Part III

Approximation Algorithms

EADS II © Harald Räcke

253

255

Definition 2

An α -approximation for an optimization problem is a polynomial-time algorithm that for all instances of the problem produces a solution whose value is within a factor of α of the value of an optimal solution.

There are many practically important optimization problems that are NP-hard.

What can we do?

- Heuristics.
- Exploit special structure of instances occurring in practise.
- ► Consider algorithms that do not compute the optimal solution but provide solutions that are close to optimum.

EADS II © Harald Räcke

11 Introduction

254

256

Why approximation algorithms?

- ▶ We need algorithms for hard problems.
- It gives a rigorous mathematical base for studying heuristics.
- ▶ It provides a metric to compare the difficulty of various optimization problems.
- Proving theorems may give a deeper theoretical understanding which in turn leads to new algorithmic approaches.

Why not?

► Sometimes the results are very pessimistic due to the fact that an algorithm has to provide a close-to-optimum solution on every instance.

11 Introduction

EADS II © Harald Räcke 11 Introduction

Definition 3

An optimization problem P = (1, sol, m, goal) is in **NPO** if

- $x \in \mathcal{I}$ can be decided in polynomial time
- $y \in sol(I)$ can be verified in polynomial time
- ▶ *m* can be computed in polynomial time
- ▶ $goal \in \{min, max\}$

In other words: the decision problem is there a solution y with m(x,y) at most/at least z is in NP.

EADS II © Harald Räcke 11 Introduction

257

259

Definition 5 (γ -approximation)

An algorithm A is an γ -approximation algorithm iff

$$\forall x \in \mathcal{I} : R(x, A(x)) \le r$$
,

and A runs in polynomial time.

- x is problem instance
- \triangleright y is candidate solution
- $\rightarrow m^*(x)$ cost/profit of an optimal solution

Definition 4 (Performance Ratio)

$$R(x,y) := \max \left\{ \frac{m(x,y)}{m^*(x)}, \frac{m^*(x)}{m(x,y)} \right\}$$

EADS II © Harald Räcke

11 Introduction

258

Definition 6 (PTAS)

A PTAS for a problem P from NPO is an algorithm that takes as input $x \in \mathcal{I}$ and $\epsilon > 0$ and produces a solution y for x with

$$R(x, y) \leq 1 + \epsilon$$
.

The running time is polynomial in |x|.

approximation with arbitrary good factor... fast?

Problems that have a PTAS

Scheduling. Given m jobs with known processing times; schedule the jobs on n machines such that the MAKESPAN is minimized.

EADS II © Harald Räcke

11 Introduction

261

263

Problems that have an FPTAS

KNAPSACK. Given a set of items with profits and weights choose a subset of total weight at most W s.t. the profit is maximized.

Definition 7 (FPTAS)

An FPTAS for a problem P from NPO is an algorithm that takes as input $x \in \mathcal{I}$ and $\epsilon > 0$ and produces a solution y for x with

$$R(x, y) \leq 1 + \epsilon$$
.

The running time is polynomial in |x| and $1/\epsilon$.

approximation with arbitrary good factor... fast!

11 Introduction

262

Definition 8 (APX - approximable)

A problem P from NPO is in APX if there exist a constant $r \ge 1$ and an r-approximation algorithm for P.

constant factor approximation...

Problems that are in APX

MAXCUT. Given a graph G = (V, E); partition V into two disjoint pieces A and B s.t. the number of edges between both pieces is maximized.

MAX-3SAT. Given a 3CNF-formula. Find an assignment to the variables that satisfies the maximum number of clauses.

EADS II © Harald Räcke EADS II

11 Introduction

265

267

There are really difficult problems!

Theorem 9

For any constant $\epsilon > 0$ there does not exist an $\Omega(n^{1-\epsilon})$ -approximation algorithm for the maximum clique problem on a given graph G with n nodes unless P = NP.

Note that an n-approximation is trivial.

Problems with polylogarithmic approximation guarantees

- Set Cover
- Minimum Multicut
- Sparsest Cut
- Minimum Bisection

There is an r-approximation with $r \leq \mathcal{O}(\log^c(|x|))$ for some constant c.

Note that only for some of the above problem a matching lower bound is known.

EADS II © Harald Räcke

□□ EADS II

11 Introduction

266

There are weird problems!

Asymmetric *k*-Center admits an $O(\log^* n)$ -approximation.

There is no $o(\log^* n)$ -approximation to Asymmetric k-Center unless $NP \subseteq DTIME(n^{\log \log \log n})$.

Class APX not important in practise.

Instead of saying problem P is in APX one says problem P admits a 4-approximation.

One only says that a problem is APX-hard.

EADS II © Harald Räcke 11 Introduction

269

271

A crucial ingredient for the design and analysis of approximation algorithms is a technique to obtain an upper bound (for maximization problems) or a lower bound (for minimization problems).

Therefore Linear Programs or Integer Linear Programs play a vital role in the design of many approximation algorithms.

EADS II © Harald Räcke 12 Integer Programs

270

Definition 10

An Integer Linear Program or Integer Program is a Linear Program in which all variables are required to be integral.

Definition 11

A Mixed Integer Program is a Linear Program in which a subset of the variables are required to be integral.

Many important combinatorial optimization problems can be formulated in the form of an Integer Program.

Note that solving Integer Programs in general is NP-complete!

Set Cover

Given a ground set U, a collection of subsets $S_1, \ldots, S_k \subseteq U$, where the i-th subset S_i has weight/cost w_i . Find a collection $I \subseteq \{1, \ldots, k\}$ such that

 $\forall u \in U \exists i \in I : u \in S_i$ (every element is covered)

and

$$\sum_{i \in I} w_i$$
 is minimized.

EADS II © Harald Räcke

12 Integer Programs

273

275

IP-Formulation of Set Cover

Set Cover

EADS II © Harald Räcke

12 Integer Programs

274

Vertex Cover

Given a graph G = (V, E) and a weight w_v for every node. Find a vertex subset $S \subseteq V$ of minimum weight such that every edge is incident to at least one vertex in S.

IP-Formulation of Vertex Cover

min
$$\sum_{v \in V} w_v x_v$$
s.t. $\forall e = (i, j) \in E$ $x_i + x_j \ge 1$ $x_v \in \{0, 1\}$

EADS II © Harald Räcke 12 Integer Programs

277

279

Maximum Weighted Matching

Given a graph G = (V, E), and a weight w_e for every edge $e \in E$. Find a subset of edges of maximum weight such that no vertex is incident to more than one edge.

EADS II © Harald Räcke

12 Integer Programs

278

Maximum Independent Set

Given a graph G=(V,E), and a weight w_v for every node $v\in V$. Find a subset $S\subseteq V$ of nodes of maximum weight such that no two vertices in S are adjacent.

Knapsack

Given a set of items $\{1,\ldots,n\}$, where the *i*-th item has weight w_i and profit p_i , and given a threshold K. Find a subset $I \subseteq \{1,\ldots,n\}$ of items of total weight at most K such that the profit is maximized.

Relaxations

Definition 12

A linear program LP is a relaxation of an integer program IP if any feasible solution for IP is also feasible for LP and if the objective values of these solutions are identical in both programs.

We obtain a relaxation for all examples by writing $x_i \in [0,1]$ instead of $x_i \in \{0,1\}$.

EADS II © Harald Räcke 12 Integer Programs

281

283

By solving a relaxation we obtain an upper bound for a maximization problem and a lower bound for a minimization problem.

EADS II © Harald Räcke

12 Integer Programs

282

Relations

EADS II

|∐|||| © Harald Räcke

Maximization Problems:

Minimization Problems:

12 Integer Programs

Technique 1: Round the LP solution.

We first solve the LP-relaxation and then we round the fractional values so that we obtain an integral solution.

Set Cover relaxation:

min
$$\sum_{i=1}^{k} w_i x_i$$
s.t.
$$\forall u \in U \quad \sum_{i:u \in S_i} x_i \geq 1$$

$$\forall i \in \{1, \dots, k\} \qquad x_i \in [0, 1]$$

Let f_u be the number of sets that the element u is contained in (the frequency of u). Let $f = \max_u \{f_u\}$ be the maximum frequency.

Technique 1: Round the LP solution.

Rounding Algorithm:

Set all x_i -values with $x_i \ge \frac{1}{f}$ to 1. Set all other x_i -values to 0.

EADS II © Harald Räcke 13.1 Deterministic Rounding

285

287

Technique 1: Round the LP solution.

The cost of the rounded solution is at most $f \cdot \text{OPT}$.

$$\sum_{i \in I} w_i \le \sum_{i=1}^k w_i (f \cdot x_i)$$
$$= f \cdot \cot(x)$$
$$\le f \cdot \text{OPT}.$$

Technique 1: Round the LP solution.

Lemma 13

The rounding algorithm gives an f-approximation.

Proof: Every $u \in U$ is covered.

- ▶ We know that $\sum_{i:u\in S_i} x_i \ge 1$.
- ▶ The sum contains at most $f_u \le f$ elements.
- ▶ Therefore one of the sets that contain u must have $x_i \ge 1/f$.
- ▶ This set will be selected. Hence, *u* is covered.

EADS II © Harald Räcke

13.1 Deterministic Rounding

286

Technique 2: Rounding the Dual Solution.

Relaxation for Set Cover

Primal:

$$\begin{array}{ll}
\min & \sum_{i \in I} w_i x_i \\
\text{s.t. } \forall u & \sum_{i: u \in S_i} x_i \ge 1 \\
& x_i \ge 0
\end{array}$$

Dual:

$$\max \sum_{u \in U} y_u$$
s.t. $\forall i \sum_{u:u \in S_i} y_u \leq w_i$

$$y_u \geq 0$$

Technique 2: Rounding the Dual Solution.

Rounding Algorithm:

Let I denote the index set of sets for which the dual constraint is tight. This means for all $i \in I$

$$\sum_{u:u\in S_i}y_u=w_i$$

EADS II © Harald Räcke

13.2 Rounding the Dual

289

291

Technique 2: Rounding the Dual Solution.

Proof:

$$\sum_{i \in I} w_i = \sum_{i \in I} \sum_{u: u \in S_i} y_u$$

$$= \sum_{i \in I} |\{i \in I : u \in S_i\}| \cdot y_u$$

$$\leq \sum_{u} f_u y_u$$

$$\leq f \sum_{u} y_u$$

$$\leq f \operatorname{cost}(x^*)$$

$$\leq f \cdot \operatorname{OPT}$$

Technique 2: Rounding the Dual Solution.

Lemma 14

The resulting index set is an f-approximation.

Proof:

Every $u \in U$ is covered.

- Suppose there is a u that is not covered.
- ▶ This means $\sum_{u:u \in S_i} y_u < w_i$ for all sets S_i that contain u.
- ▶ But then y_u could be increased in the dual solution without violating any constraint. This is a contradiction to the fact that the dual solution is optimal.

EADS II © Harald Räcke

13.2 Rounding the Dual

290

Let I denote the solution obtained by the first rounding algorithm and I^\prime be the solution returned by the second algorithm. Then

$$I \subseteq I'$$
.

This means I' is never better than I.

- ▶ Suppose that we take S_i in the first algorithm. I.e., $i \in I$.
- ▶ This means $x_i \ge \frac{1}{f}$.
- ► Because of Complementary Slackness Conditions the corresponding constraint in the dual must be tight.
- ▶ Hence, the second algorithm will also choose S_i .

Technique 3: The Primal Dual Method

The previous two rounding algorithms have the disadvantage that it is necessary to solve the LP. The following method also gives an f-approximation without solving the LP.

For estimating the cost of the solution we only required two properties.

1. The solution is dual feasible and, hence,

$$\sum_{u} y_{u} \le \operatorname{cost}(x^{*}) \le \operatorname{OPT}$$

where x^* is an optimum solution to the primal LP.

2. The set *I* contains only sets for which the dual inequality is tight.

Of course, we also need that I is a cover.

