
Simulations between PRAMs

Theorem 1

We can simulate a p-processor priority CRCW PRAM on a

p-processor EREW PRAM with slowdown O(logp).
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Simulations between PRAMs

Theorem 2

We can simulate a p-processor priority CRCW PRAM on a
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Simulations between PRAMs

Theorem 3

We can simulate a p-processor priority CRCW PRAM on a

p-processor common CRCW PRAM with slowdown O( logp
log logp ).
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Simulations between PRAMs

Theorem 4

We can simulate a p-processor priority CRCW PRAM on a

p-processor arbitrary CRCW PRAM with slowdown O(log logp).
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Lower Bounds for the CREW PRAM

Ideal PRAM:

ñ every processor has unbounded local memory

ñ in each step a processor reads a global variable

ñ then it does some (unbounded) computation on its local

memory

ñ then it writes a global variable
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Lower Bounds for the CREW PRAM

Definition 5

An input index i affects a memory location M at time t on some

input I if the content of M at time t differs between inputs I and

I(i) (i-th bit flipped).

L(M, t, I) = {i | i affects M at time t on input I}
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Lower Bounds for the CREW PRAM

Definition 6

An input index i affects a processor P at time t on some input I
if the state of P at time t differs between inputs I and I(i) (i-th
bit flipped).

K(P, t, I) = {i | i affects P at time t on input I}
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Lower Bounds for the CREW PRAM

Lemma 7

If i ∈ K(P, t, I) with t > 1 then either

ñ i ∈ K(P, t − 1, I), or

ñ P reads a global memory location M on input I at time t,
and i ∈ L(M, t − 1, I).
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Lower Bounds for the CREW PRAM

Lemma 8

If i ∈ L(M, t, I) with t > 1 then either

ñ A processor writes into M at time t on input I and

i ∈ K(P, t, I), or

ñ No processor writes into M at time t on input I and
ñ either i ∈ L(M, t − 1, I)
ñ or a processor P writes into M at time t on input I(i).
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Let k0 = 0, `0 = 1 and define

kt+1 = kt + `t and `t+1 = 3kt + 4`t

Lemma 9

|K(P, t, I)| ≤ kt and |L(M, t, I)| ≤ `t for any t ≥ 0
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base case (t = 0):
ñ No index can influence the local memory/state of a

processor before the first step (hence |K(P,0, I)| = k0 = 0).

ñ Initially every index in the input affects exactly one memory

location. Hence |L(M,0, I)| = 1 = `0.
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induction step (t → t + 1):

K(P, t + 1, I) ⊆ K(P, t, I)∪ L(M, t, I), where M is the location

read by P in step t + 1.

Hence,

|K(P, t + 1, I)| ≤ |K(P, t, I)| + |L(M, t, I)|
≤ kt + `t
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induction step (t → t + 1):

For the bound on |L(M, t + 1, I)| we have two cases.

Case 1:

A processor P writes into location M at time t + 1 on input I.

Then,

|L(M, t + 1, I)| ≤ |K(P, t + 1, I)|
≤ kt + `t
≤ 3kt + 4`t = `t+1
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Case 2:

No processor P writes into location M at time t + 1 on input I.

An index i affects M at time t + 1 iff i affects M at time t or

some processor P writes into M at t + 1 on I(i).

L(M, t + 1, I) ⊆ L(M, t, I)∪ Y(M, t + 1, I)

Y(M, t + 1, I) is the set of indices uj that cause some processor

Pwj to write into M at time t + 1 on input I.
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Y(M, t + 1, I) is the set of indices uj that cause some processor

Pwj to write into M at time t + 1 on input I.

Fact:

For all pairs us , ut with Pws ≠ Pwt either

us ∈ K(Pwt , t + 1, I(ut)) or ut ∈ K(Pws , t + 1, I(us)).

Otherwise, Pwt and Pws would both write into M at the same

time on input I(us)(ut).
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Y(M, t + 1, I) is the set of indices uj that cause some processor
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Let U = {u1, . . . , ur} denote all indices that cause some

processor to write into M.

Let V = {(I(u1), Pw1), . . . }.

We set up a bipartite graph between U and V , such that

(ui, (I(uj), Pwj)) ∈ E if ui affects Pwj at time t + 1 on input

I(uj).

Each vertex (I(uj), Pwj) has degree at most kt+1 as this is an

upper bound on indices that can influence a processor Pwj .

Hence, |E| ≤ r · kt+1.
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For an index uj there can be at most kt+1 indices ui with

Pwi = Pwj .

Hence, there must be at least 1
2r(r − kt+1) pairs ui, uj with

Pwi ≠ Pwj .

Each pair introduces at least one edge.

Hence,

|E| ≥ 1
2
r(r − kt+1)

This gives r ≤ 3kt+1 ≤ 3kt + 3`t
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Recall that L(M, t + 1, i) ⊆ L(M, t, i)∪ Y(M, t + 1, I)

|L(M, t + 1, i)| ≤ 3kt + 4`t
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Solving the recurrence gives

kt =
λt1√
21
− λt2√
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`t =
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√
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2
√
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√
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with λ1 = 1
2(5+

√
21) and λ2 = 1

2(5−
√

21).
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Theorem 10

The following problems require logarithmic time on a CREW

PRAM.

