of a processor before the first step (hence $|K(P, 0, I)|=k_{0}=0$).
base case ($\boldsymbol{t}=0$):
- No index can influence the local memory/state of a processor before the first step (hence $|K(P, 0, I)|=k_{0}=0$).
- Initially every index in the input affects exactly one memory location. Hence $|L(M, 0, I)|=1=\ell_{0}$.

induction step $(t \rightarrow t+1)$:

$K(P, t+1, I) \subseteq K(P, t, I) \cup L(M, t, I)$, where M is the location read by P in step $t+1$.
induction step $(t \rightarrow t+1)$:
$K(P, t+1, I) \subseteq K(P, t, I) \cup L(M, t, I)$, where M is the location read by P in step $t+1$.

Hence,

$$
|K(P, t+1, I)|
$$

induction step $(t \rightarrow t+1)$:
$K(P, t+1, I) \subseteq K(P, t, I) \cup L(M, t, I)$, where M is the location read by P in step $t+1$.

Hence,

$$
|K(P, t+1, I)| \leq|K(P, t, I)|+|L(M, t, I)|
$$

induction step $(t \rightarrow t+1)$:
$K(P, t+1, I) \subseteq K(P, t, I) \cup L(M, t, I)$, where M is the location read by P in step $t+1$.

Hence,

$$
\begin{aligned}
|K(P, t+1, I)| & \leq|K(P, t, I)|+|L(M, t, I)| \\
& \leq k_{t}+\ell_{t}
\end{aligned}
$$

induction step $(t \rightarrow t+1)$:
For the bound on $|L(M, t+1, I)|$ we have two cases.
induction step $(t \rightarrow t+1)$:
For the bound on $|L(M, t+1, I)|$ we have two cases.
Case 1:
A processor P writes into location M at time $t+1$ on input I.

induction step $(t \rightarrow t+1)$:

For the bound on $|L(M, t+1, I)|$ we have two cases.
Case 1:
A processor P writes into location M at time $t+1$ on input I.
Then,

$$
|L(M, t+1, I)|
$$

induction step $(t \rightarrow t+1)$:

For the bound on $|L(M, t+1, I)|$ we have two cases.
Case 1:
A processor P writes into location M at time $t+1$ on input I.
Then,

$$
|L(M, t+1, I)| \leq|K(P, t+1, I)|
$$

induction step $(t \rightarrow t+1)$:

For the bound on $|L(M, t+1, I)|$ we have two cases.
Case 1:
A processor P writes into location M at time $t+1$ on input I.
Then,

$$
\begin{aligned}
|L(M, t+1, I)| & \leq|K(P, t+1, I)| \\
& \leq k_{t}+\ell_{t}
\end{aligned}
$$

induction step $(t \rightarrow t+1)$:

For the bound on $|L(M, t+1, I)|$ we have two cases.
Case 1:
A processor P writes into location M at time $t+1$ on input I.
Then,

$$
\begin{aligned}
|L(M, t+1, I)| & \leq|K(P, t+1, I)| \\
& \leq k_{t}+\ell_{t} \\
& \leq 3 k_{t}+4 \ell_{t}=\ell_{t+1}
\end{aligned}
$$

Case 2:

No processor P writes into location M at time $t+1$ on input I.

Case 2:

No processor P writes into location M at time $t+1$ on input I.
An index i affects M at time $t+1$ iff i affects M at time t or some processor P writes into M at $t+1$ on $I(i)$.

Case 2:

No processor P writes into location M at time $t+1$ on input I.
An index i affects M at time $t+1$ iff i affects M at time t or some processor P writes into M at $t+1$ on $I(i)$.
$L(M, t+1, I) \subseteq L(M, t, I) \cup Y(M, t+1, I)$

Case 2:

No processor P writes into location M at time $t+1$ on input I.
An index i affects M at time $t+1$ iff i affects M at time t or some processor P writes into M at $t+1$ on $I(i)$.
$L(M, t+1, I) \subseteq L(M, t, I) \cup Y(M, t+1, I)$
$Y(M, t+1, I)$ is the set of indices u_{j} that cause some processor $P_{w_{j}}$ to write into M at time $t+1$ on input I.
$Y(M, t+1, I)$ is the set of indices u_{j} that cause some processor $P_{w_{j}}$ to write into M at time $t+1$ on input I.
$Y(M, t+1, I)$ is the set of indices u_{j} that cause some processor $P_{w_{j}}$ to write into M at time $t+1$ on input I.