EADS II © Harald Räcke 13.3 Primal Dual Technique

293

295

Technique 4: The Greedy Algorithm

Algorithm 1 Greedy

2:
$$\hat{S}_j \leftarrow S_j$$
 for all j

3: **while** I not a set cover **do**

4:
$$\ell \leftarrow \arg\min_{j:\hat{S}_j \neq 0} \frac{w_j}{|\hat{S}_j|}$$

5:
$$I \leftarrow I \cup \{\ell\}$$

6:
$$\hat{S}_i \leftarrow \hat{S}_i - S_\ell$$
 for all j

In every round the Greedy algorithm takes the set that covers remaining elements in the most cost-effective way.

We choose a set such that the ratio between cost and still uncovered elements in the set is minimized.

Technique 3: The Primal Dual Method

Algorithm 1 PrimalDual

1:
$$y \leftarrow 0$$

3: **while** exists $u \notin \bigcup_{i \in I} S_i$ **do**

increase dual variable y_u until constraint for some new set S_ℓ becomes tight

5:
$$I \leftarrow I \cup \{\ell\}$$

EADS II © Harald Räcke 13.3 Primal Dual Technique

294

Technique 4: The Greedy Algorithm

Lemma 15

Given positive numbers $a_1, ..., a_k$ and $b_1, ..., b_k$, and $S \subseteq \{1, ..., k\}$ then

$$\min_{i} \frac{a_i}{b_i} \le \frac{\sum_{i \in S} a_i}{\sum_{i \in S} b_i} \le \max_{i} \frac{a_i}{b_i}$$

Technique 4: The Greedy Algorithm

Let n_ℓ denote the number of elements that remain at the beginning of iteration ℓ . $n_1 = n = |U|$ and $n_{s+1} = 0$ if we need s iterations.

In the ℓ-th iteration

$$\min_{j} \frac{w_{j}}{|\hat{S}_{j}|} \leq \frac{\sum_{j \in \text{OPT}} w_{j}}{\sum_{j \in \text{OPT}} |\hat{S}_{j}|} = \frac{\text{OPT}}{\sum_{j \in \text{OPT}} |\hat{S}_{j}|} \leq \frac{\text{OPT}}{n_{\ell}}$$

since an optimal algorithm can cover the remaining n_{ℓ} elements with cost OPT.

Let \hat{S}_i be a subset that minimizes this ratio. Hence, $|w_j/|\hat{\hat{S}}_j| \leq \frac{\text{OPT}}{n_\ell}.$

13.4 Greedy

297

299

Technique 4: The Greedy Algorithm

$$\sum_{j \in I} w_j \le \sum_{\ell=1}^s \frac{n_\ell - n_{\ell+1}}{n_\ell} \cdot \text{OPT}$$

$$\le \text{OPT} \sum_{\ell=1}^s \left(\frac{1}{n_\ell} + \frac{1}{n_{\ell-1}} + \dots + \frac{1}{n_{\ell+1} + 1} \right)$$

$$= \text{OPT} \sum_{i=1}^k \frac{1}{i}$$

$$= H_n \cdot \text{OPT} \le \text{OPT}(\ln n + 1) .$$

Technique 4: The Greedy Algorithm

Adding this set to our solution means $n_{\ell+1} = n_{\ell} - |\hat{S}_i|$.

$$w_j \le \frac{|\hat{S}_j| \text{OPT}}{n_\ell} = \frac{n_\ell - n_{\ell+1}}{n_\ell} \cdot \text{OPT}$$

EADS II © Harald Räcke

13.4 Greedy

298

Technique 4: The Greedy Algorithm

A tight example:

Technique 5: Randomized Rounding

One round of randomized rounding:

Pick set S_i uniformly at random with probability $1 - x_i$ (for all j).

Version A: Repeat rounds until you have a cover.

Version B: Repeat for s rounds. If you have a cover STOP.

Otherwise, repeat the whole algorithm.

EADS II © Harald Räcke 13.5 Randomized Rounding

301

303

 $\Pr[\exists u \in U \text{ not covered after } \ell \text{ round}]$

= $Pr[u_1 \text{ not covered} \lor u_2 \text{ not covered} \lor ... \lor u_n \text{ not covered}]$

$$\leq \sum_{i} \Pr[u_i \text{ not covered after } \ell \text{ rounds}] \leq ne^{-\ell}$$
.

Lemma 16

With high probability $O(\log n)$ rounds suffice.

With high probability:

For any constant α the number of rounds is at most $\mathcal{O}(\log n)$ with probability at least $1 - n^{-\alpha}$.

Probability that $u \in U$ is not covered (in one round):

Pr[u not covered in one round]

$$= \prod_{j:u \in S_j} (1 - x_j) \le \prod_{j:u \in S_j} e^{-x_j}$$
$$= e^{-\sum_{j:u \in S_j} x_j} \le e^{-1}.$$

Probability that $u \in U$ is not covered (after ℓ rounds):

$$\Pr[u \text{ not covered after } \ell \text{ round}] \leq \frac{1}{e^{\ell}}$$
.

EADS II © Harald Räcke

13.5 Randomized Rounding

302

Proof: We have

 $\Pr[\#\text{rounds} \ge (\alpha + 1) \ln n] \le ne^{-(\alpha + 1) \ln n} = n^{-\alpha}$.

Expected Cost

Version A. Repeat for $s=(\alpha+1)\ln n$ rounds. If you don't have a cover simply take for each element u the cheapest set that contains u.

$$E[\cos t] \le (\alpha + 1) \ln n \cdot \cos t(LP) + (n \cdot OPT) n^{-\alpha} = \mathcal{O}(\ln n) \cdot OPT$$

EADS II © Harald Räcke 13.5 Randomized Rounding

305

307

Randomized rounding gives an $\mathcal{O}(\log n)$ approximation. The running time is polynomial with high probability.

Theorem 17 (without proof)

There is no approximation algorithm for set cover with approximation guarantee better than $\frac{1}{2}\log n$ unless NP has quasi-polynomial time algorithms (algorithms with running time $2^{\text{poly}(\log n)}$).

Expected Cost

Version B.

Repeat for $s=(\alpha+1)\ln n$ rounds. If you don't have a cover simply repeat the whole process.

$$E[\cos t] = \Pr[success] \cdot E[\cos t \mid success]$$

$$+ \Pr[no success] \cdot E[\cos t \mid no success]$$

This means

$$\begin{split} E[\cos t \mid & \mathsf{success}] \\ &= \frac{1}{\Pr[\mathsf{succ.}]} \Big(E[\cos t] - \Pr[\mathsf{no} \ \mathsf{success}] \cdot E[\cos t \mid \mathsf{no} \ \mathsf{success}] \Big) \\ &\leq \frac{1}{\Pr[\mathsf{succ.}]} E[\cos t] \leq \frac{1}{1 - n^{-\alpha}} (\alpha + 1) \ln n \cdot \mathsf{cost}(\mathsf{LP}) \\ &\leq 2(\alpha + 1) \ln n \cdot \mathsf{OPT} \end{split}$$

for $n \ge 2$ and $\alpha \ge 1$.

13.5 Randomized Rounding

306

Integrality Gap

The integrality gap of the SetCover LP is $\Omega(\log n)$.

- $n = 2^k 1$
- ▶ Elements are all vectors \vec{x} over GF[2] of length k (excluding zero vector).
- Every vector \vec{y} defines a set as follows

$$S_{\vec{v}} := \{ \vec{x} \mid \vec{x}^T \vec{y} = 1 \}$$

- each set contains 2^{k-1} vectors; each vector is contained in 2^{k-1} sets
- $x_i = \frac{1}{2^{k-1}} = \frac{2}{n+1}$ is fractional solution.

Integrality Gap

Every collection of p < k sets does not cover all elements.

Hence, we get a gap of $\Omega(\log n)$.

EADS II © Harald Räcke 13.5 Randomized Rounding

309

311

J∐∐ © Harald Räcke

Scheduling Jobs on Identical Parallel Machines

Given n jobs, where job $j \in \{1, ..., n\}$ has processing time p_j . Schedule the jobs on m identical parallel machines such that the Makespan (finishing time of the last job) is minimized.

Here the variable $x_{j,i}$ is the decision variable that describes whether job j is assigned to machine i.

Techniques:

- ▶ Deterministic Rounding
- Rounding of the Dual
- Primal Dual
- Greedy
- Randomized Rounding
- ► Local Search
- Rounding Data + Dynamic Programming

EADS II © Harald Räcke

13.5 Randomized Rounding

310

Lower Bounds on the Solution

Let for a given schedule C_j denote the finishing time of machine j, and let C_{\max} be the makespan.

Let C_{max}^* denote the makespan of an optimal solution.

Clearly

$$C_{\max}^* \ge \max_j p_j$$

as the longest job needs to be scheduled somewhere.

Lower Bounds on the Solution

The average work performed by a machine is $\frac{1}{m}\sum_{j}p_{j}$. Therefore.

$$C_{\max}^* \ge \frac{1}{m} \sum_j p_j$$

EADS II © Harald Räcke EADS II

14 Scheduling on Identical Machines: Local Search

313

315

Local Search

A local search algorithm successively makes certain small (cost/profit improving) changes to a solution until it does not find such changes anymore.

It is conceptionally very different from a Greedy algorithm as a feasible solution is always maintained.

Sometimes the running time is difficult to prove.

EADS II © Harald Räcke

14 Scheduling on Identical Machines: Local Search

314

Local Search for Scheduling

Local Search Strategy: Take the job that finishes last and try to move it to another machine. If there is such a move that reduces the makespan, perform the switch.

REPEAT

Local Search Analysis

Let ℓ be the job that finishes last in the produced schedule.

Let S_{ℓ} be its start time, and let C_{ℓ} be its completion time.

Note that every machine is busy before time S_{ℓ} , because otherwise we could move the job ℓ and hence our schedule would not be locally optimal.

We can split the total processing time into two intervals one from 0 to S_{ℓ} the other from S_{ℓ} to C_{ℓ} .

The interval $[S_{\ell}, C_{\ell}]$ is of length $p_{\ell} \leq C_{\max}^*$.

During the first interval $[0, S_\ell]$ all processors are busy, and, hence, the total work performed in this interval is

$$m \cdot S_{\ell} \leq \sum_{j \neq \ell} p_j$$
.

Hence, the length of the schedule is at most

$$p_{\ell} + \frac{1}{m} \sum_{j \neq \ell} p_j = (1 - \frac{1}{m}) p_{\ell} + \frac{1}{m} \sum_j p_j \le (2 - \frac{1}{m}) C_{\max}^*$$

EADS II © Harald Räcke 14 Scheduling on Identical Machines: Local Search

317

319

A Greedy Strategy

List Scheduling:

Order all processes in a list. When a machine runs empty assign the next yet unprocessed job to it.

Alternatively:

Consider processes in some order. Assign the i-th process to the least loaded machine.

It is easy to see that the result of these greedy strategies fulfill the local optimally condition of our local search algorithm. Hence, these also give 2-approximations.

A Tight Example

$$\frac{\text{ALG}}{\text{OPT}} = \frac{S_{\ell} + p_{\ell}}{p_{\ell}} \approx \frac{2 + \frac{1}{m-1}}{1 + \frac{1}{m-1}} = 2 - \frac{1}{m}$$

A Greedy Strategy

Lemma 18

If we order the list according to non-increasing processing times the approximation guarantee of the list scheduling strategy improves to 4/3.

Proof:

- Let $p_1 \ge \cdots \ge p_n$ denote the processing times of a set of jobs that form a counter-example.
- \blacktriangleright Wlog. the last job to finish is n (otw. deleting this job gives another counter-example with fewer jobs).
- If $p_n \le C_{\text{max}}^*/3$ the previous analysis gives us a schedule length of at most

$$C_{\max}^* + p_n \le \frac{4}{3} C_{\max}^*$$
.

Hence, $p_n > C_{\text{max}}^* / 3$.

- ► This means that all jobs must have a processing time $> C_{\text{max}}^*/3$.
- ▶ But then any machine in the optimum schedule can handle at most two jobs.
- ▶ For such instances Longest-Processing-Time-First is optimal.

