Theorem 1

We can simulate a *p*-processor priority CRCW PRAM on a *p*-processor EREW PRAM with slowdown $O(\log p)$.

▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 ▶ 169/283

Theorem 2

We can simulate a *p*-processor priority CRCW PRAM on a $p \log p$ -processor common CRCW PRAM with slowdown O(1).

Theorem 3

We can simulate a *p*-processor priority CRCW PRAM on a *p*-processor common CRCW PRAM with slowdown $\mathcal{O}(\frac{\log p}{\log \log p})$.

10 Simulations between PRAMs

▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 ▶ 171/283

Theorem 4

We can simulate a *p*-processor priority CRCW PRAM on a *p*-processor arbitrary CRCW PRAM with slowdown $O(\log \log p)$.

- every processor has unbounded local memory
- in each step a processor reads a global variable
- then it does some (unbounded) computation on its local memory
- then it writes a global variable

- every processor has unbounded local memory
- in each step a processor reads a global variable
- then it does some (unbounded) computation on its local memory
- then it writes a global variable

- every processor has unbounded local memory
- in each step a processor reads a global variable
- then it does some (unbounded) computation on its local memory
- then it writes a global variable

- every processor has unbounded local memory
- in each step a processor reads a global variable
- then it does some (unbounded) computation on its local memory
- then it writes a global variable

Definition 5

An input index i affects a memory location M at time t on some input I if the content of M at time t differs between inputs I and I(i) (*i*-th bit flipped).

 $L(M, t, I) = \{i \mid i \text{ affects } M \text{ at time } t \text{ on input } I\}$

10 Simulations between PRAMs

Definition 5

An input index i affects a memory location M at time t on some input I if the content of M at time t differs between inputs I and I(i) (*i*-th bit flipped).

 $L(M, t, I) = \{i \mid i \text{ affects } M \text{ at time } t \text{ on input } I\}$

Definition 6

An input index i affects a processor P at time t on some input I if the state of P at time t differs between inputs I and I(i) (*i*-th bit flipped).

 $K(P, t, I) = \{i \mid i \text{ affects } P \text{ at time } t \text{ on input } I\}$

10 Simulations between PRAMs

Definition 6

An input index i affects a processor P at time t on some input I if the state of P at time t differs between inputs I and I(i) (*i*-th bit flipped).

 $K(P, t, I) = \{i \mid i \text{ affects } P \text{ at time } t \text{ on input } I\}$

Lemma 7

If $i \in K(P, t, I)$ *with* t > 1 *then either*

- ▶ $i \in K(P, t 1, I)$, or
- ▶ *P* reads a global memory location *M* on input *I* at time *t*, and $i \in L(M, t 1, I)$.

Lemma 8

If $i \in L(M, t, I)$ with t > 1 then either

- A processor writes into M at time t on input I and $i \in K(P, t, I)$, or
- No processor writes into M at time t on input I and
 - either $i \in L(M, t 1, I)$
 - or a processor P writes into M at time t on input I(i).

Let $k_0 = 0$, $\ell_0 = 1$ and define

$$k_{t+1} = k_t + \ell_t$$
 and $\ell_{t+1} = 3k_t + 4\ell_t$

Lemma 9 $|K(P,t,I)| \le k_t \text{ and } |L(M,t,I)| \le \ell_t \text{ for any } t \ge 0$

Let $k_0 = 0$, $\ell_0 = 1$ and define

$$k_{t+1} = k_t + \ell_t$$
 and $\ell_{t+1} = 3k_t + 4\ell_t$

Lemma 9 $|K(P, t, I)| \le k_t$ and $|L(M, t, I)| \le \ell_t$ for any $t \ge 0$

base case (t = 0):

- ► No index can influence the local memory/state of a processor before the first step (hence |K(P, 0, I)| = k₀ = 0).
- Initially every index in the input affects exactly one memory location. Hence |L(M, 0, I)| = 1 = ℓ₀.

base case (t = 0):

- ► No index can influence the local memory/state of a processor before the first step (hence |K(P, 0, I)| = k₀ = 0).
- ► Initially every index in the input affects exactly one memory location. Hence $|L(M, 0, I)| = 1 = \ell_0$.