ñ Sorting a sequence of x1, . . . , xn with xi ∈ {0,1}
ñ Computing the maximum of n inputs

ñ Computing the sum x1 + · · · + xn with xi ∈ {0,1}
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A Lower Bound for the EREW PRAM

Definition 11 (Zero Counting Problem)

Given a monotone binary sequence x1, x2, . . . , xn determine the

index i such that xi = 0 and xi+1 = 1.

We show that this problem requires Ω(logn− logp) steps on a

p-processor EREW PRAM.
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Let Ii be the input with i zeros folled by n− i ones.

Index i affects processor P at time t if the state in step t is

differs between Ii−1 and Ii.

Index i affects location M at time t if the content of M after step

t differs between inputs Ii−1 and Ii.
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Lemma 12

If i ∈ K(P, t) then either

ñ i ∈ K(P, t − 1), or

ñ P reads some location M on input Ii (and, hence, also on

Ii−1) at step t and i ∈ L(M, t − 1)

PA 10 Simulations between PRAMs

© Harald Räcke 193/283



Lemma 13

If i ∈ L(M, t) then either

ñ i ∈ L(M, t − 1), or

ñ Some processor P writes M at step t on input Ii and

i ∈ K(P, t).
ñ Some processor P writes M at step t on input Ii−1 and

i ∈ K(P, t).
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Define

C(t) =
∑
P
|K(P, t)| +

∑
M

max{0, |L(M, t)| − 1}

C(T) ≥ n, C(0) = 0

Claim:

C(t) ≤ 6C(t − 1)+ 3|P |

This gives C(T) ≤ 6T−1
5 3|P | and hence T = Ω(logn− log |P |).
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For an index i to newly appear in L(M, t) some processor must

write into M on either input Ii or Ii−1.

Hence, any index in K(P, t) can at most generate two new

indices in L(M, t).

This means that the number of new indices in any set L(M, t)
(over all M) is at most

2
∑
P
|K(P, t)|
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Hence, ∑
M
|L(M, t)| ≤

∑
M
|L(M, t − 1)| + 2

∑
P
|K(P, t)|

We can assume wlog. that L(M, t − 1) ⊆ L(M, t). Then

∑
M

max{0, |L(M, t)| − 1} ≤
∑
M

max{0, |L(M, t − 1)| − 1} + 2
∑
P
|K(P, t)|
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For an index i to newly appear in K(P, t), P must read a memory

location M with i ∈ L(M, t) on input Ii (and also on input Ii−1).

Since we are in the EREW model at most one processor can do so

in every step.

Let J(i, t) be memory locations read in step t on input Ii, and let

Jt =
⋃
i J(i, t).

∑
P
|K(P, t)| ≤

∑
P
|K(P, t − 1)| +

∑
M∈Jt

|L(M, t − 1)|

Over all inputs Ii a processor can read at most |K(P, t − 1)| + 1

different memory locations (why?).
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Hence,∑
P
|K(P, t)|

≤
∑
P
|K(P, t − 1)| +

∑
M∈Jt

|L(M, t − 1)|

≤
∑
P
|K(P, t − 1)| +

∑
M∈Jt

(|L(M, t − 1)| − 1)+ Jt

≤ 2
∑
P
|K(P, t − 1)| +

∑
M∈Jt

(|L(M, t − 1)| − 1)+ |P |

≤ 2
∑
P
|K(P, t − 1)| +

∑
M

max{0, |L(M, t − 1)| − 1} + |P |

Recall∑
M

max{0, |L(M, t)| − 1} ≤
∑
M

max{0, |L(M, t − 1)| − 1} + 2
∑
P
|K(P, t)|
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This gives∑
P
K(P, t)+

∑
M

max{0, |L(M, t)| − 1}

≤ 4
∑
M

max{0, |L(M, t − 1)| − 1} + 6
∑
P
|K(P, t − 1)| + 3|P |

Hence,

C(t) ≤ 6C(t − 1)+ 3|P |
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Lower Bounds for CRCW PRAMS

Theorem 14

Let f : {0,1}n → {0,1} be an arbitrary Boolean function. f can

be computed in O(1) time on a common CRCW PRAM with ≤ n2n

processors.

Can we obtain non-constant lower bounds if we restrict the

number of processors to be polynomial?
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Boolean Circuits

ñ nodes are either AND, OR, or NOT gates or are special

INPUT/OUTPUT nodes

ñ AND and OR gates have unbounded fan-in (indegree) and

ounbounded fan-out (outdegree)

ñ NOT gates have unbounded fan-out

ñ INPUT nodes have indegree zero; OUTPUT nodes have

outdegree zero

ñ size is the number of edges

ñ depth is the longest path from an input to an output
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Theorem 15

Let f : {0,1}n → {0,1}m be a function with n inputs and m ≤ n
outputs, and circuit C computes f with depth D(n) and size

S(n). Then f can be computed by a common CRCW PRAM in

O(D(n)) time using S(n) processors.
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Given a family {Cn} of circuits we may not be able to compute

the corresponding family of functions on a CRCW PRAM.

Definition 16

A family {Cn} of circuits is logspace uniform if there exists a

deterministic Turing machine M s.t

ñ M runs in logarithmic space.

ñ For all n, M outputs Cn on input 1n.
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