Fact:

For all pairs u_{s}, u_{t} with $P_{w_{s}} \neq P_{w_{t}}$ either
$u_{s} \in K\left(P_{w_{t}}, t+1, I\left(u_{t}\right)\right)$ or $u_{t} \in K\left(P_{w_{s}}, t+1, I\left(u_{s}\right)\right)$.
$Y(M, t+1, I)$ is the set of indices u_{j} that cause some processor $P_{w_{j}}$ to write into M at time $t+1$ on input I.

Fact:

For all pairs u_{s}, u_{t} with $P_{w_{s}} \neq P_{w_{t}}$ either
$u_{s} \in K\left(P_{w_{t}}, t+1, I\left(u_{t}\right)\right)$ or $u_{t} \in K\left(P_{w_{s}}, t+1, I\left(u_{s}\right)\right)$.
Otherwise, $P_{w_{t}}$ and $P_{w_{s}}$ would both write into M at the same time on input $I\left(u_{s}\right)\left(u_{t}\right)$.

Let $U=\left\{u_{1}, \ldots, u_{r}\right\}$ denote all indices that cause some processor to write into M.

Let $U=\left\{u_{1}, \ldots, u_{r}\right\}$ denote all indices that cause some processor to write into M.

Let $V=\left\{\left(I\left(u_{1}\right), P_{w_{1}}\right), \ldots\right\}$.

Let $U=\left\{u_{1}, \ldots, u_{r}\right\}$ denote all indices that cause some processor to write into M.

Let $V=\left\{\left(I\left(u_{1}\right), P_{w_{1}}\right), \ldots\right\}$.
We set up a bipartite graph between U and V, such that $\left(u_{i},\left(I\left(u_{j}\right), P_{w_{j}}\right)\right) \in E$ if u_{i} affects $P_{w_{j}}$ at time $t+1$ on input $I\left(u_{j}\right)$.

Let $U=\left\{u_{1}, \ldots, u_{r}\right\}$ denote all indices that cause some processor to write into M.

Let $V=\left\{\left(I\left(u_{1}\right), P_{w_{1}}\right), \ldots\right\}$.
We set up a bipartite graph between U and V, such that $\left(u_{i},\left(I\left(u_{j}\right), P_{w_{j}}\right)\right) \in E$ if u_{i} affects $P_{w_{j}}$ at time $t+1$ on input $I\left(u_{j}\right)$.

Each vertex $\left(I\left(u_{j}\right), P_{w_{j}}\right)$ has degree at most k_{t+1} as this is an upper bound on indices that can influence a processor $P_{w_{j}}$.

Let $U=\left\{u_{1}, \ldots, u_{r}\right\}$ denote all indices that cause some processor to write into M.

Let $V=\left\{\left(I\left(u_{1}\right), P_{w_{1}}\right), \ldots\right\}$.
We set up a bipartite graph between U and V, such that $\left(u_{i},\left(I\left(u_{j}\right), P_{w_{j}}\right)\right) \in E$ if u_{i} affects $P_{w_{j}}$ at time $t+1$ on input $I\left(u_{j}\right)$.

Each vertex $\left(I\left(u_{j}\right), P_{w_{j}}\right)$ has degree at most k_{t+1} as this is an upper bound on indices that can influence a processor $P_{w_{j}}$.

Hence, $|E| \leq r \cdot k_{t+1}$.

For an index u_{j} there can be at most k_{t+1} indices u_{i} with $P_{w_{i}}=P_{w_{j}}$.

For an index u_{j} there can be at most k_{t+1} indices u_{i} with $P_{w_{i}}=P_{w_{j}}$.

Hence, there must be at least $\frac{1}{2} r\left(r-k_{t+1}\right)$ pairs u_{i}, u_{j} with
$P_{w_{i}} \neq P_{w_{j}}$.

For an index u_{j} there can be at most k_{t+1} indices u_{i} with $P_{w_{i}}=P_{w_{j}}$.

Hence, there must be at least $\frac{1}{2} r\left(r-k_{t+1}\right)$ pairs u_{i}, u_{j} with $P_{w_{i}} \neq P_{w_{j}}$.

Each pair introduces at least one edge.

For an index u_{j} there can be at most k_{t+1} indices u_{i} with $P_{w_{i}}=P_{w_{j}}$.