 $K(P, t + 1, I) \subseteq K(P, t, I) \cup L(M, t, I)$, where *M* is the location read by *P* in step t + 1.

 $K(P, t + 1, I) \subseteq K(P, t, I) \cup L(M, t, I)$, where *M* is the location read by *P* in step t + 1.

Hence,

|K(P, t + 1, I)|

 $K(P, t + 1, I) \subseteq K(P, t, I) \cup L(M, t, I)$, where *M* is the location read by *P* in step t + 1.

Hence,

 $|K(P, t + 1, I)| \le |K(P, t, I)| + |L(M, t, I)|$

10 Simulations between PRAMs

 $K(P, t + 1, I) \subseteq K(P, t, I) \cup L(M, t, I)$, where *M* is the location read by *P* in step t + 1.

Hence,

$$\begin{aligned} |K(P,t+1,I)| &\leq |K(P,t,I)| + |L(M,t,I)| \\ &\leq k_t + \ell_t \end{aligned}$$

For the bound on |L(M, t + 1, I)| we have two cases.


```
induction step (t \rightarrow t + 1):
```

For the bound on |L(M, t + 1, I)| we have two cases.

Case 1:

A processor P writes into location M at time t + 1 on input I.


```
induction step (t \rightarrow t + 1):
```

For the bound on |L(M, t + 1, I)| we have two cases.

Case 1:

A processor P writes into location M at time t + 1 on input I.

Then,

 $\left|L(M,t+1,I)\right|$

For the bound on |L(M, t + 1, I)| we have two cases.

Case 1:

A processor P writes into location M at time t + 1 on input I.

Then,

 $|L(M,t+1,I)| \leq |K(P,t+1,I)|$

For the bound on |L(M, t + 1, I)| we have two cases.

Case 1:

A processor P writes into location M at time t + 1 on input I.

Then,

$$\begin{split} |L(M,t+1,I)| &\leq |K(P,t+1,I)| \\ &\leq k_t + \ell_t \end{split}$$

For the bound on |L(M, t + 1, I)| we have two cases.

Case 1:

A processor P writes into location M at time t + 1 on input I.

Then,

$$\begin{aligned} |L(M,t+1,I)| &\leq |K(P,t+1,I)| \\ &\leq k_t + \ell_t \\ &\leq 3k_t + 4\ell_t = \ell_{t+1} \end{aligned}$$

10 Simulations between PRAMs

An index *i* affects *M* at time t + 1 iff *i* affects *M* at time *t* or some processor *P* writes into *M* at t + 1 on I(i).

An index i affects M at time t + 1 iff i affects M at time t or some processor P writes into M at t + 1 on I(i).

 $L(M,t+1,I) \subseteq L(M,t,I) \cup Y(M,t+1,I)$

An index *i* affects *M* at time t + 1 iff *i* affects *M* at time *t* or some processor *P* writes into *M* at t + 1 on I(i).

 $L(M, t+1, I) \subseteq L(M, t, I) \cup Y(M, t+1, I)$

Y(M, t + 1, I) is the set of indices u_j that cause some processor P_{w_j} to write into M at time t + 1 on input I.

Y(M, t + 1, I) is the set of indices u_j that cause some processor P_{w_i} to write into M at time t + 1 on input I.

Y(M, t + 1, I) is the set of indices u_j that cause some processor P_{w_i} to write into M at time t + 1 on input I.

Fact:

For all pairs u_s , u_t with $P_{w_s} \neq P_{w_t}$ either $u_s \in K(P_{w_t}, t+1, I(u_t))$ or $u_t \in K(P_{w_s}, t+1, I(u_s))$.

Y(M, t + 1, I) is the set of indices u_j that cause some processor P_{w_j} to write into M at time t + 1 on input I.

Fact:

For all pairs u_s , u_t with $P_{w_s} \neq P_{w_t}$ either $u_s \in K(P_{w_t}, t+1, I(u_t))$ or $u_t \in K(P_{w_s}, t+1, I(u_s))$.

Otherwise, P_{w_t} and P_{w_s} would both write into M at the same time on input $I(u_s)(u_t)$.

Let $U = \{u_1, \dots, u_r\}$ denote all indices that cause some processor to write into M.