15 Scheduling on Identical Machines: Greedy

321

- We can assume that one machine schedules p_1 and p_n (the largest and smallest job).
- ▶ If not assume wlog. that p_1 is scheduled on machine A and p_n on machine B.
- Let p_A and p_B be the other job scheduled on A and B, respectively.
- ▶ $p_1 + p_n \le p_1 + p_A$ and $p_A + p_B \le p_1 + p_A$, hence scheduling p_1 and p_n on one machine and p_A and p_B on the other, cannot increase the Makespan.
- ▶ Repeat the above argument for the remaining machines.

When in an optimal solution a machine can have at most 2 jobs the optimal solution looks as follows.

EADS II © Harald Räcke

15 Scheduling on Identical Machines: Greedy

322

Tight Example

- \triangleright 2m+1 jobs
- ▶ 2 jobs with length 2m, 2m 1, 2m 2, ..., m + 1 (2m 2 jobs in total)
- ▶ 3 jobs of length *m*

Traveling Salesman

Given a set of cities $(\{1,\ldots,n\})$ and a symmetric matrix $C=(c_{ij}),\,c_{ij}\geq 0$ that specifies for every pair $(i,j)\in [n]\times [n]$ the cost for travelling from city i to city j. Find a permutation π of the cities such that the round-trip cost

$$c_{\pi(1)\pi(n)} + \sum_{i=1}^{n-1} c_{\pi(i)\pi(i+1)}$$

is minimized.

EADS II © Harald Räcke 16 TSP

325

327

Metric Traveling Salesman

In the metric version we assume for every triple

$$i, j, k \in \{1, \ldots, n\}$$

$$c_{ij} \leq c_{ij} + c_{jk}$$
.

It is convenient to view the input as a complete undirected graph G=(V,E), where c_{ij} for an edge (i,j) defines the distance between nodes i and j.

Traveling Salesman

Theorem 19

There does not exist an $O(2^n)$ -approximation algorithm for TSP.

Hamiltonian Cycle:

For a given undirected graph G = (V, E) decide whether there exists a simple cycle that contains all nodes in G.

- Given an instance to HAMPATH we create an instance for TSP.
- ▶ If $(i, j) \notin E$ then set c_{ij} to $n2^n$ otw. set c_{ij} to 1. This instance has polynomial size.
- ► There exists a Hamiltonian Path iff there exists a tour with cost n. Otw. any tour has cost strictly larger than 2^n .
- ▶ An $\mathcal{O}(2^n)$ -approximation algorithm could decide btw. these cases. Hence, cannot exist unless P = NP.

EADS II © Harald Räcke

16 TS

326

TSP: Lower Bound I

Lemma 20

The cost $OPT_{TSP}(G)$ of an optimum traveling salesman tour is at least as large as the weight $OPT_{MST}(G)$ of a minimum spanning tree in G.

Proof:

- ► Take the optimum TSP-tour.
- ► Delete one edge.
- ▶ This gives a spanning tree of cost at most $OPT_{TSP}(G)$.

TSP: Greedy Algorithm

- ▶ Start with a tour on a subset *S* containing a single node.
- ▶ Take the node v closest to S. Add it S and expand the existing tour on S to include v.
- ▶ Repeat until all nodes have been processed.

EADS II © Harald Räcke 16 TSP

329

331

TSP: Greedy Algorithm

Lemma 21

The Greedy algorithm is a 2-approximation algorithm.

Let S_i be the set at the start of the i-th iteration, and let v_i denote the node added during the iteration.

Further let $s_i \in S_i$ be the node closest to $v_i \in S_i$.

Let r_i denote the successor of s_i in the tour before inserting v_i .

We replace the edge (s_i, r_i) in the tour by the two edges (s_i, v_i) and (v_i, r_i) .

This increases the cost by

$$c_{\mathcal{S}_i, v_i} + c_{v_i, r_i} - c_{\mathcal{S}_i, r_i} \le 2c_{\mathcal{S}_i, v_i}$$

TSP: Greedy Algorithm

The gray edges form an MST, because exactly these edges are taken in Prims algorithm.

EADS II © Harald Räcke

16 TSP

330

TSP: Greedy Algorithm

The edges (s_i, v_i) considered during the Greedy algorithm are exactly the edges considered during PRIMs MST algorithm.

Hence,

$$\sum_{i} c_{s_i, v_i} = \mathrm{OPT}_{\mathrm{MST}}(G)$$

which with the previous lower bound gives a 2-approximation.

TSP: A different approach

Suppose that we are given an Eulerian graph G' = (V, E', c') of G = (V, E, c) such that for any edge $(i, j) \in E'$ $c'(i, j) \ge c(i, j)$.

Then we can find a TSP-tour of cost at most

$$\sum_{e \in E'} c'(e)$$

- ▶ Find an Fuler tour of G'.
- Fix a permutation of the cities (i.e., a TSP-tour) by traversing the Euler tour and only note the first occurrence of a city.
- ▶ The cost of this TSP tour is at most the cost of the Euler tour because of triangle inequality.

This technique is known as short cutting the Euler tour.

EADS II ||||||| © Harald Räcke 16 TSP

333

TSP: A different approach

Consider the following graph:

- ► Compute an MST of *G*.
- Duplicate all edges.

This graph is Eulerian, and the total cost of all edges is at most $2 \cdot OPT_{MST}(G)$.

Hence, short-cutting gives a tour of cost no more than $2 \cdot OPT_{MST}(G)$ which means we have a 2-approximation.

TSP: Can we do better?

Duplicating all edges in the MST seems to be rather wasteful.

We only need to make the graph Eulerian.

For this we compute a Minimum Weight Matching between odd degree vertices in the MST (note that there are an even number of them).

EADS II © Harald Räcke 16 TSP

337

339

Christofides. Tight Example

- optimal tour: n edges.
- ▶ MST: n-1 edges.
- weight of matching (n+1)/2-1
- ► MST+matching $\approx 3/2 \cdot n$

TSP: Can we do better?

An optimal tour on the odd-degree vertices has cost at most $\mathrm{OPT}_{\mathrm{TSP}}(G)$.

However, the edges of this tour give rise to two disjoint matchings. One of these matchings must have weight less than $\mathrm{OPT}_{\mathrm{TSP}}(G)/2$.

Adding this matching to the MST gives an Eulerian graph with edge weight at most

$$OPT_{MST}(G) + OPT_{TSP}(G)/2 \le \frac{3}{2}OPT_{TSP}(G)$$
,

Short cutting gives a $\frac{3}{2}$ -approximation for metric TSP.

This is the best that is known.

EADS II © Harald Räcke

16 TSP

338

Tree shortcutting. Tight Example

edges have Euclidean distance.

17 Rounding Data + Dynamic Programming

Knapsack:

Given a set of items $\{1,\ldots,n\}$, where the i-th item has weight $w_i\in\mathbb{N}$ and profit $p_i\in\mathbb{N}$, and given a threshold W. Find a subset $I\subseteq\{1,\ldots,n\}$ of items of total weight at most W such that the profit is maximized (we can assume each $w_i\leq W$).

EADS II © Harald Räcke 17.1 Knapsack

341

343

17 Rounding Data + Dynamic Programming

Definition 22

An algorithm is said to have pseudo-polynomial running time if the running time is polynomial when the numerical part of the input is encoded in unary.

17 Rounding Data + Dynamic Programming

Algorithm 1 Knapsack 1: $A(1) \leftarrow [(0,0),(p_1,w_1)]$ 2: for $j \leftarrow 2$ to n do 3: $A(j) \leftarrow A(j-1)$ 4: for each $(p,w) \in A(j-1)$ do 5: if $w + w_j \leq W$ then 6: add $(p + p_j, w + w_j)$ to A(j)7: remove dominated pairs from A(j)8: return $\max_{(p,w) \in A(n)} p$

The running time is $\mathcal{O}(n \cdot \min\{W, P\})$, where $P = \sum_i p_i$ is the total profit of all items. This is only pseudo-polynomial.

EADS II © Harald Räcke

17.1 Knapsack

342

17 Rounding Data + Dynamic Programming

- Let *M* be the maximum profit of an element.
- ▶ Set $\mu := \epsilon M/n$.
- ► Set $p'_i := \lfloor p_i/\mu \rfloor$ for all i.
- Run the dynamic programming algorithm on this revised instance.

Running time is at most

$$\mathcal{O}(nP') = \mathcal{O}\left(n\sum_{i} p'_{i}\right) = \mathcal{O}\left(n\sum_{i} \left\lfloor \frac{p_{i}}{\epsilon M/n} \right\rfloor\right) \leq \mathcal{O}\left(\frac{n^{3}}{\epsilon}\right).$$

17.1 Knapsack

344

17 Rounding Data + Dynamic Programming

Let S be the set of items returned by the algorithm, and let O be an optimum set of items.

$$\sum_{i \in S} p_i \ge \mu \sum_{i \in S} p'_i$$

$$\ge \mu \sum_{i \in O} p'_i$$

$$\ge \sum_{i \in O} p_i - |O|\mu$$

$$\ge \sum_{i \in O} p_i - n\mu$$

$$= \sum_{i \in O} p_i - \epsilon M$$

$$\ge (1 - \epsilon) \text{OPT}.$$

17.1 Knapsack

345

347

17.2 Scheduling Revisited

Partition the input into long jobs and short jobs.

A job j is called short if

$$p_j \leq \frac{1}{km} \sum_i p_i$$

Idea:

- 1. Find the optimum Makespan for the long jobs by brute force.
- 2. Then use the list scheduling algorithm for the short jobs, always assigning the next job to the least loaded machine.

Scheduling Revisited

The previous analysis of the scheduling algorithm gave a makespan of

$$\frac{1}{m}\sum_{j\neq\ell}p_j+p_\ell$$

where ℓ is the last job to complete.

Together with the obervation that if each $p_i \ge \frac{1}{3}C_{\text{max}}^*$ then LPT is optimal this gave a 4/3-approximation.

EADS II © Harald Räcke

17.2 Scheduling Revisited

346

We still have the inequality

$$\frac{1}{m}\sum_{j\neq\ell}p_j+p_\ell$$

where ℓ is the last job (this only requires that all machines are busy before time S_{ℓ}).

If ℓ is a long job, then the schedule must be optimal, as it consists of an optimal schedule of long jobs plus a schedule for short jobs.

If ℓ is a short job its length is at most

$$p_{\ell} \leq \sum_{j} p_{j}/(mk)$$

which is at most C_{max}^*/k .

Hence we get a schedule of length at most

$$\left(1+\frac{1}{k}\right)C_{\max}^*$$

There are at most km long jobs. Hence, the number of possibilities of scheduling these jobs on m machines is at most m^{km} , which is constant if m is constant. Hence, it is easy to implement the algorithm in polynomial time.

Theorem 23

The above algorithm gives a polynomial time approximation scheme (PTAS) for the problem of scheduling n jobs on m identical machines if m is constant.

We choose $k = \lceil \frac{1}{\epsilon} \rceil$.

EADS II © Harald Räcke 17.2 Scheduling Revisited

349

351

- We round all long jobs down to multiples of T/k^2 .
- ▶ For these rounded sizes we first find an optimal schedule.
- ▶ If this schedule does not have length at most *T* we conclude that also the original sizes don't allow such a schedule.
- ► If we have a good schedule we extend it by adding the short jobs according to the LPT rule.

How to get rid of the requirement that m is constant?

We first design an algorithm that works as follows: On input of T it either finds a schedule of length $(1+\frac{1}{k})T$ or certifies that no schedule of length at most T exists (assume $T \geq \frac{1}{m} \sum_j p_j$).

We partition the jobs into long jobs and short jobs:

- ▶ A job is long if its size is larger than T/k.
- Otw. it is a short job.

EADS II © Harald Räcke

17.2 Scheduling Revisited

350

After the first phase the rounded sizes of the long jobs assigned to a machine add up to at most T.

There can be at most k (long) jobs assigned to a machine as otw. their rounded sizes would add up to more than T (note that the rounded size of a long job is at least T/k).

Since, jobs had been rounded to multiples of T/k^2 going from rounded sizes to original sizes gives that the Makespan is at most

 $\left(1+\frac{1}{k}\right)T$.

