Part III

Approximation Algorithms

© Harald Räcke

There are many practically important optimization problems that are NP-hard.

What can we do?

- Heuristics.
- Exploit special structure of instances occurring in practise
- Consider algorithms that do not compute the optimal solution but provide solutions that are close to optimum.

Why approximation algorithms?

- We need algorithms for hard problems.
- It gives a rigorous mathematical base for studying heuristics.
- It provides a metric to compare the difficulty of various optimization problems.
- Proving theorems may give a deeper theoretical understanding which in turn leads to new algorithmic approaches.

Why not?

- Sometimes the results are very pessimistic due to the fact that an algorithm has to provide a close-to-optimum solution on every instance.

Definition 3

An optimization problem $P=(\mathcal{I}$, sol, m, goal $)$ is in NPO if

- x is problem instance
- y is candidate solution
- $m^{*}(x) \operatorname{cost} /$ profit of an optimal solution

Definition 4 (Performance Ratio)

$$
R(x, y):=\max \left\{\frac{m(x, y)}{m^{*}(x)}, \frac{m^{*}(x)}{m(x, y)}\right\}
$$

$m(x, y)$ at most/at least z is in NP

- x is problem instance - y is candidate solution - $m^{*}(x)$ cost/profit of an optimal solution Definition 4 (Performance Ratio) $R(x, y):=\max \left\{\frac{m(x, y)}{m^{*}(x)}, \frac{m^{*}(x)}{m(x, y)}\right\}$	
ETU EADS II 11 Introduction	258

Definition 6 (PTAS)

A PTAS for a problem P from NPO is an algorithm that takes as input $x \in \mathcal{I}$ and $\epsilon>0$ and produces a solution y for x with

$$
R(x, y) \leq 1+\epsilon .
$$

The running time is polynomial in $|x|$.
approximation with arbitrary good factor... fast?

Problems that have a PTAS

Scheduling. Given m jobs with known processing times; schedule the jobs on n machines such that the MAKESPAN is minimized.

Definition 7 (FPTAS)
An FPTAS for a problem P from NPO is an algorithm that takes as input $x \in \mathcal{I}$ and $\epsilon>0$ and produces a solution y for x with

$$
R(x, y) \leq 1+\epsilon
$$

The running time is polynomial in $|x|$ and $1 / \epsilon$.
approximation with arbitrary good factor... fast

Problems that have an FPTAS

KNAPSACK. Given a set of items with profits and weights choose a
A problem P from NPO is in APX if there exist a constant $r \geq 1$ and an r-approximation algorithm for P.
constant factor approximation...

Problems that are in APX

MAXCUT. Given a graph $G=(V, E)$; partition V into two disjoint pieces A and B s.t. the number of edges between both pieces is maximized.

MAX-3SAT. Given a 3CNF-formula. Find an assignment to the variables that satisfies the maximum number of clauses.

Problems with polylogarithmic approximation guarantees

- Set Cover
- Minimum Multicut
- Sparsest Cut
- Minimum Bisection

There is an r-approximation with $r \leq \mathcal{O}\left(\log ^{c}(|x|)\right)$ for some constant c.

Note that only for some of the above problem a matching lower bound is known.

There are really difficult problems!

Theorem 9
For any constant $\epsilon>0$ there does not exist an $\Omega\left(n^{1-\epsilon}\right)$-approximation algorithm for the maximum clique

Note that an n-approximation is trivial.

There are weird problems!
Asymmetric k-Center admits an $\mathcal{O}\left(\log ^{*} n\right)$-approximation.
There is no $o\left(\log ^{*} n\right)$-approximation to Asymmetric k-Center unless $N P \subseteq D T I M E\left(n^{\log \log \log n}\right)$.

Class APX not important in practise.

Instead of saying problem P is in APX one says problem P admits a 4-approximation.

One only says that a problem is APX-hard.

A crucial ingredient for the design and analysis of approximation algorithms is a technique to obtain an upper bound (for maximization problems) or a lower bound (for minimization problems).

Therefore Linear Programs or Integer Linear Programs play a vital role in the design of many approximation algorithms.