10 Simulations between PRAMs

▲ **御 ▶ ▲ 臣 ▶ ▲ 臣 ▶** 184/283 Let $U = \{u_1, \dots, u_r\}$ denote all indices that cause some processor to write into M.

Let $V = \{(I(u_1), P_{w_1}), \dots\}.$

Let $U = \{u_1, ..., u_r\}$ denote all indices that cause some processor to write into M.

Let $V = \{(I(u_1), P_{w_1}), \dots\}.$

We set up a bipartite graph between U and V, such that $(u_i, (I(u_j), P_{w_j})) \in E$ if u_i affects P_{w_j} at time t + 1 on input $I(u_j)$.

Let $U = \{u_1, ..., u_r\}$ denote all indices that cause some processor to write into M.

Let $V = \{(I(u_1), P_{w_1}), \dots\}.$

We set up a bipartite graph between U and V, such that $(u_i, (I(u_j), P_{w_j})) \in E$ if u_i affects P_{w_j} at time t + 1 on input $I(u_j)$.

Each vertex $(I(u_j), P_{w_j})$ has degree at most k_{t+1} as this is an upper bound on indices that can influence a processor P_{w_j} .

Let $U = \{u_1, ..., u_r\}$ denote all indices that cause some processor to write into M.

Let $V = \{(I(u_1), P_{w_1}), \dots\}.$

We set up a bipartite graph between U and V, such that $(u_i, (I(u_j), P_{w_j})) \in E$ if u_i affects P_{w_j} at time t + 1 on input $I(u_j)$.

Each vertex $(I(u_j), P_{w_j})$ has degree at most k_{t+1} as this is an upper bound on indices that can influence a processor P_{w_j} .

Hence, $|E| \leq r \cdot k_{t+1}$.

Hence, there must be at least $\frac{1}{2}r(r-k_{t+1})$ pairs u_i, u_j with $P_{w_i} \neq P_{w_j}$.

Each pair introduces at least one edge.

Hence,

$$|E| \ge \frac{1}{2}r(r-k_{t+1})$$

This gives $r \leq 3k_{t+1} \leq 3k_t + 3\ell_t$

Hence, there must be at least $\frac{1}{2}r(r-k_{t+1})$ pairs u_i, u_j with $P_{w_i} \neq P_{w_j}$.

Each pair introduces at least one edge.

Hence,

$$|E| \ge \frac{1}{2}r(r-k_{t+1})$$

This gives $r \leq 3k_{t+1} \leq 3k_t + 3\ell_t$

Hence, there must be at least $\frac{1}{2}r(r - k_{t+1})$ pairs u_i, u_j with $P_{w_i} \neq P_{w_j}$.

Each pair introduces at least one edge.

Hence,

$$|E| \ge \frac{1}{2}r(r - k_{t+1})$$

This gives $r \leq 3k_{t+1} \leq 3k_t + 3\ell_t$

10 Simulations between PRAMs

Hence, there must be at least $\frac{1}{2}r(r - k_{t+1})$ pairs u_i, u_j with $P_{w_i} \neq P_{w_j}$.

Each pair introduces at least one edge.

Hence,

$$|E| \geq \frac{1}{2}r(r-k_{t+1})$$

This gives $r \leq 3k_{t+1} \leq 3k_t + 3\ell_t$

10 Simulations between PRAMs

Hence, there must be at least $\frac{1}{2}r(r-k_{t+1})$ pairs u_i, u_j with $P_{w_i} \neq P_{w_j}$.

Each pair introduces at least one edge.

Hence,

$$|E| \geq \frac{1}{2}r(r-k_{t+1})$$

This gives $r \leq 3k_{t+1} \leq 3k_t + 3\ell_t$

Recall that $L(M, t + 1, i) \subseteq L(M, t, i) \cup Y(M, t + 1, I)$

 $|L(M,t+1,i)| \le 3k_t + 4\ell_t$

Recall that $L(M, t + 1, i) \subseteq L(M, t, i) \cup Y(M, t + 1, I)$

 $|L(M,t+1,i)| \le 3k_t + 4\ell_t$

10 Simulations between PRAMs

▲ @ ▶ ▲ 臣 ▶ ▲ 臣 ▶ 186/283 Recall that $L(M, t + 1, i) \subseteq L(M, t, i) \cup Y(M, t + 1, I)$

