
Simulations between PRAMs

Theorem 1

We can simulate a p-processor priority CRCW PRAM on a

p-processor EREW PRAM with slowdown O(logp).

PA

© Harald Räcke 169/283

Simulations between PRAMs

Theorem 2

We can simulate a p-processor priority CRCW PRAM on a

p logp-processor common CRCW PRAM with slowdown O(1).

PA 10 Simulations between PRAMs

© Harald Räcke 170/283

Simulations between PRAMs

Theorem 3

We can simulate a p-processor priority CRCW PRAM on a

p-processor common CRCW PRAM with slowdown O(logp
log logp).

PA 10 Simulations between PRAMs

© Harald Räcke 171/283

Simulations between PRAMs

Theorem 4

We can simulate a p-processor priority CRCW PRAM on a

p-processor arbitrary CRCW PRAM with slowdown O(log logp).

PA 10 Simulations between PRAMs

© Harald Räcke 172/283

Lower Bounds for the CREW PRAM

Ideal PRAM:

ñ every processor has unbounded local memory

ñ in each step a processor reads a global variable

ñ then it does some (unbounded) computation on its local

memory

ñ then it writes a global variable

PA 10 Simulations between PRAMs

© Harald Räcke 173/283

Lower Bounds for the CREW PRAM

Ideal PRAM:

ñ every processor has unbounded local memory

ñ in each step a processor reads a global variable

ñ then it does some (unbounded) computation on its local

memory

ñ then it writes a global variable

PA 10 Simulations between PRAMs

© Harald Räcke 173/283

Lower Bounds for the CREW PRAM

Ideal PRAM:

ñ every processor has unbounded local memory

ñ in each step a processor reads a global variable

ñ then it does some (unbounded) computation on its local

memory

ñ then it writes a global variable

PA 10 Simulations between PRAMs

© Harald Räcke 173/283

Lower Bounds for the CREW PRAM

Ideal PRAM:

ñ every processor has unbounded local memory

ñ in each step a processor reads a global variable

ñ then it does some (unbounded) computation on its local

memory

ñ then it writes a global variable

PA 10 Simulations between PRAMs

© Harald Räcke 173/283

Lower Bounds for the CREW PRAM

Definition 5

An input index i affects a memory location M at time t on some

input I if the content of M at time t differs between inputs I and

I(i) (i-th bit flipped).

L(M, t, I) = {i | i affects M at time t on input I}

PA 10 Simulations between PRAMs

© Harald Räcke 174/283

Lower Bounds for the CREW PRAM

Definition 5

An input index i affects a memory location M at time t on some

input I if the content of M at time t differs between inputs I and

I(i) (i-th bit flipped).

L(M, t, I) = {i | i affects M at time t on input I}

PA 10 Simulations between PRAMs

© Harald Räcke 174/283

Lower Bounds for the CREW PRAM

Definition 6

An input index i affects a processor P at time t on some input I
if the state of P at time t differs between inputs I and I(i) (i-th
bit flipped).

K(P, t, I) = {i | i affects P at time t on input I}

PA 10 Simulations between PRAMs

© Harald Räcke 175/283

Lower Bounds for the CREW PRAM

Definition 6

An input index i affects a processor P at time t on some input I
if the state of P at time t differs between inputs I and I(i) (i-th
bit flipped).

K(P, t, I) = {i | i affects P at time t on input I}

PA 10 Simulations between PRAMs

© Harald Räcke 175/283

Lower Bounds for the CREW PRAM

Lemma 7

If i ∈ K(P, t, I) with t > 1 then either

ñ i ∈ K(P, t − 1, I), or

ñ P reads a global memory location M on input I at time t,
and i ∈ L(M, t − 1, I).

PA 10 Simulations between PRAMs

© Harald Räcke 176/283

Lower Bounds for the CREW PRAM

Lemma 8

If i ∈ L(M, t, I) with t > 1 then either

ñ A processor writes into M at time t on input I and

i ∈ K(P, t, I), or

ñ No processor writes into M at time t on input I and
ñ either i ∈ L(M, t − 1, I)
ñ or a processor P writes into M at time t on input I(i).

PA 10 Simulations between PRAMs

© Harald Räcke 177/283

Let k0 = 0, `0 = 1 and define

kt+1 = kt + `t and `t+1 = 3kt + 4`t

Lemma 9

|K(P, t, I)| ≤ kt and |L(M, t, I)| ≤ `t for any t ≥ 0

PA 10 Simulations between PRAMs

© Harald Räcke 178/283

Let k0 = 0, `0 = 1 and define

kt+1 = kt + `t and `t+1 = 3kt + 4`t

Lemma 9

|K(P, t, I)| ≤ kt and |L(M, t, I)| ≤ `t for any t ≥ 0

PA 10 Simulations between PRAMs

© Harald Räcke 178/283

base case (t = 0):
ñ No index can influence the local memory/state of a

processor before the first step (hence |K(P,0, I)| = k0 = 0).