During the second phase there always must exist a machine with load at most T, since T is larger than the average load. Assigning the current (short) job to such a machine gives that the new load is at most

$$T + \frac{T}{k} \le \left(1 + \frac{1}{k}\right)T.$$

EADS II © Harald Räcke 17.2 Scheduling Revisited

353

355

Let $\mathrm{OPT}(n_1,\ldots,n_{k^2})$ be the number of machines that are required to schedule input vector (n_1,\ldots,n_{k^2}) with Makespan at most T.

If $OPT(n_1, ..., n_{k^2}) \le m$ we can schedule the input.

We have

$$OPT(n_1,\ldots,n_{k^2})$$

$$= \begin{cases} 0 & (n_1, \dots, n_{k^2}) = 0 \\ 1 + \min_{(s_1, \dots, s_{k^2}) \in C} \text{OPT}(n_1 - s_1, \dots, n_{k^2} - s_{k^2}) & (n_1, \dots, n_{k^2}) \geq 0 \\ \infty & \text{otw.} \end{cases}$$

where C is the set of all configurations.

Hence, the running time is roughly $(k+1)^{k^2} n^{k^2} \approx (nk)^{k^2}$.

Running Time for scheduling large jobs: There should not be a job with rounded size more than T as otw. the problem becomes trivial.

Hence, any large job has rounded size of $\frac{i}{k^2}T$ for $i\in\{k,\ldots,k^2\}$. Therefore the number of different inputs is at most n^{k^2} (described by a vector of length k^2 where, the i-th entry describes the number of jobs of size $\frac{i}{k^2}T$). This is polynomial.

The schedule/configuration of a particular machine x can be described by a vector of length k^2 where the i-th entry describes the number of jobs of rounded size $\frac{i}{k^2}T$ assigned to x. There are only $(k+1)^{k^2}$ different vectors.

This means there are a constant number of different machine configurations.

EADS II © Harald Räcke

17.2 Scheduling Revisited

354

We can turn this into a PTAS by choosing $k=\lceil 1/\epsilon \rceil$ and using binary search. This gives a running time that is exponential in $1/\epsilon$.

Can we do better?

Scheduling on identical machines with the goal of minimizing Makespan is a strongly NP-complete problem.

Theorem 24

There is no FPTAS for problems that are strongly NP-hard.

356

- Suppose we have an instance with polynomially bounded processing times $p_i \le q(n)$
- We set $k := \lceil 2na(n) \rceil \ge 2 \text{ OPT}$
- Then

$$ALG \le \left(1 + \frac{1}{k}\right) OPT \le OPT + \frac{1}{2}$$

- ▶ But this means that the algorithm computes the optimal solution as the optimum is integral.
- ▶ This means we can solve problem instances if processing times are polynomially bounded
- ▶ Running time is $\mathcal{O}(\text{poly}(n,k)) = \mathcal{O}(\text{poly}(n))$
- ▶ For strongly NP-complete problems this is not possible unless P=NP

17.2 Scheduling Revisited

357

Bin Packing

Given n items with sizes s_1, \ldots, s_n where

$$1 > s_1 \ge \cdots \ge s_n > 0$$
.

Pack items into a minimum number of bins where each bin can hold items of total size at most 1.

Theorem 25

There is no ρ -approximation for Bin Packing with $\rho < 3/2$ unless P = NP.

17.3 Bin Packing

More General

Let $OPT(n_1, ..., n_A)$ be the number of machines that are required to schedule input vector (n_1, \ldots, n_A) with Makespan at most T (A: number of different sizes).

If $OPT(n_1, ..., n_A) \leq m$ we can schedule the input.

 $OPT(n_1,\ldots,n_A)$ $= \begin{cases} 0 & (n_1, \dots, n_A) = 0 \\ 1 + \min_{(s_1, \dots, s_A) \in C} \mathrm{OPT}(n_1 - s_1, \dots, n_A - s_A) & (n_1, \dots, n_A) \geq 0 \\ \infty & \mathrm{otw.} \end{cases}$

where C is the set of all configurations.

 $|C| \leq (B+1)^A$, where B is the number of jobs that possibly can fit on the same machine.

The running time is then $O((B+1)^A n^A)$ because the dynamic programming table has just n^A entries.

Bin Packing

Proof

In the partition problem we are given positive integers b_1, \dots, b_n with $B = \sum_i b_i$ even. Can we partition the integers into two sets S and T s.t.

$$\sum_{i \in S} b_i = \sum_{i \in T} b_i ?$$

- We can solve this problem by setting $s_i := 2b_i/B$ and asking whether we can pack the resulting items into 2 bins or not.
- A ρ -approximation algorithm with $\rho < 3/2$ cannot output 3 or more bins when 2 are optimal.
- ▶ Hence, such an algorithm can solve Partition.

359

360

Bin Packing

Definition 26

An asymptotic polynomial-time approximation scheme (APTAS) is a family of algorithms $\{A_{\epsilon}\}$ along with a constant c such that A_{ϵ} returns a solution of value at most $(1+\epsilon)OPT + c$ for minimization problems.

- ▶ Note that for Set Cover or for Knapsack it makes no sense to differentiate between the notion of a PTAS or an APTAS because of scaling.
- ► However, we will develop an APTAS for Bin Packing.

EADS II |||||||| © Harald Räcke 17.3 Bin Packing

EADS II © Harald Räcke

361

363

Choose $\gamma = \epsilon/2$. Then we either use ℓ bins or at most

$$\frac{1}{1 - \epsilon/2} \cdot \text{OPT} + 1 \le (1 + \epsilon) \cdot \text{OPT} + 1$$

bins.

It remains to find an algorithm for the large items.

Bin Packing

Again we can differentiate between small and large items.

Lemma 27

Any packing of items into ℓ bins can be extended with items of size at most y s.t. we use only $\max\{\ell, \frac{1}{1-\gamma} SIZE(I) + 1\}$ bins, where $SIZE(I) = \sum_{i} s_{i}$ is the sum of all item sizes.

- If after Greedy we use more than ℓ bins, all bins (apart from the last) must be full to at least $1 - \gamma$.
- ▶ Hence, $r(1 \gamma) \leq SIZE(I)$ where γ is the number of nearly-full bins.
- ► This gives the lemma.

17.3 Bin Packing

362

Bin Packing

пп EADS II

Linear Grouping:

Generate an instance I' (for large items) as follows.

- Order large items according to size.
- Let the first k items belong to group 1; the following k items belong to group 2; etc.
- Delete items in the first group;
- ▶ Round items in the remaining groups to the size of the largest item in the group.

Lemma 29

 $OPT(I') \le OPT(I) \le OPT(I') + k$

Proof 2:

- ightharpoonup Any bin packing for I' gives a bin packing for I as follows.
- ▶ Pack the items of group 1 into *k* new bins;
- ▶ Pack the items of groups 2, where in the packing for *I'* the items for group 2 have been packed;
- ▶ ...

Lemma 28

 $OPT(I') \le OPT(I) \le OPT(I') + k$

Proof 1:

- ightharpoonup Any bin packing for I gives a bin packing for I' as follows.
- ▶ Pack the items of group 2, where in the packing for *I* the items for group 1 have been packed;
- ▶ Pack the items of groups 3, where in the packing for *I* the items for group 2 have been packed;
- ...

EADS II © Harald Räcke

17.3 Bin Packing

366

Assume that our instance does not contain pieces smaller than $\epsilon/2$. Then ${\rm SIZE}(I) \ge \epsilon n/2$.

We set $k = \lfloor \epsilon \text{SIZE}(I) \rfloor$.

Then $n/k \le n/\lfloor \epsilon^2 n/2 \rfloor \le 4/\epsilon^2$ (here we used $\lfloor \alpha \rfloor \ge \alpha/2$ for $\alpha \ge 1$).

Hence, after grouping we have a constant number of piece sizes $(4/\epsilon^2)$ and at most a constant number $(2/\epsilon)$ can fit into any bin.

We can find an optimal packing for such instances by the previous Dynamic Programming approach.

cost (for large items) at most

$$OPT(I') + k \le OPT(I) + \epsilon SIZE(I) \le (1 + \epsilon)OPT(I)$$

running time $\mathcal{O}((\frac{2}{\epsilon}n)^{4/\epsilon^2})$.

Can we do better?

In the following we show how to obtain a solution where the number of bins is only

$$OPT(I) + \mathcal{O}(\log^2(SIZE(I)))$$
.

Note that this is usually better than a guarantee of

$$(1+\epsilon)OPT(I)+1$$
.

EADS II © Harald Räcke EADS II

17.4 Advanced Rounding for Bin Packing

369

371

Configuration LP

A possible packing of a bin can be described by an m-tuple (t_1, \ldots, t_m) , where t_i describes the number of pieces of size s_i . Clearly,

$$\sum_{i} t_i \cdot s_i \leq 1 .$$

We call a vector that fulfills the above constraint a configuration.

Configuration LP

Change of Notation:

- Group pieces of identical size.
- Let s_1 denote the largest size, and let b_1 denote the number of pieces of size s_1 .
- s_2 is second largest size and b_2 number of pieces of size s_2 ;
- $ightharpoonup s_m$ smallest size and b_m number of pieces of size s_m .

EADS II © Harald Räcke

17.4 Advanced Rounding for Bin Packing

370

Configuration LP

Let N be the number of configurations (exponential).

Let T_1, \ldots, T_N be the sequence of all possible configurations (a configuration T_i has T_{ii} pieces of size s_i).

How to solve this LP?

later...

EADS II © Harald Räcke 17.4 Advanced Rounding for Bin Packing

373

375

77

We can assume that each item has size at least 1/SIZE(I).

EADS II © Harald Räcke

17.4 Advanced Rounding for Bin Packing

374

Harmonic Grouping

- ► Sort items according to size (monotonically decreasing).
- ▶ Process items in this order; close the current group if size of items in the group is at least 2 (or larger). Then open new group.
- ▶ I.e., G_1 is the smallest cardinality set of largest items s.t. total size sums up to at least 2. Similarly, for G_2, \ldots, G_{r-1} .
- ▶ Only the size of items in the last group G_r may sum up to less than 2.

Harmonic Grouping

From the grouping we obtain instance I^{\prime} as follows:

- ► Round all items in a group to the size of the largest group member.
- ▶ Delete all items from group G_1 and G_r .
- ▶ For groups $G_2, ..., G_{r-1}$ delete $n_i n_{i-1}$ items.
- ▶ Observe that $n_i \ge n_{i-1}$.

Lemma 30

The number of different sizes in I' is at most SIZE(I)/2.

- ▶ Each group that survives (recall that G_1 and G_r are deleted) has total size at least 2.
- ▶ Hence, the number of surviving groups is at most SIZE(I)/2.
- ightharpoonup All items in a group have the same size in I'.

EADS II © Harald Räcke 17.4 Advanced Rounding for Bin Packing

377

379

Algorithm 1 BinPack

- 1: **if** SIZE(I) < 10 **then**
- 2: pack remaining items greedily
- 3: Apply harmonic grouping to create instance I'; pack discarded items in at most $\mathcal{O}(\log(\text{SIZE}(I)))$ bins.
- 4: Let x be optimal solution to configuration LP
- 5: Pack $\lfloor x_j \rfloor$ bins in configuration T_j for all j; call the packed instance I_1 .
- 6: Let I_2 be remaining pieces from I'
- 7: Pack I_2 via BinPack (I_2)

Lemma 31

The total size of deleted items is at most $O(\log(SIZE(I)))$.

- ▶ The total size of items in G_1 and G_r is at most 6 as a group has total size at most 3.
- ▶ Consider a group G_i that has strictly more items than G_{i-1} .
- ▶ It discards $n_i n_{i-1}$ pieces of total size at most

$$3\frac{n_i - n_{i-1}}{n_i} \le \sum_{j=n_{i-1}+1}^{n_i} \frac{3}{j}$$

since the smallest piece has size at most $3/n_i$.

• Summing over all i that have $n_i > n_{i-1}$ gives a bound of at most

$$\sum_{i=1}^{n_{r-1}} \frac{3}{j} \le \mathcal{O}(\log(\text{SIZE}(I))) .$$

(note that $n_r \leq \text{SIZE}(I)$ since we assume that the size of each item is at least 1/SIZE(I)).