 $|L(M,t+1,i)| \le 3k_t + 4\ell_t$

$$\begin{pmatrix} k_{t+1} \\ \ell_{t+1} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} k_t \\ \ell_t \end{pmatrix} \qquad \begin{pmatrix} k_0 \\ \ell_0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$\lambda_1 = \frac{1}{2}(5 + \sqrt{21})$$
 and $\lambda_2 = \frac{1}{2}(5 - \sqrt{21})$

$$v_1 = \begin{pmatrix} 1\\ -(1-\lambda_1) \end{pmatrix} \text{ and } v_2 = \begin{pmatrix} 1\\ -(1-\lambda_2) \end{pmatrix}$$
$$v_1 = \begin{pmatrix} 1\\ \frac{3}{2} + \frac{1}{2}\sqrt{21} \end{pmatrix} \text{ and } v_2 = \begin{pmatrix} 1\\ \frac{3}{2} - \frac{1}{2}\sqrt{21} \end{pmatrix}$$

$$\begin{pmatrix} k_{t+1} \\ \ell_{t+1} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} k_t \\ \ell_t \end{pmatrix} \qquad \begin{pmatrix} k_0 \\ \ell_0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$\lambda_1=\frac{1}{2}(5+\sqrt{21})$$
 and $\lambda_2=\frac{1}{2}(5-\sqrt{21})$

$$v_1 = \begin{pmatrix} 1\\ -(1-\lambda_1) \end{pmatrix} \text{ and } v_2 = \begin{pmatrix} 1\\ -(1-\lambda_2) \end{pmatrix}$$
$$v_1 = \begin{pmatrix} 1\\ \frac{3}{2} + \frac{1}{2}\sqrt{21} \end{pmatrix} \text{ and } v_2 = \begin{pmatrix} 1\\ \frac{3}{2} - \frac{1}{2}\sqrt{21} \end{pmatrix}$$

$$\begin{pmatrix} k_{t+1} \\ \ell_{t+1} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} k_t \\ \ell_t \end{pmatrix} \qquad \begin{pmatrix} k_0 \\ \ell_0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$\lambda_1 = \frac{1}{2}(5 + \sqrt{21}) \text{ and } \lambda_2 = \frac{1}{2}(5 - \sqrt{21})$$

$$v_1 = \begin{pmatrix} 1 \\ -(1-\lambda_1) \end{pmatrix}$$
 and $v_2 = \begin{pmatrix} 1 \\ -(1-\lambda_2) \end{pmatrix}$
 $v_1 = \begin{pmatrix} 1 \\ \frac{3}{2} + \frac{1}{2}\sqrt{21} \end{pmatrix}$ and $v_2 = \begin{pmatrix} 1 \\ \frac{3}{2} - \frac{1}{2}\sqrt{21} \end{pmatrix}$

$$\begin{pmatrix} k_{t+1} \\ \ell_{t+1} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} k_t \\ \ell_t \end{pmatrix} \qquad \begin{pmatrix} k_0 \\ \ell_0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$\lambda_1 = \frac{1}{2}(5 + \sqrt{21}) \text{ and } \lambda_2 = \frac{1}{2}(5 - \sqrt{21})$$

$$v_1 = \begin{pmatrix} 1\\ -(1-\lambda_1) \end{pmatrix} \text{ and } v_2 = \begin{pmatrix} 1\\ -(1-\lambda_2) \end{pmatrix}$$
$$v_1 = \begin{pmatrix} 1\\ \frac{3}{2} + \frac{1}{2}\sqrt{21} \end{pmatrix} \text{ and } v_2 = \begin{pmatrix} 1\\ \frac{3}{2} - \frac{1}{2}\sqrt{21} \end{pmatrix}$$

$$v_1 = \begin{pmatrix} 1\\ \frac{3}{2} + \frac{1}{2}\sqrt{21} \end{pmatrix} \text{ and } v_2 = \begin{pmatrix} 1\\ \frac{3}{2} - \frac{1}{2}\sqrt{21} \end{pmatrix}$$
$$\begin{pmatrix} k_0\\ \ell_0 \end{pmatrix} = \begin{pmatrix} 0\\ 1 \end{pmatrix} = \frac{1}{\sqrt{21}}(v_1 - v_2)$$
$$\begin{pmatrix} k_t\\ \ell_t \end{pmatrix} = \frac{1}{\sqrt{21}}(\lambda_1^t v_1 - \lambda_2^t v_2)$$