ñ Initially every index in the input affects exactly one memory

location. Hence |L(M,0, I)| = 1 = `0.

PA 10 Simulations between PRAMs

© Harald Räcke 179/283

base case (t = 0):
ñ No index can influence the local memory/state of a

processor before the first step (hence |K(P,0, I)| = k0 = 0).

ñ Initially every index in the input affects exactly one memory

location. Hence |L(M,0, I)| = 1 = `0.

PA 10 Simulations between PRAMs

© Harald Räcke 179/283

induction step (t → t + 1):

K(P, t + 1, I) ⊆ K(P, t, I)∪ L(M, t, I), where M is the location

read by P in step t + 1.

Hence,

|K(P, t + 1, I)| ≤ |K(P, t, I)| + |L(M, t, I)|
≤ kt + `t

PA 10 Simulations between PRAMs

© Harald Räcke 180/283

induction step (t → t + 1):

K(P, t + 1, I) ⊆ K(P, t, I)∪ L(M, t, I), where M is the location

read by P in step t + 1.

Hence,

|K(P, t + 1, I)|

≤ |K(P, t, I)| + |L(M, t, I)|
≤ kt + `t

PA 10 Simulations between PRAMs

© Harald Räcke 180/283

induction step (t → t + 1):

K(P, t + 1, I) ⊆ K(P, t, I)∪ L(M, t, I), where M is the location

read by P in step t + 1.

Hence,

|K(P, t + 1, I)| ≤ |K(P, t, I)| + |L(M, t, I)|

≤ kt + `t

PA 10 Simulations between PRAMs

© Harald Räcke 180/283

induction step (t → t + 1):

K(P, t + 1, I) ⊆ K(P, t, I)∪ L(M, t, I), where M is the location

read by P in step t + 1.

Hence,

|K(P, t + 1, I)| ≤ |K(P, t, I)| + |L(M, t, I)|
≤ kt + `t

PA 10 Simulations between PRAMs

© Harald Räcke 180/283

induction step (t → t + 1):

For the bound on |L(M, t + 1, I)| we have two cases.

Case 1:

A processor P writes into location M at time t + 1 on input I.

Then,

|L(M, t + 1, I)| ≤ |K(P, t + 1, I)|
≤ kt + `t
≤ 3kt + 4`t = `t+1

PA 10 Simulations between PRAMs

© Harald Räcke 181/283

induction step (t → t + 1):

For the bound on |L(M, t + 1, I)| we have two cases.

Case 1:

A processor P writes into location M at time t + 1 on input I.

Then,

|L(M, t + 1, I)| ≤ |K(P, t + 1, I)|
≤ kt + `t
≤ 3kt + 4`t = `t+1

PA 10 Simulations between PRAMs

© Harald Räcke 181/283

induction step (t → t + 1):

For the bound on |L(M, t + 1, I)| we have two cases.

Case 1:

A processor P writes into location M at time t + 1 on input I.

Then,

|L(M, t + 1, I)|

≤ |K(P, t + 1, I)|
≤ kt + `t
≤ 3kt + 4`t = `t+1

PA 10 Simulations between PRAMs

© Harald Räcke 181/283

induction step (t → t + 1):

For the bound on |L(M, t + 1, I)| we have two cases.

Case 1:

A processor P writes into location M at time t + 1 on input I.

Then,

|L(M, t + 1, I)| ≤ |K(P, t + 1, I)|

≤ kt + `t
≤ 3kt + 4`t = `t+1

PA 10 Simulations between PRAMs

© Harald Räcke 181/283

induction step (t → t + 1):

For the bound on |L(M, t + 1, I)| we have two cases.

Case 1:

A processor P writes into location M at time t + 1 on input I.

Then,

|L(M, t + 1, I)| ≤ |K(P, t + 1, I)|
≤ kt + `t

≤ 3kt + 4`t = `t+1

PA 10 Simulations between PRAMs

© Harald Räcke 181/283

induction step (t → t + 1):

For the bound on |L(M, t + 1, I)| we have two cases.

Case 1:

A processor P writes into location M at time t + 1 on input I.

Then,

|L(M, t + 1, I)| ≤ |K(P, t + 1, I)|
≤ kt + `t
≤ 3kt + 4`t = `t+1

PA 10 Simulations between PRAMs

© Harald Räcke 181/283

Case 2:

No processor P writes into location M at time t + 1 on input I.

An index i affects M at time t + 1 iff i affects M at time t or

some processor P writes into M at t + 1 on I(i).

L(M, t + 1, I) ⊆ L(M, t, I)∪ Y(M, t + 1, I)

Y(M, t + 1, I) is the set of indices uj that cause some processor

Pwj to write into M at time t + 1 on input I.

PA 10 Simulations between PRAMs

© Harald Räcke 182/283

Case 2:

No processor P writes into location M at time t + 1 on input I.

An index i affects M at time t + 1 iff i affects M at time t or

some processor P writes into M at t + 1 on I(i).