Analysis

$$OPT_{IP}(I_1) + OPT_{IP}(I_2) \le OPT_{IP}(I') \le OPT_{IP}(I)$$

Proof:

- ▶ Each piece surviving in I' can be mapped to a piece in I of no lesser size. Hence, $OPT_{LP}(I') \leq OPT_{LP}(I)$
- \triangleright $\lfloor x_i \rfloor$ is feasible solution for I_1 (even integral).
- $\triangleright x_i \lfloor x_i \rfloor$ is feasible solution for I_2 .

Analysis

Each level of the recursion partitions pieces into three types

- 1. Pieces discarded at this level.
- **2.** Pieces scheduled because they are in I_1 .
- **3.** Pieces in I_2 are handed down to the next level.

Pieces of type 2 summed over all recursion levels are packed into at most OPTIP many bins.

Pieces of type 1 are packed into at most

$$\mathcal{O}(\log(\text{SIZE}(I))) \cdot L$$

many bins where L is the number of recursion levels.

|||||||| © Harald Räcke

17.4 Advanced Rounding for Bin Packing

381

How to solve the LP?

Let T_1, \ldots, T_N be the sequence of all possible configurations (a configuration T_i has T_{ii} pieces of size s_i). In total we have b_i pieces of size s_i .

Primal

Dual

EADS II

© Harald Räcke

$$\begin{array}{llll} \max & \sum_{i=1}^{m} y_i b_i \\ \text{s.t.} & \forall j \in \{1, \dots, N\} & \sum_{i=1}^{m} T_{ji} y_i & \leq & 1 \\ & \forall i \in \{1, \dots, m\} & y_i & \geq & 0 \end{array}$$

Analysis

We can show that $SIZE(I_2) \leq SIZE(I)/2$. Hence, the number of recursion levels is only $\mathcal{O}(\log(\text{SIZE}(I_{\text{original}})))$ in total.

- ▶ The number of non-zero entries in the solution to the configuration LP for I' is at most the number of constraints, which is the number of different sizes (\leq SIZE(I)/2).
- ▶ The total size of items in I_2 can be at most $\sum_{i=1}^{N} x_i \lfloor x_i \rfloor$ which is at most the number of non-zero entries in the solution to the configuration LP.

EADS II © Harald Räcke

17.4 Advanced Rounding for Bin Packing

382

Separation Oracle

Suppose that I am given variable assignment γ for the dual.

How do I find a violated constraint?

I have to find a configuration $T_i = (T_{i1}, \dots, T_{im})$ that

is feasible, i.e.,

$$\sum_{i=1}^{m} T_{ji} \cdot s_i \leq 1 ,$$

and has a large profit

$$\sum_{i=1}^{m} T_{ji} y_i > 1$$

But this is the Knapsack problem.

383

¬ □ EADS II

Separation Oracle

We have FPTAS for Knapsack. This means if a constraint is violated with $1+\epsilon'=1+\frac{\epsilon}{1-\epsilon}$ we find it, since we can obtain at least $(1-\epsilon)$ of the optimal profit.

The solution we get is feasible for:

Dual'

Primal'

min
$$(1 + \epsilon') \sum_{j=1}^{N} x_j$$
s.t. $\forall i \in \{1...m\}$ $\sum_{j=1}^{N} T_{ji} x_j \geq b_i$
 $\forall j \in \{1,...,N\}$ $x_j \geq 0$

This gives that overall we need at most

$$(1 + \epsilon')$$
OPT_{IP} $(I) + \mathcal{O}(\log^2(SIZE(I)))$

bins.

We can choose $\epsilon'=\frac{1}{\mathrm{OPT}}$ as $\mathrm{OPT}\leq$ #items and since we have a fully polynomial time approximation scheme (FPTAS) for knapsack.

Separation Oracle

If the value of the computed dual solution (which may be infeasible) is \boldsymbol{z} then

$$OPT \le z \le (1 + \epsilon')OPT$$

How do we get good primal solution (not just the value)?

- ► The constraints used when computing *z* certify that the solution is feasible for DUAL'.
- ► Suppose that we drop all unused constraints in DUAL. We will compute the same solution feasible for DUAL'.
- ▶ Let DUAL" be DUAL without unused constraints.
- ► The dual to DUAL'' is PRIMAL where we ignore variables for which the corresponding dual constraint has not been used.
- ▶ The optimum value for PRIMAL'' is at most $(1 + \epsilon')$ OPT.
- ▶ We can compute the corresponding solution in polytime.

Lemma 32 (Chernoff Bounds)

Let X_1,\ldots,X_n be n independent 0-1 random variables, not necessarily identically distributed. Then for $X=\sum_{i=1}^n X_i$ and $\mu=E[X]$, $L\leq \mu\leq U$, and $\delta>0$

$$\Pr[X \ge (1+\delta)U] < \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^U$$
,

and

$$\Pr[X \leq (1-\delta)L] < \left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^L$$
 ,

387

Lemma 33

For $0 \le \delta \le 1$ we have that

$$\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{U} \le e^{-U\delta^2/3}$$

and

$$\left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^L \le e^{-L\delta^2/2}$$

18.1 Chernoff Bounds

389

391

Proof of Chernoff Bounds

Hence:

$$\Pr[X \ge (1+\delta)U] \le \frac{\mathbb{E}[X]}{(1+\delta)U} \approx \frac{1}{1+\delta}$$

That's awfully weak :(

Proof of Chernoff Bounds

Markovs Inequality:

Let \boldsymbol{X} be random variable taking non-negative values.

Then

$$Pr[X \ge a] \le E[X]/a$$

Trivial!

EADS II © Harald Räcke

18.1 Chernoff Bounds

390

Proof of Chernoff Bounds

Set $p_i = \Pr[X_i = 1]$. Assume $p_i > 0$ for all i.

Cool Trick:

$$\Pr[X \ge (1+\delta)U] = \Pr[e^{tX} \ge e^{t(1+\delta)U}]$$

Now, we apply Markov:

$$\Pr[e^{tX} \ge e^{t(1+\delta)U}] \le \frac{\mathbb{E}[e^{tX}]}{e^{t(1+\delta)U}} \ .$$

This may be a lot better (!?)

Proof of Chernoff Bounds

$$\mathbf{E}\left[e^{tX}\right] = \mathbf{E}\left[e^{t\sum_{i}X_{i}}\right] = \mathbf{E}\left[\prod_{i}e^{tX_{i}}\right] = \prod_{i}\mathbf{E}\left[e^{tX_{i}}\right]$$

$$\mathbb{E}\left[e^{tX_i}\right] = (1-p_i) + p_i e^t = 1 + p_i(e^t-1) \leq e^{p_i(e^t-1)}$$

$$\prod_i \mathbf{E}\left[e^{tX_i}\right] \le \prod_i e^{p_i(e^t-1)} = e^{\sum p_i(e^t-1)} = e^{(e^t-1)U}$$

EADS II © Harald Räcke 18.1 Chernoff Bounds

393

395

Lemma 34

For $0 \le \delta \le 1$ we have that

$$\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{U} \le e^{-U\delta^{2}/3}$$

and

$$\left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^L \le e^{-L\delta^2/2}$$

Now, we apply Markov:

$$\Pr[X \ge (1+\delta)U] = \Pr[e^{tX} \ge e^{t(1+\delta)U}]$$

$$\le \frac{E[e^{tX}]}{e^{t(1+\delta)U}} \le \frac{e^{(e^t-1)U}}{e^{t(1+\delta)U}} \le \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^U$$

We choose $t = \ln(1 + \delta)$.

EADS II © Harald Räcke

18.1 Chernoff Bounds

394

Show:

$$\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{U} \le e^{-U\delta^2/3}$$

Take logarithms:

$$U(\delta - (1+\delta)\ln(1+\delta)) \le -U\delta^2/3$$

True for $\delta = 0$. Divide by U and take derivatives:

$$-\ln(1+\delta) \le -2\delta/3$$

Reason:

As long as derivative of left side is smaller than derivative of right side the inequality holds.

$$f(\delta) := -\ln(1+\delta) + 2\delta/3 \le 0$$

A convex function ($f''(\delta) \ge 0$) on an interval takes maximum at the boundaries.

$$f'(\delta) = -\frac{1}{1+\delta} + 2/3$$
 $f''(\delta) = \frac{1}{(1+\delta)^2}$

$$f(0) = 0$$
 and $f(1) = -\ln(2) + 2/3 < 0$

EADS II © Harald Räcke 18.1 Chernoff Bounds

397

399

Show:

$$\left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^L \le e^{-L\delta^2/2}$$

Take logarithms:

$$L(-\delta - (1 - \delta)\ln(1 - \delta)) \le -L\delta^2/2$$

True for $\delta = 0$. Divide by L and take derivatives:

$$\ln(1-\delta) \le -\delta$$

Reason:

As long as derivative of left side is smaller than derivative of right side the inequality holds.

EADS II © Harald Räcke

18.1 Chernoff Bounds

For $\delta \geq 1$ we show

$$\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{U} \le e^{-U\delta/3}$$

Take logarithms:

$$U(\delta - (1 + \delta) \ln(1 + \delta)) \le -U\delta/3$$

True for $\delta = 0$. Divide by U and take derivatives:

$$-\ln(1+\delta) \le -1/3 \iff \ln(1+\delta) \ge 1/3$$
 (true)

Reason:

As long as derivative of left side is smaller than derivative of right side the inequality holds.

EADS II © Harald Räcke

18.1 Chernoff Bounds

398

 $ln(1-\delta) \le -\delta$

True for $\delta = 0$. Take derivatives:

$$-\frac{1}{1-\delta} \le -1$$

This holds for $0 \le \delta < 1$.

Integer Multicommodity Flows

- ▶ Given s_i - t_i pairs in a graph.
- Connect each pair by a path such that not too many path use any given edge.

18.1 Chernoff Bounds

401

403

Theorem 35

If $W^* \ge c \ln n$ for some constant c, then with probability at least $n^{-c/3}$ the total number of paths using any edge is at most $W^* + \sqrt{cW^* \ln n}$.

Theorem 36

With probability at least $n^{-c/3}$ the total number of paths using any edge is at most $W^* + c \ln n$.

Integer Multicommodity Flows

Randomized Rounding:

For each i choose one path from the set \mathcal{P}_i at random according to the probability distribution given by the Linear Programming solution.

EADS II © Harald Räcke

18.1 Chernoff Bounds

402

Integer Multicommodity Flows

Let X_e^i be a random variable that indicates whether the path for s_i - t_i uses edge e.

Then the number of paths using edge e is $Y_e = \sum_i X_e^i$.

$$E[Y_e] = \sum_{i} \sum_{p \in P_i: e \in p} x_p^* = \sum_{p: e \in P} x_p^* \le W^*$$

Integer Multicommodity Flows

Choose $\delta = \sqrt{(c \ln n)/W^*}$.

Then

$$\Pr[Y_e \ge (1+\delta)W^*] < e^{-W^*\delta^2/3} = \frac{1}{n^{c/3}}$$

EADS II © Harald Räcke 18.1 Chernoff Bounds

405

407

19 MAXSAT

Terminology:

- ▶ A variable x_i and its negation \bar{x}_i are called literals.
- ▶ Hence, each clause consists of a set of literals (i.e., no duplications: $x_i \lor x_i \lor \bar{x}_j$ is **not** a clause).
- We assume a clause does not contain x_i and \bar{x}_i for any i.
- \triangleright x_i is called a positive literal while the negation \bar{x}_i is called a negative literal.
- For a given clause C_j the number of its literals is called its length or size and denoted with ℓ_j .
- ► Clauses of length one are called unit clauses.

19 MAXSAT

Problem definition:

- ► *n* Boolean variables
- ▶ m clauses $C_1, ..., C_m$. For example

$$C_7 = x_3 \vee \bar{x}_5 \vee \bar{x}_9$$

- Non-negative weight w_i for each clause C_i .
- Find an assignment of true/false to the variables sucht that the total weight of clauses that are satisfied is maximum.

EADS II © Harald Räcke

19 MAXSAT

406

MAXSAT: Flipping Coins

Set each x_i independently to true with probability $\frac{1}{2}$ (and, hence, to false with probability $\frac{1}{2}$, as well).