$$v_1 = \begin{pmatrix} 1\\ \frac{3}{2} + \frac{1}{2}\sqrt{21} \end{pmatrix} \text{ and } v_2 = \begin{pmatrix} 1\\ \frac{3}{2} - \frac{1}{2}\sqrt{21} \end{pmatrix}$$
$$\begin{pmatrix} k_0\\ \ell_0 \end{pmatrix} = \begin{pmatrix} 0\\ 1 \end{pmatrix} = \frac{1}{\sqrt{21}}(v_1 - v_2)$$
$$\begin{pmatrix} k_t\\ \ell_t \end{pmatrix} = \frac{1}{\sqrt{21}}\left(\lambda_1^t v_1 - \lambda_2^t v_2\right)$$

$$v_1 = \begin{pmatrix} 1\\ \frac{3}{2} + \frac{1}{2}\sqrt{21} \end{pmatrix} \text{ and } v_2 = \begin{pmatrix} 1\\ \frac{3}{2} - \frac{1}{2}\sqrt{21} \end{pmatrix}$$
$$\begin{pmatrix} k_0\\ \ell_0 \end{pmatrix} = \begin{pmatrix} 0\\ 1 \end{pmatrix} = \frac{1}{\sqrt{21}}(v_1 - v_2)$$
$$\begin{pmatrix} k_t\\ \ell_t \end{pmatrix} = \frac{1}{\sqrt{21}}\left(\lambda_1^t v_1 - \lambda_2^t v_2\right)$$

Solving the recurrence gives

$$\begin{aligned} k_t &= \frac{\lambda_1^t}{\sqrt{21}} - \frac{\lambda_2^t}{\sqrt{21}} \\ \ell_t &= \frac{3 + \sqrt{21}}{2\sqrt{21}} \lambda_1^t + \frac{-3 + \sqrt{21}}{2\sqrt{21}} \lambda_2^t \end{aligned}$$
 with $\lambda_1 &= \frac{1}{2}(5 + \sqrt{21})$ and $\lambda_2 &= \frac{1}{2}(5 - \sqrt{21}). \end{aligned}$

10 Simulations between PRAMs

▲ 個 ▶ ▲ ■ ▶ ▲ ■ ▶ 189/283

Theorem 10

The following problems require logarithmic time on a CREW PRAM.

- Sorting a sequence of x_1, \ldots, x_n with $x_i \in \{0, 1\}$
- Computing the maximum of n inputs
- Computing the sum $x_1 + \cdots + x_n$ with $x_i \in \{0, 1\}$

A Lower Bound for the EREW PRAM

Definition 11 (Zero Counting Problem)

Given a monotone binary sequence $x_1, x_2, ..., x_n$ determine the index *i* such that $x_i = 0$ and $x_{i+1} = 1$.

We show that this problem requires $\Omega(\log n - \log p)$ steps on a p-processor EREW PRAM.

A Lower Bound for the EREW PRAM

Definition 11 (Zero Counting Problem)

Given a monotone binary sequence $x_1, x_2, ..., x_n$ determine the index *i* such that $x_i = 0$ and $x_{i+1} = 1$.

We show that this problem requires $\Omega(\log n - \log p)$ steps on a p-processor EREW PRAM.

Let I_i be the input with i zeros folled by n - i ones.

Index *i* affects processor *P* at time *t* if the state in step *t* is differs between I_{i-1} and I_i .

Index *i* affects location *M* at time *t* if the content of *M* after step *t* differs between inputs I_{i-1} and I_i .

Let I_i be the input with *i* zeros folled by n - i ones.

Index *i* affects processor *P* at time *t* if the state in step *t* is differs between I_{i-1} and I_i .

Index *i* affects location *M* at time *t* if the content of *M* after step *t* differs between inputs I_{i-1} and I_i .

Let I_i be the input with i zeros folled by n - i ones.

Index *i* affects processor *P* at time *t* if the state in step *t* is differs between I_{i-1} and I_i .

