
Definition 1

A 0-1 sequence S is bitonic if it can be written as the

concatenation of subsequences S1 and S2 such that either

ñ S1 is monotonically increasing and S2 monotonically

decreasing, or

ñ S1 is monotonically decreasing and S2 monotonically

increasing.

Note, that this just defines bitonic 0-1 sequences. Bitonic

sequences are defined differently.
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Bitonic Merger

If we feed a bitonic 0-1 sequence S into the

network on the right we obtain two bitonic

sequences ST and SB s.t.

1. SB ≤ ST (element-wise)

2. SB and ST are bitonic

Proof:

ñ assume wlog. S more 1’s than 0’s.

ñ assume for contradiction two 0s at
same comparator (i, j = i+ 2d)

ñ everything 0 btw i and j means we
have more than 50% zeros (�).

ñ all 1s btw. i and j means we have
less than 50% ones (�).

ñ 1 btw. i and j and elsewhere
means S is not bitonic (�).
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Bitonic Merger

Bitonic Merger Bd
The bitonic merger Bd
of dimension d is con-

structed by combining

two bitonic mergers of

dimension d− 1.

If we feed a bitonic 0-1

sequence into this, the

sequence will be sorted.

(actually, any bitonic se-

quence will be sorted,

but we do not prove

this)
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Bitonic Sorter Sd

Sd−1

S′d−1



Bitonic Merger: (n = 2d)

ñ comparators: C(n) = 2C(n/2)+n/2 ⇒ C(n) = O(n logn).
ñ depth: D(n) = D(n/2)+ 1 ⇒ D(d) = O(logn).

Bitonic Sorter: (n = 2d)

ñ comparators: C(n) = 2C(n/2)+O(n logn) ⇒
C(n) = O(n log2n).

ñ depth: D(n) = D(n/2)+ logn ⇒ D(n) = Θ(log2n).
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Odd-Even Merge
How to merge two sorted sequences?

A = (a1, a2, . . . , an), B = (b1, b2, . . . , bn), n even.

Split into odd and even sequences:

Aodd = (a1, a3, a5, . . . , an−1), Aeven = (a2, a4, a6, . . . an)
Bodd = (b1, b3, b5, . . . , bn−1), Beven = (b2, b4, b6, . . . , bn)

Let

X =merge(Aodd, Bodd) and Y =merge(Aeven, Beven)

Then

S = (x1,min{x2, y1},max{x2, y1},min{x3, y2}, . . . , yn)
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Odd-Even Merge

Md−1

Md−1



Theorem 2

There exists a sorting network with depth O(logn) and

O(n logn) comparators.
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