Hence, there must be at least $\frac{1}{2} r\left(r-k_{t+1}\right)$ pairs u_{i}, u_{j} with $P_{w_{i}} \neq P_{w_{j}}$.

Each pair introduces at least one edge.

Hence,

$$
|E| \geq \frac{1}{2} r\left(r-k_{t+1}\right)
$$

For an index u_{j} there can be at most k_{t+1} indices u_{i} with $P_{w_{i}}=P_{w_{j}}$.

Hence, there must be at least $\frac{1}{2} r\left(r-k_{t+1}\right)$ pairs u_{i}, u_{j} with $P_{w_{i}} \neq P_{w_{j}}$.

Each pair introduces at least one edge.

Hence,

$$
|E| \geq \frac{1}{2} r\left(r-k_{t+1}\right)
$$

This gives $r \leq 3 k_{t+1} \leq 3 k_{t}+3 \ell_{t}$

Recall that $L(M, t+1, i) \subseteq L(M, t, i) \cup Y(M, t+1, I)$

 $|L(M, t+1, i)| \leq 3 k_{t}+4 \ell_{t}$Recall that $L(M, t+1, i) \subseteq L(M, t, i) \cup Y(M, t+1, I)$

Recall that $L(M, t+1, i) \subseteq L(M, t, i) \cup Y(M, t+1, I)$
$|L(M, t+1, i)| \leq 3 k_{t}+4 \ell_{t}$

$$
\binom{k_{t+1}}{\ell_{t+1}}=\left(\begin{array}{ll}
1 & 1 \\
3 & 4
\end{array}\right)\binom{k_{t}}{\ell_{t}} \quad\binom{k_{0}}{\ell_{0}}=\binom{0}{1}
$$

$$
\binom{k_{t+1}}{\ell_{t+1}}=\left(\begin{array}{cc}
1 & 1 \\
3 & 4
\end{array}\right)\binom{k_{t}}{\ell_{t}} \quad\binom{k_{0}}{\ell_{0}}=\binom{0}{1}
$$

Eigenvalues:

$$
\lambda_{1}=\frac{1}{2}(5+\sqrt{21}) \text { and } \lambda_{2}=\frac{1}{2}(5-\sqrt{21})
$$

$$
\binom{k_{t+1}}{\ell_{t+1}}=\left(\begin{array}{cc}
1 & 1 \\
3 & 4
\end{array}\right)\binom{k_{t}}{\ell_{t}} \quad\binom{k_{0}}{\ell_{0}}=\binom{0}{1}
$$

Eigenvalues:

$$
\lambda_{1}=\frac{1}{2}(5+\sqrt{21}) \text { and } \lambda_{2}=\frac{1}{2}(5-\sqrt{21})
$$

Eigenvectors:

$$
v_{1}=\binom{1}{-\left(1-\lambda_{1}\right)} \text { and } v_{2}=\binom{1}{-\left(1-\lambda_{2}\right)}
$$

$$
\binom{k_{t+1}}{\ell_{t+1}}=\left(\begin{array}{ll}
1 & 1 \\
3 & 4
\end{array}\right)\binom{k_{t}}{\ell_{t}} \quad\binom{k_{0}}{\ell_{0}}=\binom{0}{1}
$$

Eigenvalues:

$$
\lambda_{1}=\frac{1}{2}(5+\sqrt{21}) \text { and } \lambda_{2}=\frac{1}{2}(5-\sqrt{21})
$$

Eigenvectors:

$$
\begin{aligned}
& v_{1}=\binom{1}{-\left(1-\lambda_{1}\right)} \text { and } v_{2}=\binom{1}{-\left(1-\lambda_{2}\right)} \\
& v_{1}=\binom{1}{\frac{3}{2}+\frac{1}{2} \sqrt{21}} \text { and } v_{2}=\binom{1}{\frac{3}{2}-\frac{1}{2} \sqrt{21}}
\end{aligned}
$$

$$
v_{1}=\binom{1}{\frac{3}{2}+\frac{1}{2} \sqrt{21}} \text { and } v_{2}=\binom{1}{\frac{3}{2}-\frac{1}{2} \sqrt{21}}
$$