L(M, t + 1, I) ⊆ L(M, t, I)∪ Y(M, t + 1, I)

Y(M, t + 1, I) is the set of indices uj that cause some processor

Pwj to write into M at time t + 1 on input I.

PA 10 Simulations between PRAMs

© Harald Räcke 182/283

Case 2:

No processor P writes into location M at time t + 1 on input I.

An index i affects M at time t + 1 iff i affects M at time t or

some processor P writes into M at t + 1 on I(i).

L(M, t + 1, I) ⊆ L(M, t, I)∪ Y(M, t + 1, I)

Y(M, t + 1, I) is the set of indices uj that cause some processor

Pwj to write into M at time t + 1 on input I.

PA 10 Simulations between PRAMs

© Harald Räcke 182/283

Case 2:

No processor P writes into location M at time t + 1 on input I.

An index i affects M at time t + 1 iff i affects M at time t or

some processor P writes into M at t + 1 on I(i).

L(M, t + 1, I) ⊆ L(M, t, I)∪ Y(M, t + 1, I)

Y(M, t + 1, I) is the set of indices uj that cause some processor

Pwj to write into M at time t + 1 on input I.

PA 10 Simulations between PRAMs

© Harald Räcke 182/283

Y(M, t + 1, I) is the set of indices uj that cause some processor

Pwj to write into M at time t + 1 on input I.

Fact:

For all pairs us , ut with Pws ≠ Pwt either

us ∈ K(Pwt , t + 1, I(ut)) or ut ∈ K(Pws , t + 1, I(us)).

Otherwise, Pwt and Pws would both write into M at the same

time on input I(us)(ut).

PA 10 Simulations between PRAMs

© Harald Räcke 183/283

Y(M, t + 1, I) is the set of indices uj that cause some processor

Pwj to write into M at time t + 1 on input I.

Fact:

For all pairs us , ut with Pws ≠ Pwt either

us ∈ K(Pwt , t + 1, I(ut)) or ut ∈ K(Pws , t + 1, I(us)).

Otherwise, Pwt and Pws would both write into M at the same

time on input I(us)(ut).

PA 10 Simulations between PRAMs

© Harald Räcke 183/283

Y(M, t + 1, I) is the set of indices uj that cause some processor

Pwj to write into M at time t + 1 on input I.

Fact:

For all pairs us , ut with Pws ≠ Pwt either

us ∈ K(Pwt , t + 1, I(ut)) or ut ∈ K(Pws , t + 1, I(us)).

Otherwise, Pwt and Pws would both write into M at the same

time on input I(us)(ut).

PA 10 Simulations between PRAMs

© Harald Räcke 183/283

Let U = {u1, . . . , ur} denote all indices that cause some

processor to write into M.

Let V = {(I(u1), Pw1), . . . }.

We set up a bipartite graph between U and V , such that

(ui, (I(uj), Pwj)) ∈ E if ui affects Pwj at time t + 1 on input

I(uj).

Each vertex (I(uj), Pwj) has degree at most kt+1 as this is an

upper bound on indices that can influence a processor Pwj .

Hence, |E| ≤ r · kt+1.

PA 10 Simulations between PRAMs

© Harald Räcke 184/283

Let U = {u1, . . . , ur} denote all indices that cause some

processor to write into M.

Let V = {(I(u1), Pw1), . . . }.

We set up a bipartite graph between U and V , such that

(ui, (I(uj), Pwj)) ∈ E if ui affects Pwj at time t + 1 on input

I(uj).

Each vertex (I(uj), Pwj) has degree at most kt+1 as this is an

upper bound on indices that can influence a processor Pwj .

Hence, |E| ≤ r · kt+1.

PA 10 Simulations between PRAMs

© Harald Räcke 184/283

Let U = {u1, . . . , ur} denote all indices that cause some

processor to write into M.

Let V = {(I(u1), Pw1), . . . }.

We set up a bipartite graph between U and V , such that

(ui, (I(uj), Pwj)) ∈ E if ui affects Pwj at time t + 1 on input

I(uj).

Each vertex (I(uj), Pwj) has degree at most kt+1 as this is an

upper bound on indices that can influence a processor Pwj .

Hence, |E| ≤ r · kt+1.

PA 10 Simulations between PRAMs

© Harald Räcke 184/283

Let U = {u1, . . . , ur} denote all indices that cause some

processor to write into M.

Let V = {(I(u1), Pw1), . . . }.

We set up a bipartite graph between U and V , such that

(ui, (I(uj), Pwj)) ∈ E if ui affects Pwj at time t + 1 on input

I(uj).

Each vertex (I(uj), Pwj) has degree at most kt+1 as this is an

upper bound on indices that can influence a processor Pwj .

Hence, |E| ≤ r · kt+1.

PA 10 Simulations between PRAMs

© Harald Räcke 184/283

Let U = {u1, . . . , ur} denote all indices that cause some

processor to write into M.