Definition 10

An Integer Linear Program or Integer Program is a Linear Program in which all variables are required to be integral

Definition 11

A Mixed Integer Program is a Linear Program in which a subset of the variables are required to be integral.

Many important combinatorial optimization problems can be formulated in the form of an Integer Program.

Note that solving Integer Programs in general is NP-complete!

Set Cover

Given a ground set U, a collection of subsets $S_{1}, \ldots, S_{k} \subseteq U$, where the i-th subset S_{i} has weight/cost w_{i}. Find a collection $I \subseteq\{1, \ldots, k\}$ such that

$$
\forall u \in U \exists i \in I: u \in S_{i} \text { (every element is covered) }
$$

and

$$
\sum_{i \in I} w_{i} \text { is minimized. }
$$

IP-Formulation of Set Cover
\qquadmin s.t. $\forall u \in U$ $\sum_{i: u \in S_{i}} x_{i}$ \geq 1 $\forall i \in\{1, \ldots, k\}$ x_{i} \geq 0 $\forall i \in\{1, \ldots, k\}$

Set Cover

Vertex Cover

Given a graph $G=(V, E)$ and a weight w_{v} for every node. Find a vertex subset $S \subseteq V$ of minimum weight such that every edge is incident to at least one vertex in S.

IP-Formulation of Vertex Cover

\[

\]

Maximum Independent Set

Given a graph $G=(V, E)$, and a weight w_{v} for every node $v \in V$. Find a subset $S \subseteq V$ of nodes of maximum weight such that no two vertices in S are adjacent.

\max		$\sum_{v \in V} w_{v} x_{v}$	
s.t.	$\forall e=(i, j) \in E$	$x_{i}+x_{j}$	≤ 1
	$\forall v \in V$	$x_{v} \in\{0,1\}$	

Maximum Weighted Matching

Given a graph $G=(V, E)$, and a weight w_{e} for every edge $e \in E$. Find a subset of edges of maximum weight such that no vertex is incident to more than one edge.

\max	$\sum_{e \in E} w_{e} x_{e}$		
s.t.	$\forall v \in V$	$\sum_{e: v \in e} x_{e} \leq 1$	
	$\forall e \in E$	$x_{e} \in\{0,1\}$	

Knapsack

Given a set of items $\{1, \ldots, n\}$, where the i-th item has weight w_{i} and profit p_{i}, and given a threshold K. Find a subset $I \subseteq\{1, \ldots, n\}$ of items of total weight at most K such that the profit is maximized.

\max		$\sum_{i=1}^{n} p_{i} x_{i}$	
s.t.	$\forall i \in\{1, \ldots, n\}$	$\sum_{i=1}^{n} w_{i} x_{i}$	$\leq K$
	x_{i}	$\in\{0,1\}$	

Relaxations

Definition 12

A linear program LP is a relaxation of an integer program IP if any feasible solution for IP is also feasible for LP and if the objective values of these solutions are identical in both programs.

We obtain a relaxation for all examples by writing $x_{i} \in[0,1]$ instead of $x_{i} \in\{0,1\}$.

Minimization Problems:

By solving a relaxation we obtain an upper bound for a maximization problem and a lower bound for a minimization problem.

Technique 1: Round the LP solution.

We first solve the LP-relaxation and then we round the fractional values so that we obtain an integral solution.

Set Cover relaxation:

min	$\forall u \in U$	$\sum_{i=1}^{k} w_{i} x_{i}$	
s.t.	$\sum_{i: u \in S_{i}} x_{i}$	≥ 1	
	$\forall i \in\{1, \ldots, k\}$	$x_{i} \in[0,1]$	

Let f_{u} be the number of sets that the element u is contained in (the frequency of u). Let $f=\max _{u}\left\{f_{u}\right\}$ be the maximum frequency.

Technique 1: Round the LP solution.

Rounding Algorithm:

Set all x_{i}-values with $x_{i} \geq \frac{1}{f}$ to 1 . Set all other x_{i}-values to 0 .

Technique 1: Round the LP solution.

