## Parallel Algorithms

## Due date: January 19th, 2014 before class!

## Problem 1 (10 Points)

Consider greedy routing on the hypercube with random intermediate locations, i.e. if a packet at node $i$ has to be sent to node $j$, the routing protocol first sends it to a random node $r$, then sends it from $r$ to $j$. In this case, routing paths can be as long as $2 d$, where $d$ is the dimension of the hypercube. Now, consider the following variation: for every packet and its random intermediate location $r$, we compare the lengths of the greedy paths $i \rightarrow \cdots \rightarrow r \rightarrow \cdots \rightarrow j$ and $i \rightarrow \cdots \rightarrow \bar{r} \rightarrow \cdots \rightarrow j$ (with $\bar{r}$ having the encoding of $r$ with all bits flipped), and route the packet along the shorter path.
Show that the routing paths are shorter in the worst case.

## Problem 2 (20 Points)

A packing problem consists of routing any collection of $m \leq n$ packets contained in level $\log n$ of a $\log n$-dimensional butterfly to the first $m$ nodes in level 0 of the butterfly such that the relative order of the packets remains unchanged.

1. Consider removing all nodes (and incident edges) from the leftmost or rightmost level of a butterfly, respectively. Which structure have the remaining networks?
2. It is possible that a processor that contains a packet in a packing problem may not know the correct destination for the packet. How can you figure out the correct destinations for the packets with only two runs through the butterfly?
Hint: Use a parallel prefix.
3. Show that after the first step of the greedy packing protocol, there are no collisions, i.e. there are no two packets sent to the same node.

Hint: Consider two neighboring packets. What is the difference in their corresponding destinations?
Keep in mind that for this case, you have a reversed butterfly at hand, as seen in Fig. 1. Would this work for a normal butterfly and why (not)?
4. Complete the proof that there are no collisions on any level by induction.


Figure 1: reverse butterfly

## Problem 3 (10 Points)

A spreading problem consists of routing a contiguous set of $m \leq n$ packets contained in the first $m$ nodes of level 0 of a $\log n$-dimensional butterfly to any collection of $m$ destinations at level $\log n$ such that the relative order of the packets remains unchanged.
A monotone routing problem is one where the relative order of the packets remains unchanged.

1. Show how to greedily route any spreading permutation on a butterfly with a congestion of 1 .
2. Show how to greedily route any monotone permutation with a congestion of 1 . Hint: You may traverse the (reverse) butterfly several times for this.