Index *i* affects location *M* at time *t* if the content of *M* after step *t* differs between inputs I_{i-1} and I_i .

Lemma 12

If $i \in K(P, t)$ then either

- ▶ $i \in K(P, t 1)$, or
- ▶ *P* reads some location *M* on input I_i (and, hence, also on I_{i-1}) at step *t* and *i* ∈ L(M, t 1)

Lemma 13

If $i \in L(M, t)$ then either

- ▶ $i \in L(M, t 1)$, or
- Some processor P writes M at step t on input I_i and $i \in K(P, t)$.
- Some processor P writes M at step t on input I_{i-1} and $i \in K(P, t)$.

$$C(t) = \sum_{P} |K(P, t)| + \sum_{M} \max\{0, |L(M, t)| - 1\}$$

 $C(T) \ge n, C(0) = 0$

Claim: $C(t) \le 6C(t-1) + 3|P|$ e^{T-1}

This gives $C(T) \leq \frac{6^{r}-1}{5}3|P|$ and hence $T = \Omega(\log n - \log |P|)$.

10 Simulations between PRAMs

▲ @ ▶ ▲ 클 ▶ ▲ 클 ▶ 195/283

$$C(t) = \sum_{P} |K(P, t)| + \sum_{M} \max\{0, |L(M, t)| - 1\}$$

 $C(T) \geq n, C(0) = 0$

Claim: $C(t) \le 6C(t-1) + 3|P|$

This gives $C(T) \leq \frac{6^{r}-1}{5}3|P|$ and hence $T = \Omega(\log n - \log |P|)$.

10 Simulations between PRAMs

▲ 個 ▶ ▲ 필 ▶ ▲ 필 ▶ 195/283

$$C(t) = \sum_{P} |K(P, t)| + \sum_{M} \max\{0, |L(M, t)| - 1\}$$

$$C(T) \ge n, C(0) = 0$$

Claim: $C(t) \le 6C(t-1) + 3|P|$

This gives $C(T) \leq \frac{6^T - 1}{5} 3|P|$ and hence $T = \Omega(\log n - \log |P|)$.

10 Simulations between PRAMs

▲ @ ▶ ▲ 클 ▶ ▲ 클 ▶ 195/283

$$C(t) = \sum_{P} |K(P, t)| + \sum_{M} \max\{0, |L(M, t)| - 1\}$$

 $C(T) \ge n, C(0) = 0$

Claim: $C(t) \le 6C(t-1) + 3|P|$

This gives $C(T) \leq \frac{6^T - 1}{5} 3|P|$ and hence $T = \Omega(\log n - \log |P|)$.

For an index i to newly appear in L(M, t) some processor must write into M on either input I_i or I_{i-1} .

Hence, any index in K(P, t) can at most generate two new indices in L(M, t).

This means that the number of new indices in any set L(M, t)(over all M) is at most

$$2\sum_{P}|K(P,t)|$$

10 Simulations between PRAMs

For an index *i* to newly appear in L(M, t) some processor must write into *M* on either input I_i or I_{i-1} .

Hence, any index in K(P, t) can at most generate two new indices in L(M, t).

This means that the number of new indices in any set L(M, t)(over all M) is at most

10 Simulations between PRAMs

For an index *i* to newly appear in L(M, t) some processor must write into *M* on either input I_i or I_{i-1} .

Hence, any index in K(P, t) can at most generate two new indices in L(M, t).

This means that the number of new indices in any set L(M, t) (over all M) is at most

$$2\sum_{P}|K(P,t)|$$

Hence,

$\sum_M |L(M,t)| \leq \sum_M |L(M,t-1)| + 2\sum_P |K(P,t)|$

We can assume wlog. that $L(M, t - 1) \subseteq L(M, t)$. Then

 $\sum_{M} \max\{0, |L(M,t)| - 1\} \le \sum_{M} \max\{0, |L(M,t-1)| - 1\} + 2\sum_{P} |K(P,t)|$

10 Simulations between PRAMs

▲ 個 ▶ ▲ 필 ▶ ▲ 필 ▶ 197/283

$$\sum_{M} |L(M,t)| \leq \sum_{M} |L(M,t-1)| + 2\sum_{P} |K(P,t)|$$

We can assume wlog. that $L(M, t - 1) \subseteq L(M, t)$. Then

 $\sum_{M} \max\{0, |L(M,t)| - 1\} \le \sum_{M} \max\{0, |L(M,t-1)| - 1\} + 2\sum_{P} |K(P,t)|$