The cost of the rounded solution is at most f. OPT.

$$
\begin{aligned}
\sum_{i \in I} w_{i} & \leq \sum_{i=1}^{k} w_{i}\left(f \cdot x_{i}\right) \\
& =f \cdot \operatorname{cost}(x) \\
& \leq f \cdot \operatorname{OPT}
\end{aligned}
$$

Technique 1: Round the LP solution.

Lemma 13

The rounding algorithm gives an f-approximation.
Proof: Every $u \in U$ is covered.

- We know that $\sum_{i: u \in S_{i}} x_{i} \geq 1$.
- The sum contains at most $f_{u} \leq f$ elements.
- Therefore one of the sets that contain u must have $x_{i} \geq 1 / f$.
- This set will be selected. Hence, u is covered.

Technique 2: Rounding the Dual Solution.

Relaxation for Set Cover

Primal:

\min	$\sum_{i \in I} w_{i} x_{i}$
s.t. $\forall u$	$\sum_{i: u \in S_{i}} x_{i} \geq 1$
	$x_{i} \geq 0$

Technique 2: Rounding the Dual Solution.

Rounding Algorithm:

Let I denote the index set of sets for which the dual constraint is tight. This means for all $i \in I$

$$
\sum_{u: u \in S_{i}} y_{u}=w_{i}
$$

Technique 2: Rounding the Dual Solution.

Proof:

$$
\begin{aligned}
\sum_{i \in I} w_{i} & =\sum_{i \in I} \sum_{u: u \in S_{i}} y_{u} \\
& =\sum_{u}\left|\left\{i \in I: u \in S_{i}\right\}\right| \cdot y_{u} \\
& \leq \sum_{u} f_{u} y_{u} \\
& \leq f \sum_{u} y_{u} \\
& \leq f \operatorname{cost}\left(x^{*}\right) \\
& \leq f \cdot \operatorname{OPT}
\end{aligned}
$$

Technique 2: Rounding the Dual Solution.

Lemma 14

The resulting index set is an f-approximation.

Proof:

Every $u \in U$ is covered.

- Suppose there is a u that is not covered.
- This means $\sum_{u: u \in S_{i}} y_{u}<w_{i}$ for all sets S_{i} that contain u.
- But then y_{u} could be increased in the dual solution without violating any constraint. This is a contradiction to the fact that the dual solution is optimal.

Let I denote the solution obtained by the first rounding algorithm and I^{\prime} be the solution returned by the second algorithm. Then

$$
I \subseteq I^{\prime}
$$

This means I^{\prime} is never better than I.

- Suppose that we take S_{i} in the first algorithm. I.e., $i \in I$.
- This means $x_{i} \geq \frac{1}{f}$.
- Because of Complementary Slackness Conditions the corresponding constraint in the dual must be tight.
- Hence, the second algorithm will also choose S_{i}.

Technique 3: The Primal Dual Method

The previous two rounding algorithms have the disadvantage that it is necessary to solve the LP. The following method also gives an f-approximation without solving the LP.

For estimating the cost of the solution we only required two properties.

1. The solution is dual feasible and, hence,

$$
\sum_{u} y_{u} \leq \operatorname{cost}\left(x^{*}\right) \leq \mathrm{OPT}
$$

where x^{*} is an optimum solution to the primal LP.
2. The set I contains only sets for which the dual inequality is tight.
Of course, we also need that I is a cover.

Technique 4: The Greedy Algorithm

```
Algorithm 1 Greedy
    I}\emptyset
    \mp@subsup{\hat{S}}{j}{}\leftarrow\mp@subsup{S}{j}{}\quad\mathrm{ for all j}
    while I not a set cover do
        \ell\leftarrow\operatorname{arg min}
        I \leftarrow I \cup \{ \ell \}
        S}\mp@subsup{\mp@code{j}}{}{\leftarrow}\mp@subsup{\hat{S}}{j}{}-\mp@subsup{S}{\ell}{}\quad\mathrm{ for all }
```

In every round the Greedy algorithm takes the set that covers remaining elements in the most cost-effective way.

We choose a set such that the ratio between cost and still uncovered elements in the set is minimized.