19 MAXSAT

Define random variable X_i with

$$X_j = \begin{cases} 1 & \text{if } C_j \text{ satisfied} \\ 0 & \text{otw.} \end{cases}$$

Then the total weight W of satisfied clauses is given by

$$W = \sum_{j} w_{j} X_{j}$$

EADS II © Harald Räcke EADS II

19 MAXSAT

409

411

19 MAXSAT

 $=\sum_{j}w_{j}\Pr[C_{j} \text{ is satisified}]$

 $= \sum_{j} w_{j} \left(1 - \left(\frac{1}{2} \right)^{\ell_{j}} \right)$

 $E[W] = \sum_{j} w_{j} E[X_{j}]$

 $\geq \frac{1}{2} \sum_{i} w_{j}$

 $\geq \frac{1}{2}$ OPT

410

MAXSAT: LP formulation

▶ Let for a clause C_i , P_i be the set of positive literals and N_i the set of negative literals.

$$C_j = \bigvee_{j \in P_j} x_i \vee \bigvee_{j \in N_j} \bar{x}_i$$

MAXSAT: Randomized Rounding

Set each x_i independently to true with probability y_i (and, hence, to false with probability $(1 - y_i)$).

Lemma 37 (Geometric Mean ≤ Arithmetic Mean)

For any nonnegative a_1, \ldots, a_k

$$\left(\prod_{i=1}^k a_i\right)^{1/k} \le \frac{1}{k} \sum_{i=1}^k a_i$$

EADS II © Harald Räcke 19 MAXSAT

413

415

$$\begin{split} \Pr[C_j \text{ not satisfied}] &= \prod_{i \in P_j} (1 - y_i) \prod_{i \in N_j} y_i \\ &\leq \left[\frac{1}{\ell_j} \left(\sum_{i \in P_j} (1 - y_i) + \sum_{i \in N_j} y_i \right) \right]^{\ell_j} \\ &= \left[1 - \frac{1}{\ell_j} \left(\sum_{i \in P_j} y_i + \sum_{i \in N_j} (1 - y_i) \right) \right]^{\ell_j} \\ &\leq \left(1 - \frac{z_j}{\ell_j} \right)^{\ell_j} \end{split}.$$

Definition 38

A function f on an interval I is concave if for any two points s and r from I and any $\lambda \in [0,1]$ we have

$$f(\lambda s + (1 - \lambda)r) \ge \lambda f(s) + (1 - \lambda)f(r)$$

Lemma 39

Let f be a concave function on the interval [0,1], with f(0)=a and f(1)=a+b. Then

$$f(\lambda) = f((1 - \lambda)0 + \lambda 1)$$

$$\geq (1 - \lambda)f(0) + \lambda f(1)$$

$$= a + \lambda b$$

for $\lambda \in [0,1]$.

EADS II © Harald Räcke

19 MAXSAT

414

The function $f(z) = 1 - (1 - \frac{z}{\ell})^{\ell}$ is concave. Hence,

$$\Pr[C_j \text{ satisfied}] \ge 1 - \left(1 - \frac{z_j}{\ell_j}\right)^{\ell_j}$$

$$\ge \left[1 - \left(1 - \frac{1}{\ell_j}\right)^{\ell_j}\right] \cdot z_j.$$

 $f''(z)=-rac{\ell-1}{\ell}\Big[1-rac{z}{\ell}\Big]^{\ell-2}\leq 0$ for $z\in[0,1].$ Therefore, f is concave.

$$\begin{split} E[W] &= \sum_j w_j \Pr[C_j \text{ is satisfied}] \\ &\geq \sum_j w_j z_j \left[1 - \left(1 - \frac{1}{\ell_j} \right)^{\ell_j} \right] \\ &\geq \left(1 - \frac{1}{e} \right) \text{OPT .} \end{split}$$

EADS II © Harald Räcke 19 MAXSAT

417

Let W_1 be the value of randomized rounding and W_2 the value obtained by coin flipping.

$$\begin{split} E[\max\{W_1,W_2\}] \\ &\geq E[\frac{1}{2}W_1 + \frac{1}{2}W_2] \\ &\geq \frac{1}{2}\sum_j w_j z_j \left[1 - \left(1 - \frac{1}{\ell_j}\right)^{\ell_j}\right] + \frac{1}{2}\sum_j w_j \left(1 - \left(\frac{1}{2}\right)^{\ell_j}\right) \\ &\geq \sum_j w_j z_j \left[\frac{1}{2}\left(1 - \left(1 - \frac{1}{\ell_j}\right)^{\ell_j}\right) + \frac{1}{2}\left(1 - \left(\frac{1}{2}\right)^{\ell_j}\right)\right] \\ &\geq \frac{3}{4} \text{for all integers} \\ &\geq \frac{3}{4} \text{OPT} \end{split}$$

MAXSAT: The better of two

Theorem 40

Choosing the better of the two solutions given by randomized rounding and coin flipping yields a $\frac{3}{4}$ -approximation.

EADS II © Harald Räcke

19 MAXSAT

418

419

MAXSAT: Nonlinear Randomized Rounding

So far we used linear randomized rounding, i.e., the probability that a variable is set to 1/true was exactly the value of the corresponding variable in the linear program.

We could define a function $f:[0,1] \to [0,1]$ and set x_i to true with probability $f(y_i)$.

EADS II
© Harald Räcke

19 MAXSAT

421

MAXSAT: Nonlinear Randomized Rounding

Let $f:[0,1] \rightarrow [0,1]$ be a function with

$$1 - 4^{-x} \le f(x) \le 4^{x-1}$$

Theorem 41

Rounding the LP-solution with a function f of the above form gives a $\frac{3}{4}$ -approximation.

EADS II © Harald Räcke

19 MAXSAT

422

$$\begin{split} \Pr[C_j \text{ not satisfied}] &= \prod_{i \in P_j} (1 - f(y_i)) \prod_{i \in N_j} f(y_i) \\ &\leq \prod_{i \in P_j} 4^{-y_i} \prod_{i \in N_j} 4^{y_i - 1} \\ &= 4^{-(\sum_{i \in P_j} y_i + \sum_{i \in N_j} (1 - y_i))} \\ &\leq 4^{-z_j} \end{split}$$

The function $g(z) = 1 - 4^{-z}$ is concave on [0, 1]. Hence,

$$\Pr[C_j \text{ satisfied}] \ge 1 - 4^{-z_j} \ge \frac{3}{4}z_j$$
.

Therefore,

$$E[W] = \sum_{j} w_{j} \Pr[C_{j} \text{ satisfied}] \ge \frac{3}{4} \sum_{j} w_{j} z_{j} \ge \frac{3}{4} \text{OPT}$$

EADS II © Harald Räcke 19 MAXSAT

425

427

Lemma 43

Our ILP-formulation for the MAXSAT problem has integrality gap at most $\frac{3}{4}$.

Consider: $(x_1 \lor x_2) \land (\bar{x}_1 \lor x_2) \land (x_1 \lor \bar{x}_2) \land (\bar{x}_1 \lor \bar{x}_2)$

- any solution can satisfy at most 3 clauses
- we can set $y_1 = y_2 = 1/2$ in the LP; this allows to set $z_1 = z_2 = z_3 = z_4 = 1$
- ▶ hence, the LP has value 4.

Can we do better?

Not if we compare ourselves to the value of an optimum LP-solution.

Definition 42 (Integrality Gap)

The integrality gap for an ILP is the worst-case ratio over all instances of the problem of the value of an optimal IP-solution to the value of an optimal solution to its linear programming relaxation.

Note that the integrality is less than one for maximization problems and larger than one for minimization problems (of course, equality is possible).

Note that an integrality gap only holds for one specific ILP formulation.

Repetition: Primal Dual for Set Cover

Primal Relaxation:

Dual Formulation:

Repetition: Primal Dual for Set Cover

Algorithm:

- Start with y = 0 (feasible dual solution). Start with x = 0 (integral primal solution that may be infeasible).
- While x not feasible
 - ▶ Identify an element *e* that is not covered in current primal integral solution.
 - Increase dual variable y_e until a dual constraint becomes tight (maybe increase by 0!).
 - If this is the constraint for set S_j set $x_j = 1$ (add this set to your solution).

EADS II © Harald Räcke 20 Primal Dual Revisited

429

431

Note that the constructed pair of primal and dual solution fulfills primal slackness conditions.

This means

$$x_j > 0 \Rightarrow \sum_{e \in S_j} y_e = w_j$$

If we would also fulfill dual slackness conditions

$$y_e > 0 \Rightarrow \sum_{j:e \in S_i} x_j = 1$$

then the solution would be optimal!!!

Repetition: Primal Dual for Set Cover

Analysis:

For every set S_i with $x_i = 1$ we have

$$\sum_{e \in S_j} y_e = w_j$$

Hence our cost is

$$\sum_{j} w_{j} = \sum_{j} \sum_{e \in S_{j}} y_{e} = \sum_{e} |\{j : e \in S_{j}\}| \cdot y_{e} \le f \cdot \sum_{e} y_{e} \le f \cdot \text{OPT}$$

EADS II © Harald Räcke

20 Primal Dual Revisited

430

We don't fulfill these constraint but we fulfill an approximate version:

$$y_e > 0 \Rightarrow 1 \le \sum_{j:e \in S_i} x_j \le f$$

This is sufficient to show that the solution is an f-approximation.

Suppose we have a primal/dual pair

$$\begin{array}{cccc}
\max & \sum_{i} b_{i} y_{i} \\
\text{s.t.} & \forall j & \sum_{i} a_{ij} y_{i} \leq c_{j} \\
& \forall i & y_{i} \geq 0
\end{array}$$

and solutions that fulfill approximate slackness conditions:

$$x_{j} > 0 \Rightarrow \sum_{i} a_{ij} y_{i} \ge \frac{1}{\alpha} c_{j}$$
$$y_{i} > 0 \Rightarrow \sum_{j} a_{ij} x_{j} \le \beta b_{i}$$

20 Primal Dual Revisited

433

435

EADS II © Harald Räcke

Then

20 Primal Dual Revisited

dual objective

434

Feedback Vertex Set for Undirected Graphs

- ▶ Given a graph G = (V, E) and non-negative weights $w_v \ge 0$ for vertex $v \in V$.
- ► Choose a minimum cost subset of vertices s.t. every cycle contains at least one vertex.

We can encode this as an instance of Set Cover

right hand side of j-th dual constraint

- ► Each vertex can be viewed as a set that contains some cycles.
- ► However, this encoding gives a Set Cover instance of non-polynomial size.
- ► The $O(\log n)$ -approximation for Set Cover does not help us to get a good solution.

Let C denote the set of all cycles (where a cycle is identified by its set of vertices)

Primal Relaxation:

$$\begin{array}{c|cccc}
\min & & \sum_{v} w_{v} x_{v} \\
\text{s.t.} & \forall C \in C & \sum_{v \in C} x_{v} & \geq & 1 \\
& & \forall v & & x_{v} & \geq & 0
\end{array}$$

Dual Formulation:

EADS II © Harald Räcke EADS II

20 Primal Dual Revisited

437

439

Then

$$\sum_{v} w_{v} x_{v} = \sum_{v} \sum_{C:v \in C} y_{C} x_{v}$$
$$= \sum_{v \in S} \sum_{C:v \in C} y_{C}$$
$$= \sum_{C} |S \cap C| \cdot y_{C}$$

where S is the set of vertices we choose.

If every cycle is short we get a good approximation ratio, but this is unrealistic.

If we perform the previous dual technique for Set Cover we get the following:

- Start with x = 0 and y = 0
- ▶ While there is a cycle *C* that is not covered (does not contain a chosen vertex).
 - Increase y_C until dual constraint for some vertex vbecomes tight.
 - set $x_v = 1$.

EADS II © Harald Räcke

20 Primal Dual Revisited

438

Algorithm 1 FeedbackVertexSet

- 1: *y* ← 0
- 2: *x* ← 0
- 3: **while** exists cycle *C* in *G* **do**
- increase y_C until there is $v \in C$ s.t. $\sum_{C:v \in C} y_C = w_v$
- $x_v = 1$ 5:
- remove v from G
- repeatedly remove vertices of degree 1 from *G*

Idea:

Always choose a short cycle that is not covered. If we always find a cycle of length at most α we get an α -approximation.