10 Simulations between PRAMs

▲ @ ▶ ▲ 클 ▶ ▲ 클 ▶ 197/283

$$\sum_{M} |L(M,t)| \le \sum_{M} |L(M,t-1)| + 2\sum_{P} |K(P,t)|$$

We can assume wlog. that $L(M, t - 1) \subseteq L(M, t)$. Then

$$\sum_{M} \max\{0, |L(M,t)| - 1\} \le \sum_{M} \max\{0, |L(M,t-1)| - 1\} + 2\sum_{P} |K(P,t)|$$

10 Simulations between PRAMs

▲ @ ▶ ▲ 클 ▶ ▲ 클 ▶ 197/283

Since we are in the EREW model at most one processor can do so in every step.

Let J(i, t) be memory locations read in step t on input I_i , and let $J_t = \bigcup_i J(i, t)$.

$$\sum_{P} |K(P,t)| \leq \sum_{P} |K(P,t-1)| + \sum_{M \in J_l} |L(M,t-1)|$$

Since we are in the EREW model at most one processor can do so in every step.

Let J(i, t) be memory locations read in step t on input I_i , and let $J_t = \bigcup_i J(i, t)$.

$$\sum_{P} |K(P,t)| \leq \sum_{P} |K(P,t-1)| + \sum_{M \in J_l} |L(M,t-1)|$$

Since we are in the EREW model at most one processor can do so in every step.

Let J(i, t) be memory locations read in step t on input I_i , and let $J_t = \bigcup_i J(i, t)$.

$$\sum_{P} |K(P,t)| \leq \sum_{P} |K(P,t-1)| + \sum_{M \in J_t} |L(M,t-1)|$$

Since we are in the EREW model at most one processor can do so in every step.

Let J(i, t) be memory locations read in step t on input I_i , and let $J_t = \bigcup_i J(i, t)$.

$$\sum_{P} |K(P,t)| \leq \sum_{P} |K(P,t-1)| + \sum_{M \in J_t} |L(M,t-1)|$$

Since we are in the EREW model at most one processor can do so in every step.

Let J(i, t) be memory locations read in step t on input I_i , and let $J_t = \bigcup_i J(i, t)$.

$$\sum_{P} |K(P,t)| \leq \sum_{P} |K(P,t-1)| + \sum_{M \in J_t} |L(M,t-1)|$$

$\sum_{P} |K(P,t)|$

10 Simulations between PRAMs

◆ @ ▶ ◆ 聖 ▶ ◆ 聖 ▶ 199/283

$$\sum_{P} |K(P,t)| \le \sum_{P} |K(P,t-1)| + \sum_{M \in J_t} |L(M,t-1)|$$

10 Simulations between PRAMs

◆聞▶◆聖▶◆聖 199/283

$$\begin{split} \sum_{P} |K(P,t)| &\leq \sum_{P} |K(P,t-1)| + \sum_{M \in J_{t}} |L(M,t-1)| \\ &\leq \sum_{P} |K(P,t-1)| + \sum_{M \in J_{t}} (|L(M,t-1)| - 1) + J_{t} \end{split}$$

10 Simulations between PRAMs

◆聞▶★聖▶★聖 199/283

$$\begin{split} \sum_{P} |K(P,t)| &\leq \sum_{P} |K(P,t-1)| + \sum_{M \in J_{t}} |L(M,t-1)| \\ &\leq \sum_{P} |K(P,t-1)| + \sum_{M \in J_{t}} (|L(M,t-1)|-1) + J_{t} \\ &\leq 2 \sum_{P} |K(P,t-1)| + \sum_{M \in J_{t}} (|L(M,t-1)|-1) + |P| \end{split}$$