Technique 3: The Primal Dual Method

```
Algorithm 1 PrimalDual
    : \(y \leftarrow 0\)
    2: \(I \leftarrow \emptyset\)
    3: while exists \(u \notin \bigcup_{i \in I} S_{i}\) do
        increase dual variable \(y_{u}\) until constraint for some
        new set \(S_{\ell}\) becomes tight
        \(I \leftarrow I \cup\{\ell\}\)
```


Technique 4: The Greedy Algorithm

Lemma 15
Given positive numbers a_{1}, \ldots, a_{k} and b_{1}, \ldots, b_{k}, and
$S \subseteq\{1, \ldots, k\}$ then

$$
\min _{i} \frac{a_{i}}{b_{i}} \leq \frac{\sum_{i \in S} a_{i}}{\sum_{i \in S} b_{i}} \leq \max _{i} \frac{a_{i}}{b_{i}}
$$

Technique 4: The Greedy Algorithm

Let n_{ℓ} denote the number of elements that remain at the beginning of iteration $\ell . n_{1}=n=|U|$ and $n_{s+1}=0$ if we need s iterations.

In the ℓ-th iteration

$$
\min _{j} \frac{w_{j}}{\left|\hat{S}_{j}\right|} \leq \frac{\sum_{j \in \mathrm{OPT}} w_{j}}{\sum_{j \in \mathrm{OPT}}\left|\hat{S}_{j}\right|}=\frac{\mathrm{OPT}}{\sum_{j \in \mathrm{OPT}}\left|\hat{S}_{j}\right|} \leq \frac{\mathrm{OPT}}{n_{\ell}}
$$

since an optimal algorithm can cover the remaining n_{ℓ} elements with cost OPT.

Let \hat{S}_{j} be a subset that minimizes this ratio. Hence,
$w_{j} /\left|\hat{S}_{j}\right| \leq \frac{\mathrm{OPT}}{n_{\ell}}$.
13.4 Greedy

Technique 4: The Greedy Algorithm

$$
\begin{aligned}
\sum_{j \in I} w_{j} & \leq \sum_{\ell=1}^{s} \frac{n_{\ell}-n_{\ell+1}}{n_{\ell}} \cdot \mathrm{OPT} \\
& \leq \mathrm{OPT} \sum_{\ell=1}^{s}\left(\frac{1}{n_{\ell}}+\frac{1}{n_{\ell}-1}+\cdots+\frac{1}{n_{\ell+1}+1}\right) \\
& =\mathrm{OPT} \sum_{i=1}^{k} \frac{1}{i} \\
& =H_{n} \cdot \mathrm{OPT} \leq \mathrm{OPT}(\ln n+1) .
\end{aligned}
$$

Technique 4: The Greedy Algorithm

Adding this set to our solution means $n_{\ell+1}=n_{\ell}-\left|\hat{S}_{j}\right|$.

$$
w_{j} \leq \frac{\left|\hat{S}_{j}\right| \mathrm{OPT}}{n_{\ell}}=\frac{n_{\ell}-n_{\ell+1}}{n_{\ell}} \cdot \mathrm{OPT}
$$

Technique 4: The Greedy Algorithm

A tight example:

Technique 5: Randomized Rounding

One round of randomized rounding:
Pick set S_{j} uniformly at random with probability $1-x_{j}$ (for all j).
Version A: Repeat rounds until you have a cover.
Version B: Repeat for s rounds. If you have a cover STOP Otherwise, repeat the whole algorithm.

Probability that $u \in U$ is not covered (in one round):
$\operatorname{Pr}[u$ not covered in one round]

$$
\begin{aligned}
& =\prod_{j: u \in S_{j}}\left(1-x_{j}\right) \leq \prod_{j: u \in S_{j}} e^{-x_{j}} \\
& =e^{-\sum_{j: u \in S_{j}} x_{j}} \leq e^{-1}
\end{aligned}
$$

Probability that $\boldsymbol{u} \in \boldsymbol{U}$ is not covered (after $\boldsymbol{\ell}$ rounds):

$\operatorname{Pr}[u$ not covered after ℓ round $] \leq \frac{1}{e^{\ell}}$.
$\operatorname{Pr}[\exists u \in U$ not covered after ℓ round $]$
$=\operatorname{Pr}\left[u_{1}\right.$ not covered $\vee u_{2}$ not covered $\vee \ldots \vee u_{n}$ not covered $]$
$\leq \sum_{i} \operatorname{Pr}\left[u_{i}\right.$ not covered after ℓ rounds $] \leq n e^{-\ell}$

Lemma 16
With high probability $\mathcal{O}(\log n)$ rounds suffice.