Let V = {(I(u1), Pw1), . . . }.

We set up a bipartite graph between U and V , such that

(ui, (I(uj), Pwj)) ∈ E if ui affects Pwj at time t + 1 on input

I(uj).

Each vertex (I(uj), Pwj) has degree at most kt+1 as this is an

upper bound on indices that can influence a processor Pwj .

Hence, |E| ≤ r · kt+1.

PA 10 Simulations between PRAMs

© Harald Räcke 184/283

For an index uj there can be at most kt+1 indices ui with

Pwi = Pwj .

Hence, there must be at least 1
2r(r − kt+1) pairs ui, uj with

Pwi ≠ Pwj .

Each pair introduces at least one edge.

Hence,

|E| ≥ 1
2
r(r − kt+1)

This gives r ≤ 3kt+1 ≤ 3kt + 3`t

PA 10 Simulations between PRAMs

© Harald Räcke 185/283

For an index uj there can be at most kt+1 indices ui with

Pwi = Pwj .

Hence, there must be at least 1
2r(r − kt+1) pairs ui, uj with

Pwi ≠ Pwj .

Each pair introduces at least one edge.

Hence,

|E| ≥ 1
2
r(r − kt+1)

This gives r ≤ 3kt+1 ≤ 3kt + 3`t

PA 10 Simulations between PRAMs

© Harald Räcke 185/283

For an index uj there can be at most kt+1 indices ui with

Pwi = Pwj .

Hence, there must be at least 1
2r(r − kt+1) pairs ui, uj with

Pwi ≠ Pwj .

Each pair introduces at least one edge.

Hence,

|E| ≥ 1
2
r(r − kt+1)

This gives r ≤ 3kt+1 ≤ 3kt + 3`t

PA 10 Simulations between PRAMs

© Harald Räcke 185/283

For an index uj there can be at most kt+1 indices ui with

Pwi = Pwj .

Hence, there must be at least 1
2r(r − kt+1) pairs ui, uj with

Pwi ≠ Pwj .

Each pair introduces at least one edge.

Hence,

|E| ≥ 1
2
r(r − kt+1)

This gives r ≤ 3kt+1 ≤ 3kt + 3`t

PA 10 Simulations between PRAMs

© Harald Räcke 185/283

For an index uj there can be at most kt+1 indices ui with

Pwi = Pwj .

Hence, there must be at least 1
2r(r − kt+1) pairs ui, uj with

Pwi ≠ Pwj .

Each pair introduces at least one edge.

Hence,

|E| ≥ 1
2
r(r − kt+1)

This gives r ≤ 3kt+1 ≤ 3kt + 3`t

PA 10 Simulations between PRAMs

© Harald Räcke 185/283

Recall that L(M, t + 1, i) ⊆ L(M, t, i)∪ Y(M, t + 1, I)

|L(M, t + 1, i)| ≤ 3kt + 4`t

PA 10 Simulations between PRAMs

© Harald Räcke 186/283

Recall that L(M, t + 1, i) ⊆ L(M, t, i)∪ Y(M, t + 1, I)

|L(M, t + 1, i)| ≤ 3kt + 4`t

PA 10 Simulations between PRAMs

© Harald Räcke 186/283

Recall that L(M, t + 1, i) ⊆ L(M, t, i)∪ Y(M, t + 1, I)

|L(M, t + 1, i)| ≤ 3kt + 4`t

PA 10 Simulations between PRAMs

© Harald Räcke 186/283

(
kt+1

`t+1

)
=
(

1 1

3 4

)(
kt
`t

) (
k0

`0

)
=
(

0

1

)

Eigenvalues:

λ1 =
1
2
(5+

√
21) and λ2 =

1
2
(5−

√
21)

Eigenvectors:

v1 =
(

1

−(1− λ1)

)
and v2 =

(
1

−(1− λ2)

)

v1 =
(

1
3
2 +

1
2

√
21

)
and v2 =

(
1

3
2 −

1
2

√
21

)

(
kt+1

`t+1

)
=
(

1 1

3 4

)(
kt
`t

) (
k0

`0

)
=
(

0

1

)

Eigenvalues:

λ1 =
1
2
(5+

√
21) and λ2 =

1
2
(5−

√
21)

Eigenvectors:

v1 =
(

1

−(1− λ1)

)
and v2 =

(
1

−(1− λ2)

)

v1 =
(

1
3
2 +

1
2

√
21

)
and v2 =

(
1

3
2 −

1
2

√
21

)

(
kt+1

`t+1

)
=
(

1 1

3 4

)(
kt
`t

) (
k0

`0

)
=
(

0

1

)

Eigenvalues:

λ1 =
1
2
(5+

√
21) and λ2 =

1
2
(5−

√
21)

Eigenvectors:

v1 =
(

1

−(1− λ1)

)
and v2 =

(
1

−(1− λ2)

)

v1 =
(

1
3
2 +

1
2

√
21

)
and v2 =

(
1

3
2 −

1
2

√
21

)

