Parallel Prefix

Input: a linked list given by successor pointers; a value x[i] for every list element; an operator *;

Output: for every list position ℓ the sum (w.r.t. *) of elements after ℓ in the list (including ℓ)

48

Parallel Prefix

Algorithm 7 ParallelPrefix 1: for $1 \le i \le n$ pardo 2: $P[i] \leftarrow S[i]$ 3: while $S[i] \ne S[S[i]]$ do 4: $x[i] \leftarrow x[i] * x[S[i]]$ 5: $S[i] \leftarrow S[S[i]]$ 6: if $P[i] \ne i$ then $x[i] \leftarrow x[i] * x[S(i)]$

The algorithm runs in time $O(\log n)$.

It has work requirement $\mathcal{O}(n \log n)$. non-optimal

This technique is also known as pointer jumping