With high probability:

For any constant α the number of rounds is at most $\mathcal{O}(\log n)$
with probability at least $1-n^{-\alpha}$.

Proof: We have
$\operatorname{Pr}[\#$ rounds $\geq(\alpha+1) \ln n] \leq n e^{-(\alpha+1) \ln n}=n^{-\alpha}$.

Expected Cost

- Version A.

Repeat for $s=(\alpha+1) \ln n$ rounds. If you don't have a cover simply take for each element u the cheapest set that contains u.
$E[\operatorname{cost}] \leq(\alpha+1) \ln n \cdot \operatorname{cost}(L P)+(n \cdot$ OPT $) n^{-\alpha}=\mathcal{O}(\ln n) \cdot$ OPT

Expected Cost

- Version B.

Repeat for $s=(\alpha+1) \ln n$ rounds. If you don't have a cover simply repeat the whole process.

$$
\begin{aligned}
E[\text { cost }]= & \operatorname{Pr}[\text { success }] \cdot E[\text { cost } \mid \text { success }] \\
& +\operatorname{Pr}[\text { no success }] \cdot E[\text { cost } \mid \text { no success }]
\end{aligned}
$$

This means
$E[$ cost | success]

$$
\begin{aligned}
& =\frac{1}{\operatorname{Pr}[\text { succ. }]}(E[\text { cost }]-\operatorname{Pr}[\text { no success }] \cdot E[\text { cost } \mid \text { no success }]) \\
& \leq \frac{1}{\operatorname{Pr}[\text { succ. }]} E[\text { cost }] \leq \frac{1}{1-n^{-\alpha}}(\alpha+1) \ln n \cdot \operatorname{cost}(\mathrm{LP}) \\
& \leq 2(\alpha+1) \ln n \cdot \mathrm{OPT}
\end{aligned}
$$

$$
\text { for } n \geq 2 \text { and } \alpha \geq 1 .
$$

Integrality Gap

The integrality gap of the SetCover LP is $\Omega(\log n)$.

- $n=2^{k}-1$
- Elements are all vectors \vec{x} over GF[2] of length k (excluding zero vector).
- Every vector \vec{y} defines a set as follows

$$
S_{\vec{y}}:=\left\{\vec{x} \mid \vec{x}^{T} \vec{y}=1\right\}
$$

- each set contains 2^{k-1} vectors; each vector is contained in 2^{k-1} sets
- $x_{i}=\frac{1}{2^{k-1}}=\frac{2}{n+1}$ is fractional solution.

Integrality Gap

Every collection of $p<k$ sets does not cover all elements.
Hence, we get a gap of $\Omega(\log n)$.

Scheduling Jobs on Identical Parallel Machines

Given n jobs, where job $j \in\{1, \ldots, n\}$ has processing time p_{j}. Schedule the jobs on m identical parallel machines such that the Makespan (finishing time of the last job) is minimized.

Here the variable $x_{j, i}$ is the decision variable that describes whether job j is assigned to machine i.

Techniques:

- Deterministic Rounding
- Rounding of the Dual
- Primal Dual
- Greedy
- Randomized Rounding
- Local Search
- Rounding Data + Dynamic Programming

Lower Bounds on the Solution

Let for a given schedule C_{j} denote the finishing time of machine j, and let $C_{\max }$ be the makespan.

Let $C_{\max }^{*}$ denote the makespan of an optimal solution.

Clearly

$$
C_{\max }^{*} \geq \max _{j} p_{j}
$$

as the longest job needs to be scheduled somewhere.