(
kt+1

`t+1

)
=
(

1 1

3 4

)(
kt
`t

) (
k0

`0

)
=
(

0

1

)

Eigenvalues:

λ1 =
1
2
(5+

√
21) and λ2 =

1
2
(5−

√
21)

Eigenvectors:

v1 =
(

1

−(1− λ1)

)
and v2 =

(
1

−(1− λ2)

)

v1 =
(

1
3
2 +

1
2

√
21

)
and v2 =

(
1

3
2 −

1
2

√
21

)

v1 =
(

1
3
2 +

1
2

√
21

)
and v2 =

(
1

3
2 −

1
2

√
21

)
(
k0

`0

)
=
(

0

1

)
= 1√

21
(v1 − v2)

(
kt
`t

)
= 1√

21

(
λt1v1 − λt2v2

)

v1 =
(

1
3
2 +

1
2

√
21

)
and v2 =

(
1

3
2 −

1
2

√
21

)
(
k0

`0

)
=
(

0

1

)
= 1√

21
(v1 − v2)

(
kt
`t

)
= 1√

21

(
λt1v1 − λt2v2

)

v1 =
(

1
3
2 +

1
2

√
21

)
and v2 =

(
1

3
2 −

1
2

√
21

)
(
k0

`0

)
=
(

0

1

)
= 1√

21
(v1 − v2)

(
kt
`t

)
= 1√

21

(
λt1v1 − λt2v2

)

Solving the recurrence gives

kt =
λt1√
21
− λt2√

21

`t =
3+
√

21

2
√

21
λt1 +

−3+
√

21

2
√

21
λt2

with λ1 = 1
2(5+

√
21) and λ2 = 1

2(5−
√

21).

PA 10 Simulations between PRAMs

© Harald Räcke 189/283

Theorem 10

The following problems require logarithmic time on a CREW

PRAM.

ñ Sorting a sequence of x1, . . . , xn with xi ∈ {0,1}
ñ Computing the maximum of n inputs

ñ Computing the sum x1 + · · · + xn with xi ∈ {0,1}

PA 10 Simulations between PRAMs

© Harald Räcke 190/283

A Lower Bound for the EREW PRAM

Definition 11 (Zero Counting Problem)

Given a monotone binary sequence x1, x2, . . . , xn determine the

index i such that xi = 0 and xi+1 = 1.

We show that this problem requires Ω(logn− logp) steps on a

p-processor EREW PRAM.

PA 10 Simulations between PRAMs

© Harald Räcke 191/283

A Lower Bound for the EREW PRAM

Definition 11 (Zero Counting Problem)

Given a monotone binary sequence x1, x2, . . . , xn determine the

index i such that xi = 0 and xi+1 = 1.

We show that this problem requires Ω(logn− logp) steps on a

p-processor EREW PRAM.

PA 10 Simulations between PRAMs

© Harald Räcke 191/283

Let Ii be the input with i zeros folled by n− i ones.

Index i affects processor P at time t if the state in step t is

differs between Ii−1 and Ii.

Index i affects location M at time t if the content of M after step

t differs between inputs Ii−1 and Ii.

PA 10 Simulations between PRAMs

© Harald Räcke 192/283

Let Ii be the input with i zeros folled by n− i ones.

Index i affects processor P at time t if the state in step t is

differs between Ii−1 and Ii.

Index i affects location M at time t if the content of M after step

t differs between inputs Ii−1 and Ii.

PA 10 Simulations between PRAMs

© Harald Räcke 192/283

Let Ii be the input with i zeros folled by n− i ones.

Index i affects processor P at time t if the state in step t is

differs between Ii−1 and Ii.

Index i affects location M at time t if the content of M after step

t differs between inputs Ii−1 and Ii.

PA 10 Simulations between PRAMs

© Harald Räcke 192/283

Lemma 12

If i ∈ K(P, t) then either

ñ i ∈ K(P, t − 1), or

ñ P reads some location M on input Ii (and, hence, also on

Ii−1) at step t and i ∈ L(M, t − 1)

PA 10 Simulations between PRAMs

© Harald Räcke 193/283

Lemma 13

If i ∈ L(M, t) then either

ñ i ∈ L(M, t − 1), or

ñ Some processor P writes M at step t on input Ii and

i ∈ K(P, t).
ñ Some processor P writes M at step t on input Ii−1 and

i ∈ K(P, t).

PA 10 Simulations between PRAMs

© Harald Räcke 194/283

Define

C(t) =
∑
P
|K(P, t)| +

∑
M

max{0, |L(M, t)| − 1}

C(T) ≥ n, C(0) = 0

Claim:

C(t) ≤ 6C(t − 1)+ 3|P |

This gives C(T) ≤ 6T−1
5 3|P | and hence T = Ω(logn− log |P |).