$$
\begin{gathered}
v_{1}=\binom{1}{\frac{3}{2}+\frac{1}{2} \sqrt{21}} \text { and } v_{2}=\binom{1}{\frac{3}{2}-\frac{1}{2} \sqrt{21}} \\
\binom{k_{0}}{\ell_{0}}=\binom{0}{1}=\frac{1}{\sqrt{21}}\left(v_{1}-v_{2}\right)
\end{gathered}
$$

$$
\begin{gathered}
v_{1}=\binom{1}{\frac{3}{2}+\frac{1}{2} \sqrt{21}} \text { and } v_{2}=\binom{1}{\frac{3}{2}-\frac{1}{2} \sqrt{21}} \\
\binom{k_{0}}{\ell_{0}}=\binom{0}{1}=\frac{1}{\sqrt{21}}\left(v_{1}-v_{2}\right) \\
\binom{k_{t}}{\ell_{t}}=\frac{1}{\sqrt{21}}\left(\lambda_{1}^{t} v_{1}-\lambda_{2}^{t} v_{2}\right)
\end{gathered}
$$

Solving the recurrence gives

$$
\begin{gathered}
k_{t}=\frac{\lambda_{1}^{t}}{\sqrt{21}}-\frac{\lambda_{2}^{t}}{\sqrt{21}} \\
\ell_{t}=\frac{3+\sqrt{21}}{2 \sqrt{21}} \lambda_{1}^{t}+\frac{-3+\sqrt{21}}{2 \sqrt{21}} \lambda_{2}^{t}
\end{gathered}
$$

with $\lambda_{1}=\frac{1}{2}(5+\sqrt{21})$ and $\lambda_{2}=\frac{1}{2}(5-\sqrt{21})$.

Theorem 10

The following problems require logarithmic time on a CREW PRAM.

- Sorting a sequence of x_{1}, \ldots, x_{n} with $x_{i} \in\{0,1\}$
- Computing the maximum of n inputs
- Computing the sum $x_{1}+\cdots+x_{n}$ with $x_{i} \in\{0,1\}$

A Lower Bound for the EREW PRAM

Definition 11 (Zero Counting Problem)

Given a monotone binary sequence $x_{1}, x_{2}, \ldots, x_{n}$ determine the index i such that $x_{i}=0$ and $x_{i+1}=1$.

A Lower Bound for the EREW PRAM

Definition 11 (Zero Counting Problem)

Given a monotone binary sequence $x_{1}, x_{2}, \ldots, x_{n}$ determine the index i such that $x_{i}=0$ and $x_{i+1}=1$.

We show that this problem requires $\Omega(\log n-\log p)$ steps on a p-processor EREW PRAM.

Let I_{i} be the input with i zeros folled by $n-i$ ones.

Let I_{i} be the input with i zeros folled by $n-i$ ones. Index i affects processor P at time t if the state in step t is differs between I_{i-1} and I_{i}.

Let I_{i} be the input with i zeros folled by $n-i$ ones.
Index i affects processor P at time t if the state in step t is differs between I_{i-1} and I_{i}.

Index i affects location M at time t if the content of M after step t differs between inputs I_{i-1} and I_{i}.

Lemma 12

If $i \in K(P, t)$ then either

- $i \in K(P, t-1)$, or
- Preads some location M on input I_{i} (and, hence, also on $\left.I_{i-1}\right)$ at step t and $i \in L(M, t-1)$

Lemma 13

If $i \in L(M, t)$ then either

- $i \in L(M, t-1)$, or
- Some processor P writes M at step t on input I_{i} and $i \in K(P, t)$.
- Some processor P writes M at step t on input I_{i-1} and $i \in K(P, t)$.

Define

$$
C(t)=\sum_{P}|K(P, t)|+\sum_{M} \max \{0,|L(M, t)|-1\}
$$

Define

$$
C(t)=\sum_{P}|K(P, t)|+\sum_{M} \max \{0,|L(M, t)|-1\}
$$

$C(T) \geq n, C(0)=0$

Define

$$
C(t)=\sum_{P}|K(P, t)|+\sum_{M} \max \{0,|L(M, t)|-1\}
$$

$C(T) \geq n, C(0)=0$

Claim:
$C(t) \leq 6 C(t-1)+3|P|$

Define

$$
C(t)=\sum_{P}|K(P, t)|+\sum_{M} \max \{0,|L(M, t)|-1\}
$$

$C(T) \geq n, C(0)=0$
Claim:
$C(t) \leq 6 C(t-1)+3|P|$
This gives $C(T) \leq \frac{6^{T}-1}{5} 3|P|$ and hence $T=\Omega(\log n-\log |P|)$.