Lower Bounds on the Solution

The average work performed by a machine is $\frac{1}{m} \sum_{j} p_{j}$.
Therefore,

$$
C_{\max }^{*} \geq \frac{1}{m} \sum_{j} p_{j}
$$

Local Search for Scheduling

Local Search Strategy: Take the job that finishes last and try to move it to another machine. If there is such a move that reduces the makespan, perform the switch.

REPEAT

Local Search

A local search algorithm successively makes certain small (cost/profit improving) changes to a solution until it does not find such changes anymore.

It is conceptionally very different from a Greedy algorithm as a feasible solution is always maintained.

Sometimes the running time is difficult to prove.

Local Search Analysis

Let ℓ be the job that finishes last in the produced schedule.
Let S_{ℓ} be its start time, and let C_{ℓ} be its completion time.
Note that every machine is busy before time S_{ℓ}, because otherwise we could move the job ℓ and hence our schedule would not be locally optimal.

We can split the total processing time into two intervals one from 0 to S_{ℓ} the other from S_{ℓ} to C_{ℓ}.

The interval $\left[S_{\ell}, C_{\ell}\right.$] is of length $p_{\ell} \leq C_{\max }^{*}$.
During the first interval $\left[0, S_{\ell}\right]$ all processors are busy, and, hence, the total work performed in this interval is

$$
m \cdot S_{\ell} \leq \sum_{j \neq \ell} p_{j}
$$

Hence, the length of the schedule is at most

$$
p_{\ell}+\frac{1}{m} \sum_{j \neq \ell} p_{j}=\left(1-\frac{1}{m}\right) p_{\ell}+\frac{1}{m} \sum_{j} p_{j} \leq\left(2-\frac{1}{m}\right) C_{\max }^{*}
$$

A Greedy Strategy

List Scheduling

Order all processes in a list. When a machine runs empty assign the next yet unprocessed job to it.

Alternatively:
Consider processes in some order. Assign the i-th process to the least loaded machine.

It is easy to see that the result of these greedy strategies fulfill the local optimally condition of our local search algorithm. Hence, these also give 2 -approximations.

A Tight Example

$$
\begin{align*}
& p_{\ell} \approx S_{\ell}+\frac{S_{\ell}}{m-1} \\
& \frac{\mathrm{ALG}}{\mathrm{OPT}}=\frac{S_{\ell}+p_{\ell}}{p_{\ell}} \approx \frac{2+\frac{1}{m-1}}{1+\frac{1}{m-1}}=2-\frac{1}{m}
\end{align*}
$$

A Greedy Strategy

Lemma 18

If we order the list according to non-increasing processing times the approximation guarantee of the list scheduling strategy improves to $4 / 3$.

Proof:

- Let $p_{1} \geq \cdots \geq p_{n}$ denote the processing times of a set of jobs that form a counter-example.
- Wlog. the last job to finish is n (otw. deleting this job gives another counter-example with fewer jobs).
- If $p_{n} \leq C_{\text {max }}^{*} / 3$ the previous analysis gives us a schedule length of at most

$$
C_{\max }^{*}+p_{n} \leq \frac{4}{3} C_{\max }^{*}
$$

Hence, $p_{n}>C_{\text {max }}^{*} / 3$.

- This means that all jobs must have a processing time $>C_{\text {max }}^{*} / 3$.
- But then any machine in the optimum schedule can handle at most two jobs.
- For such instances Longest-Processing-Time-First is optimal.

15 Scheduling on Identical Machines: Greedy
O Harald Räcke

- We can assume that one machine schedules p_{1} and p_{n} (the largest and smallest job).
- If not assume wlog. that p_{1} is scheduled on machine A and p_{n} on machine B.
- Let p_{A} and p_{B} be the other job scheduled on A and B, respectively.
- $p_{1}+p_{n} \leq p_{1}+p_{A}$ and $p_{A}+p_{B} \leq p_{1}+p_{A}$, hence scheduling p_{1} and p_{n} on one machine and p_{A} and p_{B} on the other, cannot increase the Makespan.
- Repeat the above argument for the remaining machines.