Observation:

For any path P of vertices of degree 2 in G the algorithm chooses at most one vertex from P.

EADS II © Harald Räcke 20 Primal Dual Revisited

441

443

Primal Dual for Shortest Path

Given a graph G=(V,E) with two nodes $s,t\in V$ and edge-weights $c:E\to\mathbb{R}^+$ find a shortest path between s and t w.r.t. edge-weights c.

$$\begin{array}{llll} & & \sum_{e} c(e) x_{e} \\ \text{s.t.} & \forall S \in S & \sum_{e:\delta(S)} x_{e} & \geq & 1 \\ & \forall e \in E & x_{e} & \in & \{0,1\} \end{array}$$

Here $\delta(S)$ denotes the set of edges with exactly one end-point in S, and $S = \{S \subseteq V : s \in S, t \notin S\}$.

Observation:

If we always choose a cycle for which the number of vertices of degree at least 3 is at most α we get a 2α -approximation.

Theorem 44

In any graph with no vertices of degree 1, there always exists a cycle that has at most $O(\log n)$ vertices of degree 3 or more. We can find such a cycle in linear time.

This means we have

$$y_C > 0 \Rightarrow |S \cap C| \leq \mathcal{O}(\log n)$$
.

EADS II © Harald Räcke

20 Primal Dual Revisited

442

Primal Dual for Shortest Path

The Dual:

max
$$\sum_{S} y_{S}$$

s.t. $\forall e \in E$ $\sum_{S:e \in \delta(S)} y_{S} \leq c(e)$
 $\forall S \in S$ $y_{S} \geq 0$

Here $\delta(S)$ denotes the set of edges with exactly one end-point in S, and $S = \{S \subseteq V : s \in S, t \notin S\}$.

Primal Dual for Shortest Path

We can interpret the value y_S as the width of a moat surrounding the set S.

Each set can have its own moat but all moats must be disjoint.

An edge cannot be shorter than all the moats that it has to cross.

EADS II © Harald Räcke 20 Primal Dual Revisited

445

447

Lemma 45

At each point in time the set F forms a tree.

Proof:

- In each iteration we take the current connected component from (V,F) that contains s (call this component C) and add some edge from $\delta(C)$ to F.
- ► Since, at most one end-point of the new edge is in *C* the edge cannot close a cycle.

Algorithm 1 PrimalDualShortestPath

- 1: *y* ← 0
- 2: *F* ← Ø

3: **while** there is no s-t path in (V, F) **do**

- 4: Let C be the connected component of (V, F) containing s
- Increase y_C until there is an edge $e' \in \delta(C)$ such that $\sum_{S:e' \in \delta(S)} y_S = c(e')$.
- 6: $F \leftarrow F \cup \{e'\}$
- 7: Let P be an s-t path in (V, F)
- 8: return P

EADS II © Harald Räcke

20 Primal Dual Revisited

446

$$\sum_{e \in P} c(e) = \sum_{e \in P} \sum_{S: e \in \delta(S)} y_S$$
$$= \sum_{S: s \in S, t \notin S} |P \cap \delta(S)| \cdot y_S.$$

If we can show that $\gamma_S > 0$ implies $|P \cap \delta(S)| = 1$ gives

$$\sum_{e \in P} c(e) = \sum_{S} y_{S} \le OPT$$

by weak duality.

Hence, we find a shortest path.

If S contains two edges from P then there must exist a subpath P' of P that starts and ends with a vertex from S (and all interior vertices are not in S).

When we increased y_S , S was a connected component of the set of edges F' that we had chosen till this point.

 $F' \cup P'$ contains a cycle. Hence, also the final set of edges contains a cycle.

This is a contradiction.

EADS II © Harald Räcke 20 Primal Dual Revisited

449

451

$$\max \sum_{S: \exists i \text{ s.t. } S \in S_i } y_S$$
s.t. $\forall e \in E$

$$\sum_{S: e \in \delta(S)} y_S \leq c(e)$$

$$y_S \geq 0$$

The difference to the dual of the shortest path problem is that we have many more variables (sets for which we can generate a moat of non-zero width).

Steiner Forest Problem:

Given a graph G=(V,E), together with source-target pairs $s_i,t_i,i=1,\ldots,k$, and a cost function $c:E\to\mathbb{R}^+$ on the edges. Find a subset $F\subseteq E$ of the edges such that for every $i\in\{1,\ldots,k\}$ there is a path between s_i and t_i only using edges in F.

$$\begin{array}{lll} \min & & \sum_{e} c(e) x_{e} \\ \text{s.t.} & \forall S \subseteq V : S \in S_{i} \text{ for some } i & \sum_{e \in \delta(S)} x_{e} & \geq & 1 \\ & \forall e \in E & x_{e} & \in & \{0,1\} \end{array}$$

Here S_i contains all sets S such that $S_i \in S$ and $S_i \notin S$.

EADS II © Harald Räcke

20 Primal Dual Revisited

450

Algorithm 1 FirstTry

1: *y* ← 0

2: *F* ← Ø

3: **while** not all s_i - t_i pairs connected in F **do**

4: Let C be some connected component of (V, F) such that $|C \cap \{s_i, t_i\}| = 1$ for some i.

Increase y_C until there is an edge $e' \in \delta(C)$ s.t. $\sum_{S \in S_i: e' \in \delta(S)} y_S = c_{e'}$

6: $F \leftarrow F \cup \{e'\}$

7: **return** $\bigcup_i P_i$

$$\sum_{e \in F} c(e) = \sum_{e \in F} \sum_{S: e \in \delta(S)} y_S = \sum_{S} |\delta(S) \cap F| \cdot y_S.$$

If we show that $y_S>0$ implies that $|\delta(S)\cap F|\leq \alpha$ we are in good shape.

However, this is not true:

- ▶ Take a complete graph on k + 1 vertices $v_0, v_1, ..., v_k$.
- ▶ The *i*-th pair is v_0 - v_i .
- ▶ The first component C could be $\{v_0\}$.
- We only set $y_{\{v_0\}} = 1$. All other dual variables stay 0.
- ▶ The final set F contains all edges $\{v_0, v_i\}$, i = 1, ..., k.
- $y_{\{v_0\}} > 0$ but $|\delta(\{v_0\}) \cap F| = k$.

EADS II © Harald Räcke 20 Primal Dual Revisited

453

455

The reverse deletion step is not strictly necessary this way. It would also be sufficient to simply delete all unnecessary edges in any order.

Algorithm 1 SecondTry

1: $\gamma \leftarrow 0$; $F \leftarrow \emptyset$; $\ell \leftarrow 0$

2: **while** not all s_i - t_i pairs connected in F **do**

3: $\ell \leftarrow \ell + 1$

4: Let C be set of all connected components C of (V, F) such that $|C \cap \{s_i, t_i\}| = 1$ for some i.

5: Increase y_C for all $C \in C$ uniformly until for some edge $e_\ell \in \delta(C')$, $C' \in C$ s.t. $\sum_{S:e_\ell \in \delta(S)} y_S = c_{e_\ell}$

6: $F \leftarrow F \cup \{e_{\ell}\}$

7: $F' \leftarrow F$

8: **for** $k \leftarrow \ell$ downto 1 **do** // reverse deletion

9: **if** $F' - e_k$ is feasible solution **then**

10: remove e_k from F'

11: return F'

EADS II © Harald Räcke

20 Primal Dual Revisited

454

Lemma 46

For any C in any iteration of the algorithm

$$\sum_{C \in C} |\delta(C) \cap F'| \leq 2|C|$$

This means that the number of times a moat from \mathcal{C} is crossed in the final solution is at most twice the number of moats.

Proof: later...

20 Primal Dual Revisited

457

459

Lemma 47

For any set of connected components $\ensuremath{\mathcal{C}}$ in any iteration of the algorithm

$$\sum_{C \in C} |\delta(C) \cap F'| \leq 2|C|$$

Proof:

- ► At any point during the algorithm the set of edges forms a forest (why?).
- Fix iteration i. e_i is the set we add to F. Let F_i be the set of edges in F at the beginning of the iteration.
- ▶ Let $H = F' F_i$.
- ► All edges in *H* are necessary for the solution.

$$\sum_{e \in F'} c_e = \sum_{e \in F'} \sum_{S: e \in \delta(S)} y_S = \sum_{S} |F' \cap \delta(S)| \cdot y_S.$$

We want to show that

$$\sum_{S} |F' \cap \delta(S)| \cdot y_S \le 2 \sum_{S} y_S$$

▶ In the *i*-th iteration the increase of the left-hand side is

$$\epsilon \sum_{C \in C} |F' \cap \delta(C)|$$

and the increase of the right hand side is $2\epsilon |C|$.

► Hence, by the previous lemma the inequality holds after the iteration if it holds in the beginning of the iteration.

EADS II © Harald Räcke

20 Primal Dual Revisited

458

- ▶ Contract all edges in F_i into single vertices V'.
- We can consider the forest H on the set of vertices V'.
- Let $\deg(v)$ be the degree of a vertex $v \in V'$ within this forest.
- Color a vertex $v \in V'$ red if it corresponds to a component from C (an active component). Otw. color it blue. (Let B the set of blue vertices (with non-zero degree) and R the set of red vertices)
- We have

$$\sum_{v \in R} \deg(v) \ge \sum_{C \in C} |\delta(C) \cap F'| \stackrel{?}{\le} 2|C| = 2|R|$$

- ▶ Suppose that no node in *B* has degree one.
- Then

$$\sum_{v \in R} \deg(v) = \sum_{v \in R \cup B} \deg(v) - \sum_{v \in B} \deg(v)$$

$$\leq 2(|R| + |B|) - 2|B| = 2|R|$$

- Every blue vertex with non-zero degree must have degree at least two
 - Suppose not. The single edge connecting $b \in B$ comes from H, and, hence, is necessary.
 - ▶ But this means that the cluster corresponding to *b* must separate a source-target pair.
 - But then it must be a red node.

20 Primal Dual Revisited

461

463

21 Cuts & Metrics

Minimum Cut

 \mathcal{P} is the set of path that connect s and t.

The Dual:

The Separation Problem for the Minimum Cut LP is the Shortest Path Problem.

EADS II © Harald Räcke

21 Cuts & Metrics

Shortest Path

$$\begin{array}{llll} & & \sum_{e} c(e) x_{e} \\ \text{s.t.} & \forall S \in S & \sum_{e \in \delta(S)} x_{e} & \geq & 1 \\ & \forall e \in E & x_{e} & \in & \{0,1\} \end{array}$$

S is the set of subsets that separate s from t.

The Dual:

The Separation Problem for the Shortest Path LP is the Minimum Cut Problem.

21 Cuts & Metrics

462

21 Cuts & Metrics

Observations:

Suppose that ℓ_e -values are solution to Minimum Cut LP.

- We can view ℓ_e as defining the length of an edge.
- ▶ Define $d(u,v) = \min_{\text{path } P \text{ btw. } u \text{ and } v} \sum_{e \in P} \ell_e$ as the Shortest Path Metric induced by ℓ_e .
- ▶ We have $d(u, v) = \ell_e$ for every edge e = (u, v), as otw. we could reduce ℓ_e without affecting the distance between s and t.

Remark for bean-counters:

d is not a metric on V but a semimetric as two nodes u and v could have distance zero.

How do we round the LP?

Let B(s,r) be the ball of radius r around s (w.r.t. metric d). Formally:

$$B = \{ v \in V \mid d(s, v) \le r \}$$

For $0 \le r < 1$, B(s, r) is an s-t-cut.

Which value of *r* should we choose? choose randomly!!!

Formally:

choose r u.a.r. (uniformly at random) from interval [0,1)

EADS II © Harald Räcke 21 Cuts & Metrics

465

467

What is the expected size of a cut?