For an index i to newly appear in $L(M, t)$ some processor must write into M on either input I_{i} or I_{i-1}.

For an index i to newly appear in $L(M, t)$ some processor must write into M on either input I_{i} or I_{i-1}.

Hence, any index in $K(P, t)$ can at most generate two new indices in $L(M, t)$.

For an index i to newly appear in $L(M, t)$ some processor must write into M on either input I_{i} or I_{i-1}.

Hence, any index in $K(P, t)$ can at most generate two new indices in $L(M, t)$.

This means that the number of new indices in any set $L(M, t)$ (over all M) is at most

$$
2 \sum_{P}|K(P, t)|
$$

Hence,

$$
\sum_{M}|L(M, t)| \leq \sum_{M}|L(M, t-1)|+2 \sum_{P}|K(P, t)|
$$

Hence,

$$
\sum_{M}|L(M, t)| \leq \sum_{M}|L(M, t-1)|+2 \sum_{P}|K(P, t)|
$$

We can assume wlog. that $L(M, t-1) \subseteq L(M, t)$. Then

Hence,

$$
\sum_{M}|L(M, t)| \leq \sum_{M}|L(M, t-1)|+2 \sum_{P}|K(P, t)|
$$

We can assume wlog. that $L(M, t-1) \subseteq L(M, t)$. Then

$$
\sum_{M} \max \{0,|L(M, t)|-1\} \leq \sum_{M} \max \{0,|L(M, t-1)|-1\}+2 \sum_{P}|K(P, t)|
$$

For an index i to newly appear in $K(P, t), P$ must read a memory location M with $i \in L(M, t)$ on input I_{i} (and also on input I_{i-1}).

For an index i to newly appear in $K(P, t), P$ must read a memory location M with $i \in L(M, t)$ on input I_{i} (and also on input I_{i-1}).

Since we are in the EREW model at most one processor can do so in every step.

For an index i to newly appear in $K(P, t), P$ must read a memory location M with $i \in L(M, t)$ on input I_{i} (and also on input I_{i-1}).

Since we are in the EREW model at most one processor can do so in every step.

Let $J(i, t)$ be memory locations read in step t on input I_{i}, and let $J_{t}=\bigcup_{i} J(i, t)$.

For an index i to newly appear in $K(P, t), P$ must read a memory location M with $i \in L(M, t)$ on input I_{i} (and also on input I_{i-1}).

Since we are in the EREW model at most one processor can do so in every step.

Let $J(i, t)$ be memory locations read in step t on input I_{i}, and let $J_{t}=\bigcup_{i} J(i, t)$.

$$
\sum_{P}|K(P, t)| \leq \sum_{P}|K(P, t-1)|+\sum_{M \in J_{t}}|L(M, t-1)|
$$

For an index i to newly appear in $K(P, t), P$ must read a memory location M with $i \in L(M, t)$ on input I_{i} (and also on input I_{i-1}).

Since we are in the EREW model at most one processor can do so in every step.

Let $J(i, t)$ be memory locations read in step t on input I_{i}, and let $J_{t}=\bigcup_{i} J(i, t)$.

$$
\sum_{P}|K(P, t)| \leq \sum_{P}|K(P, t-1)|+\sum_{M \in J_{t}}|L(M, t-1)|
$$

Over all inputs I_{i} a processor can read at most $|K(P, t-1)|+1$ different memory locations (why?).