PA 10 Simulations between PRAMs

© Harald Räcke 195/283

Define

C(t) =
∑
P
|K(P, t)| +

∑
M

max{0, |L(M, t)| − 1}

C(T) ≥ n, C(0) = 0

Claim:

C(t) ≤ 6C(t − 1)+ 3|P |

This gives C(T) ≤ 6T−1
5 3|P | and hence T = Ω(logn− log |P |).

PA 10 Simulations between PRAMs

© Harald Räcke 195/283

Define

C(t) =
∑
P
|K(P, t)| +

∑
M

max{0, |L(M, t)| − 1}

C(T) ≥ n, C(0) = 0

Claim:

C(t) ≤ 6C(t − 1)+ 3|P |

This gives C(T) ≤ 6T−1
5 3|P | and hence T = Ω(logn− log |P |).

PA 10 Simulations between PRAMs

© Harald Räcke 195/283

Define

C(t) =
∑
P
|K(P, t)| +

∑
M

max{0, |L(M, t)| − 1}

C(T) ≥ n, C(0) = 0

Claim:

C(t) ≤ 6C(t − 1)+ 3|P |

This gives C(T) ≤ 6T−1
5 3|P | and hence T = Ω(logn− log |P |).

PA 10 Simulations between PRAMs

© Harald Räcke 195/283

For an index i to newly appear in L(M, t) some processor must

write into M on either input Ii or Ii−1.

Hence, any index in K(P, t) can at most generate two new

indices in L(M, t).

This means that the number of new indices in any set L(M, t)
(over all M) is at most

2
∑
P
|K(P, t)|

PA 10 Simulations between PRAMs

© Harald Räcke 196/283

For an index i to newly appear in L(M, t) some processor must

write into M on either input Ii or Ii−1.

Hence, any index in K(P, t) can at most generate two new

indices in L(M, t).

This means that the number of new indices in any set L(M, t)
(over all M) is at most

2
∑
P
|K(P, t)|

PA 10 Simulations between PRAMs

© Harald Räcke 196/283

For an index i to newly appear in L(M, t) some processor must

write into M on either input Ii or Ii−1.

Hence, any index in K(P, t) can at most generate two new

indices in L(M, t).

This means that the number of new indices in any set L(M, t)
(over all M) is at most

2
∑
P
|K(P, t)|

PA 10 Simulations between PRAMs

© Harald Räcke 196/283

Hence, ∑
M
|L(M, t)| ≤

∑
M
|L(M, t − 1)| + 2

∑
P
|K(P, t)|

We can assume wlog. that L(M, t − 1) ⊆ L(M, t). Then

∑
M

max{0, |L(M, t)| − 1} ≤
∑
M

max{0, |L(M, t − 1)| − 1} + 2
∑
P
|K(P, t)|

PA 10 Simulations between PRAMs

© Harald Räcke 197/283

Hence, ∑
M
|L(M, t)| ≤

∑
M
|L(M, t − 1)| + 2

∑
P
|K(P, t)|

We can assume wlog. that L(M, t − 1) ⊆ L(M, t). Then

∑
M

max{0, |L(M, t)| − 1} ≤
∑
M

max{0, |L(M, t − 1)| − 1} + 2
∑
P
|K(P, t)|

PA 10 Simulations between PRAMs

© Harald Räcke 197/283

Hence, ∑
M
|L(M, t)| ≤

∑
M
|L(M, t − 1)| + 2

∑
P
|K(P, t)|

We can assume wlog. that L(M, t − 1) ⊆ L(M, t). Then

∑
M

max{0, |L(M, t)| − 1} ≤
∑
M

max{0, |L(M, t − 1)| − 1} + 2
∑
P
|K(P, t)|

PA 10 Simulations between PRAMs

© Harald Räcke 197/283

For an index i to newly appear in K(P, t), P must read a memory

location M with i ∈ L(M, t) on input Ii (and also on input Ii−1).

Since we are in the EREW model at most one processor can do so

in every step.

Let J(i, t) be memory locations read in step t on input Ii, and let

Jt =
⋃
i J(i, t).

∑
P
|K(P, t)| ≤

∑
P
|K(P, t − 1)| +

∑
M∈Jt

|L(M, t − 1)|

Over all inputs Ii a processor can read at most |K(P, t − 1)| + 1

different memory locations (why?).

PA 10 Simulations between PRAMs

© Harald Räcke 198/283

For an index i to newly appear in K(P, t), P must read a memory

location M with i ∈ L(M, t) on input Ii (and also on input Ii−1).

Since we are in the EREW model at most one processor can do so

in every step.

Let J(i, t) be memory locations read in step t on input Ii, and let

Jt =
⋃
i J(i, t).

∑
P
|K(P, t)| ≤

∑
P
|K(P, t − 1)| +

∑
M∈Jt

|L(M, t − 1)|

Over all inputs Ii a processor can read at most |K(P, t − 1)| + 1

different memory locations (why?).

PA 10 Simulations between PRAMs

© Harald Räcke 198/283

For an index i to newly appear in K(P, t), P must read a memory

location M with i ∈ L(M, t) on input Ii (and also on input Ii−1).