E[size of cut] = E[
$$\sum_{e} c(e) \Pr[e \text{ is cut}]$$
]
 $\leq \sum_{e} c(e) \ell_{e}$

On the other hand:

$$\sum_{e} c(e) \ell_e \le \text{size of mincut}$$

as the ℓ_e are the solution to the Mincut LP relaxation.

Hence, our rounding gives an optimal solution.

What is the probability that an edge (u, v) is in the cut?

▶ asssume wlog. $d(s, u) \le d(s, v)$

$$\Pr[e \text{ is cut}] = \Pr[r \in [d(s, u), d(s, v))] \le \frac{d(s, v) - d(s, u)}{1 - 0}$$
$$\le \ell_e$$

EADS II © Harald Räcke

21 Cuts & Metrics

466

Minimum Multicut:

Given a graph G=(V,E), together with source-target pairs s_i,t_i , $i=1,\ldots,k$, and a capacity function $c:E\to\mathbb{R}^+$ on the edges. Find a subset $F\subseteq E$ of the edges such that all s_i - t_i pairs lie in different components in $G=(V,E\setminus F)$.

$$\begin{array}{lll} \min & \sum_{e} c(e) \ell_e \\ \text{s.t.} & \forall P \in \mathcal{P}_i \text{ for some } i & \sum_{e \in P} \ell_e & \geq & 1 \\ & \forall e \in E & \ell_e & \in & \{0,1\} \end{array}$$

Here \mathcal{P}_i contains all path P between s_i and t_i .

Re-using the analysis for the single-commodity case is difficult.

$$Pr[e \text{ is cut}] \leq ?$$

- ▶ If for some R the balls $B(s_i, R)$ are disjoint between different sources, we get a 1/R approximation.
- ► However, this cannot be guaranteed.

EADS II © Harald Räcke 21 Cuts & Metrics

469

471

$\textbf{Algorithm 1} \ \mathsf{Multicut}(G')$

- 1: **while** $\exists s_i t_i$ pair in G' **do**
- 2: $C \leftarrow \text{RegionGrowing}(s_i, p)$
- 3: $G' = G' \setminus C // \text{ cuts edges leaving } C$
- 4: return $B(s_i, z)$
- probability of cutting an edge is only p
- a source either does not reach an edge during Region Growing; then it is not cut
- if it reaches the edge then it either cuts the edge or protects the edge from being cut by other sources
- if we choose $p = \delta$ the probability of cutting an edge is only its LP-value; our expected cost are at most OPT.

- Assume for simplicity that all edge-length ℓ_e are multiples of $\delta \ll 1$.
- ▶ Replace the graph G by a graph G', where an edge of length ℓ_e is replaced by ℓ_e/δ edges of length δ .
- ► Let $B(s_i, z)$ be the ball in G' that contains nodes v with distance $d(s_i, v) \le z\delta$.

Algorithm 1 RegionGrowing(s_i, p)

- 1: *z* ← 0
- 2: repeat
- 3: flip a coin (Pr[heads] = p)
- 4: $z \leftarrow z + 1$
- 5: until heads
- 6: **return** $B(s_i, z)$

EADS II © Harald Räcke 21 Cuts & Metrics

470

Problem:

We may not cut all source-target pairs.

A component that we remove may contain an s_i - t_i pair.

If we ensure that we cut before reaching radius 1/2 we are in good shape.

- choose $p = 6 \ln k \cdot \delta$
- we make $\frac{1}{2\delta}$ trials before reaching radius 1/2.
- we say a Region Growing is not successful if it does not terminate before reaching radius 1/2.

$$\Pr[\mathsf{not}\;\mathsf{successful}] \leq (1-p)^{\frac{1}{2\delta}} = \left((1-p)^{1/p}\right)^{\frac{p}{2\delta}} \leq e^{-\frac{p}{2\delta}} \leq \frac{1}{k^3}$$

Hence,

$$\Pr[\exists i \text{ that is not successful}] \leq \frac{1}{k^2}$$

EADS II © Harald Räcke 21 Cuts & Metrics

473

475

If we are not successful we simply perform a trivial k-approximation.

This only increases the expected cost by at most $\frac{1}{k^2} \cdot k\text{OPT} \leq \text{OPT}/k$.

Hence, our final cost is $\mathcal{O}(\ln k) \cdot \text{OPT}$ in expectation.

What is expected cost?

$$\begin{split} E[\text{cutsize}] &= \text{Pr}[\text{success}] \cdot E[\text{cutsize} \mid \text{success}] \\ &\quad + \text{Pr}[\text{no success}] \cdot E[\text{cutsize} \mid \text{no success}] \end{split}$$

$$\begin{split} E[\text{cutsize} \mid \text{succ.}] &= \frac{E[\text{cutsize}] - \text{Pr}[\text{no succ.}] \cdot E[\text{cutsize} \mid \text{no succ.}]}{\text{Pr}[\text{success}]} \\ &\leq \frac{E[\text{cutsize}]}{\text{Pr}[\text{success}]} \leq \frac{1}{1 - \frac{1}{k^2}} 6 \ln k \cdot \text{OPT} \leq 8 \ln k \cdot \text{OPT} \end{split}$$

Note: success means all source-target pairs separated

We assume $k \ge 2$.

21 Cuts & Metrics

474

Facility Location

Given a set L of (possible) locations for placing facilities and a set D of customers together with cost functions $s:D\times L\to \mathbb{R}^+$ and $o:L\to \mathbb{R}^+$ find a set of facility locations F together with an assignment $\phi:D\to F$ of customers to open facilities such that

$$\sum_{f \in F} o(f) + \sum_{c} s(c, \phi(c))$$

is minimized.

In the metric facility location problem we have

$$s(c, f) \le s(c, f') + s(c', f) + s(c', f')$$
.

Facility Location

Integer Program

min		$\sum_{i \in F} f_i y_i + \sum_{i \in F} \sum_{j \in D} c_{ij} x_{ij}$		
s.t.	$\forall j \in D$	$\sum_{i \in F} x_{ij}$	=	1
	$\forall i \in F, j \in D$	$lpha_{ij}$	≤	y_i
	$\forall i \in F, j \in D$	x_{ij}	\in	$\{0, 1\}$
	$\forall i \in F$	${\mathcal Y}_i$	\in	{0,1}

As usual we get an LP by relaxing the integrality constraints.

EADS II © Harald Räcke

22 Facility Location

477

479

Dual Linear Program

Facility Location

EADS II © Harald Räcke

22 Facility Location

478

Facility Location

Definition 48

Given an LP solution (x^*, y^*) we say that facility i neighbours client j if $x_{ij} > 0$. Let $N(j) = \{i \in F : x_{ij}^* > 0\}$.

Lemma 49

If (x^*, y^*) is an optimal solution to the facility location LP and (v^*, w^*) is an optimal dual solution, then $x^*_{ij} > 0$ implies $c_{ij} \le v^*_i$.

Follows from slackness conditions.

Suppose we open set $S \subseteq F$ of facilities s.t. for all clients we have $S \cap N(j) \neq \emptyset$.

Then every client j has a facility i s.t. assignment cost for this client is at most $c_{ij} \leq v_i^*$.

Hence, the total assignment cost is

$$\sum_{j} c_{i_j j} \le \sum_{j} v_j^* \le \text{OPT} ,$$

where i_j is the facility that client j is assigned to.

EADS II © Harald Räcke 22 Facility Location

481

483

Now in each set $N(j_k)$ we open the cheapest facility. Call it f_{i_k} .

We have

$$f_{i_k} = f_{i_k} \sum_{i \in N(i_k)} x_{ij_k}^* \le \sum_{i \in N(i_k)} f_i x_{ij_k}^* \le \sum_{i \in N(i_k)} f_i y_i^*$$
.

Summing over all k gives

$$\sum_{k} f_{i_k} \leq \sum_{k} \sum_{i \in N(j_k)} f_i \mathcal{Y}_i^* = \sum_{i \in F'} f_i \mathcal{Y}_i^* \leq \sum_{i \in F} f_i \mathcal{Y}_i^*$$

Facility cost is at most the facility cost in an optimum solution.

Problem: Facility cost may be huge!

Suppose we can partition a subset $F' \subseteq F$ of facilities into neighbour sets of some clients. I.e.

$$F' = \biguplus_k N(j_k)$$

where j_1, j_2, \ldots form a subset of the clients.

EADS II © Harald Räcke

22 Facility Location

482

Problem: so far clients j_1, j_2, \ldots have a neighboring facility. What about the others?

Definition 50

Let $N^2(j)$ denote all neighboring clients of the neighboring facilities of client j.

Note that N(j) is a set of facilities while $N^2(j)$ is a set of clients.

Algorithm 1 FacilityLocation

1: $C \leftarrow D//$ unassigned clients

2: *k* ← 0

3: while $C \neq 0$ do

4: $k \leftarrow k + 1$

5: choose $j_k \in C$ that minimizes v_j^*

6: choose $i_k \in N(j_k)$ as cheapest facility

7: assign j_k and all unassigned clients in $N^2(j_k)$ to i_k

8: $C \leftarrow C - \{j_k\} - N^2(j_k)$

EADS II © Harald Räcke 22 Facility Location

485

487

In the above analysis we use the inequality

$$\sum_{i \in F} f_i y_i^* \le OPT.$$

We know something stronger namely

$$\sum_{i \in F} f_i y_i^* + \sum_{i \in F} \sum_{j \in D} c_{ij} x_{ij}^* \le OPT.$$

Facility cost of this algorithm is at most OPT because the sets $N(j_k)$ are disjoint.

Total assignment cost:

- ▶ Fix k; set $j = j_k$ and $i = i_k$. We know that $c_{ij} \le v_i^*$.
- ▶ Let $\ell \in N^2(j)$ and h (one of) its neighbour(s) in N(j).

$$c_{i\ell} \le c_{ij} + c_{hj} + c_{h\ell} \le v_i^* + v_i^* + v_\ell^* \le 3v_\ell^*$$

Summing this over all facilities gives that the total assignment cost is at most $3 \cdot OPT$. Hence, we get a 4-approximation.

EADS II © Harald Räcke

22 Facility Location

486

Observation:

- ▶ Suppose when choosing a client j_k , instead of opening the cheapest facility in its neighborhood we choose a random facility according to $x_{ij_k}^*$.
- Then we incur connection cost

$$\sum_{i} c_{ij_k} x_{ij_k}^*$$

for client j_k . (In the previous algorithm we estimated this by $v_{j_k}^*$).

Define

$$C_j^* = \sum_i c_{ij} x_{ij}^*$$

to be the connection cost for client j.

What will our facility cost be?

We only try to open a facility once (when it is in neighborhood of some j_k). (recall that neighborhoods of different $j_k's$ are disjoint).

We open facility i with probability $x_{ij_k} \le y_i$ (in case it is in some neighborhood; otw. we open it with probability zero).

Hence, the expected facility cost is at most

$$\sum_{i\in F}f_iy_i.$$

EADS II © Harald Räcke 22 Facility Location

480

Total assignment cost:

- Fix k; set $j = j_k$.
- ▶ Let $\ell \in N^2(j)$ and h (one of) its neighbour(s) in N(j).
- If we assign a client ℓ to the same facility as i we pay at most

$$\sum_{i} c_{ij} x_{ijk}^* + c_{hj} + c_{h\ell} \le C_j^* + v_j^* + v_\ell^* \le C_\ell^* + 2v_\ell^*$$

Summing this over all clients gives that the total assignment cost is at most

$$\sum_{i} C_j^* + \sum_{i} 2v_j^* \le \sum_{i} C_j^* + 2OPT$$

Hence, it is at most 2OPT plus the total assignment cost in an optimum solution.

Adding the facility cost gives a 3-approximation.

Algorithm 1 FacilityLocation

- 1: $C \leftarrow D//$ unassigned clients
- 2: *k* ← 0
- 3: while $C \neq 0$ do
- 4: $k \leftarrow k + 1$
- 5: choose $j_k \in C$ that minimizes $v_i^* + C_i^*$
- 6: choose $i_k \in N(j_k)$ according to probability x_{ij_k} .
- 7: assign j_k and all unassigned clients in $N^2(j_k)$ to i_k
- 8: $C \leftarrow C \{j_k\} N^2(j_k)$

22 Facility Location

400