Hence,
$\sum_{P}|K(P, t)|$

Hence,

$$
\sum_{P}|K(P, t)| \leq \sum_{P}|K(P, t-1)|+\sum_{M \in J_{t}}|L(M, t-1)|
$$

Hence,

$$
\begin{aligned}
\sum_{P}|K(P, t)| & \leq \sum_{P}|K(P, t-1)|+\sum_{M \in J_{t}}|L(M, t-1)| \\
& \leq \sum_{P}|K(P, t-1)|+\sum_{M \in J_{t}}(|L(M, t-1)|-1)+J_{t}
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\sum_{P}|K(P, t)| & \leq \sum_{P}|K(P, t-1)|+\sum_{M \in J_{t}}|L(M, t-1)| \\
& \leq \sum_{P}|K(P, t-1)|+\sum_{M \in J_{t}}(|L(M, t-1)|-1)+J_{t} \\
& \leq 2 \sum_{P}|K(P, t-1)|+\sum_{M \in J_{t}}(|L(M, t-1)|-1)+|P|
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\sum_{P}|K(P, t)| & \leq \sum_{P}|K(P, t-1)|+\sum_{M \in J_{t}}|L(M, t-1)| \\
& \leq \sum_{P}|K(P, t-1)|+\sum_{M \in J_{t}}(|L(M, t-1)|-1)+J_{t} \\
& \leq 2 \sum_{P}|K(P, t-1)|+\sum_{M \in J_{t}}(|L(M, t-1)|-1)+|P| \\
& \leq 2 \sum_{P}|K(P, t-1)|+\sum_{M} \max \{0,|L(M, t-1)|-1\}+|P|
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\sum_{P}|K(P, t)| & \leq \sum_{P}|K(P, t-1)|+\sum_{M \in J_{t}}|L(M, t-1)| \\
& \leq \sum_{P}|K(P, t-1)|+\sum_{M \in J_{t}}(|L(M, t-1)|-1)+J_{t} \\
& \leq 2 \sum_{P}|K(P, t-1)|+\sum_{M \in J_{t}}(|L(M, t-1)|-1)+|P| \\
& \leq 2 \sum_{P}|K(P, t-1)|+\sum_{M} \max \{0,|L(M, t-1)|-1\}+|P|
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\sum_{P}|K(P, t)| & \leq \sum_{P}|K(P, t-1)|+\sum_{M \in J_{t}}|L(M, t-1)| \\
& \leq \sum_{P}|K(P, t-1)|+\sum_{M \in J_{t}}(|L(M, t-1)|-1)+J_{t} \\
& \leq 2 \sum_{P}|K(P, t-1)|+\sum_{M \in J_{t}}(|L(M, t-1)|-1)+|P| \\
& \leq 2 \sum_{P}|K(P, t-1)|+\sum_{M} \max \{0,|L(M, t-1)|-1\}+|P|
\end{aligned}
$$

Recall

$\sum_{M} \max \{0,|L(M, t)|-1\} \leq \sum_{M} \max \{0,|L(M, t-1)|-1\}+2 \sum_{P}|K(P, t)|$

This gives

$$
\begin{aligned}
& \sum_{P} K(P, t)+\sum_{M} \max \{0,|L(M, t)|-1\} \\
& \quad \leq 4 \sum_{M} \max \{0,|L(M, t-1)|-1\}+6 \sum_{P}|K(P, t-1)|+3|P|
\end{aligned}
$$

This gives

$$
\begin{aligned}
& \sum_{P} K(P, t)+\sum_{M} \max \{0,|L(M, t)|-1\} \\
& \quad \leq 4 \sum_{M} \max \{0,|L(M, t-1)|-1\}+6 \sum_{P}|K(P, t-1)|+3|P|
\end{aligned}
$$

Hence,

$$
C(t) \leq 6 C(t-1)+3|P|
$$

Lower Bounds for CRCW PRAMS

Theorem 14
Let $f:\{0,1\}^{n} \rightarrow\{0,1\}$ be an arbitrary Boolean function. f can be computed in $\mathcal{O}(1)$ time on a common CRCW PRAM with $\leq n 2^{n}$ processors.

Can we obtain non-constant lower bounds if we restrict the number of processors to be polynomial?

Boolean Circuits

- nodes are either AND, OR, or NOT gates or are special INPUT/OUTPUT nodes
- AND and OR gates have unbounded fan-in (indegree) and ounbounded fan-out (outdegree)
- NOT gates have unbounded fan-out
- INPUT nodes have indegree zero; OUTPUT nodes have outdegree zero
- size is the number of edges
- depth is the longest path from an input to an output

Theorem 15

Let $f:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$ be a function with n inputs and $m \leq n$ outputs, and circuit C computes f with depth $D(n)$ and size $S(n)$. Then f can be computed by a common CRCW PRAM in $\mathcal{O}(D(n))$ time using $S(n)$ processors.

Given a family $\left\{C_{n}\right\}$ of circuits we may not be able to compute the corresponding family of functions on a CRCW PRAM.

Definition 16
A family $\left\{C_{n}\right\}$ of circuits is logspace uniform if there exists a deterministic Turing machine M s.t

- M runs in logarithmic space.
- For all n, M outputs C_{n} on input 1^{n}.