Since we are in the EREW model at most one processor can do so

in every step.

Let J(i, t) be memory locations read in step t on input Ii, and let

Jt =
⋃
i J(i, t).

∑
P
|K(P, t)| ≤

∑
P
|K(P, t − 1)| +

∑
M∈Jt

|L(M, t − 1)|

Over all inputs Ii a processor can read at most |K(P, t − 1)| + 1

different memory locations (why?).

PA 10 Simulations between PRAMs

© Harald Räcke 198/283

For an index i to newly appear in K(P, t), P must read a memory

location M with i ∈ L(M, t) on input Ii (and also on input Ii−1).

Since we are in the EREW model at most one processor can do so

in every step.

Let J(i, t) be memory locations read in step t on input Ii, and let

Jt =
⋃
i J(i, t).

∑
P
|K(P, t)| ≤

∑
P
|K(P, t − 1)| +

∑
M∈Jt

|L(M, t − 1)|

Over all inputs Ii a processor can read at most |K(P, t − 1)| + 1

different memory locations (why?).

PA 10 Simulations between PRAMs

© Harald Räcke 198/283

For an index i to newly appear in K(P, t), P must read a memory

location M with i ∈ L(M, t) on input Ii (and also on input Ii−1).

Since we are in the EREW model at most one processor can do so

in every step.

Let J(i, t) be memory locations read in step t on input Ii, and let

Jt =
⋃
i J(i, t).

∑
P
|K(P, t)| ≤

∑
P
|K(P, t − 1)| +

∑
M∈Jt

|L(M, t − 1)|

Over all inputs Ii a processor can read at most |K(P, t − 1)| + 1

different memory locations (why?).