10 Simulations between PRAMs

《聞》《園》《園》 199/283

$$\begin{split} \sum_{P} |K(P,t)| &\leq \sum_{P} |K(P,t-1)| + \sum_{M \in J_{t}} |L(M,t-1)| \\ &\leq \sum_{P} |K(P,t-1)| + \sum_{M \in J_{t}} (|L(M,t-1)|-1) + J_{t} \\ &\leq 2 \sum_{P} |K(P,t-1)| + \sum_{M \in J_{t}} (|L(M,t-1)|-1) + |P| \\ &\leq 2 \sum_{P} |K(P,t-1)| + \sum_{M} \max\{0, |L(M,t-1)|-1\} + |P| \end{split}$$

10 Simulations between PRAMs

$$\begin{split} \sum_{P} |K(P,t)| &\leq \sum_{P} |K(P,t-1)| + \sum_{M \in J_{t}} |L(M,t-1)| \\ &\leq \sum_{P} |K(P,t-1)| + \sum_{M \in J_{t}} (|L(M,t-1)|-1) + J_{t} \\ &\leq 2 \sum_{P} |K(P,t-1)| + \sum_{M \in J_{t}} (|L(M,t-1)|-1) + |P| \\ &\leq 2 \sum_{P} |K(P,t-1)| + \sum_{M} \max\{0, |L(M,t-1)|-1\} + |P| \end{split}$$

10 Simulations between PRAMs

$$\begin{split} \sum_{P} |K(P,t)| &\leq \sum_{P} |K(P,t-1)| + \sum_{M \in J_{t}} |L(M,t-1)| \\ &\leq \sum_{P} |K(P,t-1)| + \sum_{M \in J_{t}} (|L(M,t-1)|-1) + J_{t} \\ &\leq 2 \sum_{P} |K(P,t-1)| + \sum_{M \in J_{t}} (|L(M,t-1)|-1) + |P| \\ &\leq 2 \sum_{P} |K(P,t-1)| + \sum_{M} \max\{0, |L(M,t-1)|-1\} + |P| \end{split}$$

Recall

$$\sum_{M} \max\{0, |L(M,t)| - 1\} \le \sum_{M} \max\{0, |L(M,t-1)| - 1\} + 2\sum_{P} |K(P,t)|$$

This gives

$$\sum_{P} K(P,t) + \sum_{M} \max\{0, |L(M,t)| - 1\}$$

$$\leq 4 \sum_{M} \max\{0, |L(M,t-1)| - 1\} + 6 \sum_{P} |K(P,t-1)| + 3|P|$$

Hence,

 $C(t) \le 6C(t-1) + 3|P|$

10 Simulations between PRAMs

《聞》《臣》《臣》 200/283

This gives

$$\sum_{P} K(P,t) + \sum_{M} \max\{0, |L(M,t)| - 1\}$$

$$\leq 4 \sum_{M} \max\{0, |L(M,t-1)| - 1\} + 6 \sum_{P} |K(P,t-1)| + 3|P|$$

Hence,

$$C(t) \le 6C(t-1) + 3|P|$$

10 Simulations between PRAMs

◆個 ▶ ◆ 注 ▶ ◆ 注 ▶ 200/283

Lower Bounds for CRCW PRAMS

Theorem 14

Let $f : \{0,1\}^n \to \{0,1\}$ be an arbitrary Boolean function. f can be computed in $\mathcal{O}(1)$ time on a common CRCW PRAM with $\leq n2^n$ processors.

Can we obtain non-constant lower bounds if we restrict the number of processors to be polynomial?

Boolean Circuits

- nodes are either AND, OR, or NOT gates or are special INPUT/OUTPUT nodes
- AND and OR gates have unbounded fan-in (indegree) and ounbounded fan-out (outdegree)
- NOT gates have unbounded fan-out
- INPUT nodes have indegree zero; OUTPUT nodes have outdegree zero
- size is the number of edges
- depth is the longest path from an input to an output

Theorem 15

Let $f : \{0,1\}^n \to \{0,1\}^m$ be a function with n inputs and $m \le n$ outputs, and circuit C computes f with depth D(n) and size S(n). Then f can be computed by a common CRCW PRAM in O(D(n)) time using S(n) processors.

Given a family $\{C_n\}$ of circuits we may not be able to compute the corresponding family of functions on a CRCW PRAM.

Definition 16

A family $\{C_n\}$ of circuits is logspace uniform if there exists a deterministic Turing machine M s.t

- M runs in logarithmic space.
- For all n, M outputs C_n on input 1^n .