PA 10 Simulations between PRAMs

© Harald Räcke 198/283

Hence,∑
P
|K(P, t)|

≤
∑
P
|K(P, t − 1)| +

∑
M∈Jt

|L(M, t − 1)|

≤
∑
P
|K(P, t − 1)| +

∑
M∈Jt

(|L(M, t − 1)| − 1)+ Jt

≤ 2
∑
P
|K(P, t − 1)| +

∑
M∈Jt

(|L(M, t − 1)| − 1)+ |P |

≤ 2
∑
P
|K(P, t − 1)| +

∑
M

max{0, |L(M, t − 1)| − 1} + |P |

Recall∑
M

max{0, |L(M, t)| − 1} ≤
∑
M

max{0, |L(M, t − 1)| − 1} + 2
∑
P
|K(P, t)|

PA 10 Simulations between PRAMs

© Harald Räcke 199/283

Hence,∑
P
|K(P, t)| ≤

∑
P
|K(P, t − 1)| +

∑
M∈Jt

|L(M, t − 1)|

≤
∑
P
|K(P, t − 1)| +

∑
M∈Jt

(|L(M, t − 1)| − 1)+ Jt

≤ 2
∑
P
|K(P, t − 1)| +

∑
M∈Jt

(|L(M, t − 1)| − 1)+ |P |

≤ 2
∑
P
|K(P, t − 1)| +

∑
M

max{0, |L(M, t − 1)| − 1} + |P |

Recall∑
M

max{0, |L(M, t)| − 1} ≤
∑
M

max{0, |L(M, t − 1)| − 1} + 2
∑
P
|K(P, t)|

PA 10 Simulations between PRAMs

© Harald Räcke 199/283

Hence,∑
P
|K(P, t)| ≤

∑
P
|K(P, t − 1)| +

∑
M∈Jt

|L(M, t − 1)|

≤
∑
P
|K(P, t − 1)| +

∑
M∈Jt

(|L(M, t − 1)| − 1)+ Jt

≤ 2
∑
P
|K(P, t − 1)| +

∑
M∈Jt

(|L(M, t − 1)| − 1)+ |P |

≤ 2
∑
P
|K(P, t − 1)| +

∑
M

max{0, |L(M, t − 1)| − 1} + |P |

Recall∑
M

max{0, |L(M, t)| − 1} ≤
∑
M

max{0, |L(M, t − 1)| − 1} + 2
∑
P
|K(P, t)|

PA 10 Simulations between PRAMs

© Harald Räcke 199/283

Hence,∑
P
|K(P, t)| ≤

∑
P
|K(P, t − 1)| +

∑
M∈Jt

|L(M, t − 1)|

≤
∑
P
|K(P, t − 1)| +

∑
M∈Jt

(|L(M, t − 1)| − 1)+ Jt

≤ 2
∑
P
|K(P, t − 1)| +

∑
M∈Jt

(|L(M, t − 1)| − 1)+ |P |

≤ 2
∑
P
|K(P, t − 1)| +

∑
M

max{0, |L(M, t − 1)| − 1} + |P |

Recall∑
M

max{0, |L(M, t)| − 1} ≤
∑
M

max{0, |L(M, t − 1)| − 1} + 2
∑
P
|K(P, t)|

PA 10 Simulations between PRAMs

© Harald Räcke 199/283

Hence,∑
P
|K(P, t)| ≤

∑
P
|K(P, t − 1)| +

∑
M∈Jt

|L(M, t − 1)|

≤
∑
P
|K(P, t − 1)| +

∑
M∈Jt

(|L(M, t − 1)| − 1)+ Jt

≤ 2
∑
P
|K(P, t − 1)| +

∑
M∈Jt

(|L(M, t − 1)| − 1)+ |P |

≤ 2
∑
P
|K(P, t − 1)| +

∑
M

max{0, |L(M, t − 1)| − 1} + |P |

Recall∑
M

max{0, |L(M, t)| − 1} ≤
∑
M

max{0, |L(M, t − 1)| − 1} + 2
∑
P
|K(P, t)|

PA 10 Simulations between PRAMs

© Harald Räcke 199/283

Hence,∑
P
|K(P, t)| ≤

∑
P
|K(P, t − 1)| +

∑
M∈Jt

|L(M, t − 1)|

≤
∑
P
|K(P, t − 1)| +

∑
M∈Jt

(|L(M, t − 1)| − 1)+ Jt

≤ 2
∑
P
|K(P, t − 1)| +

∑
M∈Jt

(|L(M, t − 1)| − 1)+ |P |

≤ 2
∑
P
|K(P, t − 1)| +

∑
M

max{0, |L(M, t − 1)| − 1} + |P |

Recall∑
M

max{0, |L(M, t)| − 1} ≤
∑
M

max{0, |L(M, t − 1)| − 1} + 2
∑
P
|K(P, t)|

PA 10 Simulations between PRAMs

© Harald Räcke 199/283

Hence,∑
P
|K(P, t)| ≤

∑
P
|K(P, t − 1)| +

∑
M∈Jt

|L(M, t − 1)|

≤
∑
P
|K(P, t − 1)| +

∑
M∈Jt

(|L(M, t − 1)| − 1)+ Jt

≤ 2
∑
P
|K(P, t − 1)| +

∑
M∈Jt

(|L(M, t − 1)| − 1)+ |P |

≤ 2
∑
P
|K(P, t − 1)| +

∑
M

max{0, |L(M, t − 1)| − 1} + |P |

Recall∑
M

max{0, |L(M, t)| − 1} ≤
∑
M

max{0, |L(M, t − 1)| − 1} + 2
∑
P
|K(P, t)|

PA 10 Simulations between PRAMs

© Harald Räcke 199/283

This gives∑
P
K(P, t)+

∑
M

max{0, |L(M, t)| − 1}

≤ 4
∑
M

max{0, |L(M, t − 1)| − 1} + 6
∑
P
|K(P, t − 1)| + 3|P |

Hence,

C(t) ≤ 6C(t − 1)+ 3|P |

PA 10 Simulations between PRAMs

© Harald Räcke 200/283

This gives∑
P
K(P, t)+

∑
M

max{0, |L(M, t)| − 1}

≤ 4
∑
M

max{0, |L(M, t − 1)| − 1} + 6
∑
P
|K(P, t − 1)| + 3|P |

Hence,

C(t) ≤ 6C(t − 1)+ 3|P |

PA 10 Simulations between PRAMs

© Harald Räcke 200/283

Lower Bounds for CRCW PRAMS

Theorem 14

Let f : {0,1}n → {0,1} be an arbitrary Boolean function. f can

be computed in O(1) time on a common CRCW PRAM with ≤ n2n

processors.

Can we obtain non-constant lower bounds if we restrict the

number of processors to be polynomial?

PA 10 Simulations between PRAMs

© Harald Räcke 201/283

Boolean Circuits

ñ nodes are either AND, OR, or NOT gates or are special

INPUT/OUTPUT nodes

ñ AND and OR gates have unbounded fan-in (indegree) and

ounbounded fan-out (outdegree)

ñ NOT gates have unbounded fan-out

ñ INPUT nodes have indegree zero; OUTPUT nodes have

outdegree zero

ñ size is the number of edges

ñ depth is the longest path from an input to an output

PA 10 Simulations between PRAMs

© Harald Räcke 202/283

Theorem 15

Let f : {0,1}n → {0,1}m be a function with n inputs and m ≤ n
outputs, and circuit C computes f with depth D(n) and size

S(n). Then f can be computed by a common CRCW PRAM in

O(D(n)) time using S(n) processors.

PA 10 Simulations between PRAMs

© Harald Räcke 203/283

Given a family {Cn} of circuits we may not be able to compute

the corresponding family of functions on a CRCW PRAM.

Definition 16

A family {Cn} of circuits is logspace uniform if there exists a

deterministic Turing machine M s.t

ñ M runs in logarithmic space.

ñ For all n, M outputs Cn on input 1n.

PA 10 Simulations between PRAMs

© Harald Räcke 204/283

	Simulations between PRAMs