When in an optimal solution a machine can have at most 2 jobs the optimal solution looks as follows.

$151 \begin{aligned} & \text { EADS II } \\ & \text { OHarald Räcke }\end{aligned}$

Tight Example

- $2 m+1$ jobs
- 2 jobs with length $2 m, 2 m-1,2 m-2, \ldots, m+1(2 m-2$ jobs in total)
- 3 jobs of length m

Traveling Salesman

Given a set of cities $(\{1, \ldots, n\})$ and a symmetric matrix
$C=\left(c_{i j}\right), c_{i j} \geq 0$ that specifies for every pair $(i, j) \in[n] \times[n]$ the cost for travelling from city i to city j. Find a permutation π of the cities such that the round-trip cost

$$
c_{\pi(1) \pi(n)}+\sum_{i=1}^{n-1} c_{\pi(i) \pi(i+1)}
$$

is minimized.

Metric Traveling Salesman

In the metric version we assume for every triple
$i, j, k \in\{1, \ldots, n\}$

$$
c_{i j} \leq c_{i j}+c_{j k}
$$

It is convenient to view the input as a complete undirected graph $G=(V, E)$, where $c_{i j}$ for an edge (i, j) defines the distance
between nodes i and j.

Traveling Salesman

Theorem 19
There does not exist an $O\left(2^{n}\right)$-approximation algorithm for TSP.

Hamiltonian Cycle:

For a given undirected graph $G=(V, E)$ decide whether there exists a simple cycle that contains all nodes in G.

- Given an instance to HAMPATH we create an instance for TSP.
- If $(i, j) \notin E$ then set $c_{i j}$ to $n 2^{n}$ otw. set $c_{i j}$ to 1 . This instance has polynomial size.
- There exists a Hamiltonian Path iff there exists a tour with cost n. Otw. any tour has cost strictly larger than 2^{n}.
- An $\mathcal{O}\left(2^{n}\right)$-approximation algorithm could decide btw. these cases. Hence, cannot exist unless $P=N P$.

TSP: Lower Bound I

Lemma 20

The cost $\operatorname{OPT}_{T S P}(G)$ of an optimum traveling salesman tour is at least as large as the weight $\mathrm{OPT}_{M S T}(G)$ of a minimum spanning tree in G.

Proof:

- Take the optimum TSP-tour.
- Delete one edge.
- This gives a spanning tree of cost at most $\mathrm{OPT}_{\mathrm{TSP}}(G)$.

TSP: Greedy Algorithm

- Start with a tour on a subset S containing a single node.
- Take the node v closest to S. Add it S and expand the existing tour on S to include v.
- Repeat until all nodes have been processed.

TSP: Greedy Algorithm

Lemma 21
The Greedy algorithm is a 2-approximation algorithm.
Let S_{i} be the set at the start of the i-th iteration, and let v_{i} denote the node added during the iteration.

Further let $s_{i} \in S_{i}$ be the node closest to $v_{i} \in S_{i}$.
Let r_{i} denote the successor of s_{i} in the tour before inserting v_{i}.
We replace the edge $\left(s_{i}, r_{i}\right)$ in the tour by the two edges $\left(s_{i}, v_{i}\right)$ and $\left(v_{i}, r_{i}\right)$.

This increases the cost by

$$
c_{s_{i}, v_{i}}+c_{v_{i}, r_{i}}-c_{s_{i}, r_{i}} \leq 2 c_{s_{i}, v_{i}}
$$

TSP: Greedy Algorithm

The gray edges form an MST, because exactly these edges are taken in Prims algorithm.

TSP: Greedy Algorithm

The edges $\left(s_{i}, v_{i}\right)$ considered during the Greedy algorithm are exactly the edges considered during PRIMs MST algorithm.

Hence,

$$
\sum_{i} c_{S_{i}, v_{i}}=\mathrm{OPT}_{\mathrm{MST}}(G)
$$

which with the previous lower bound gives a 2-approximation.

TSP: A different approach

Suppose that we are given an Eulerian graph $G^{\prime}=\left(V, E^{\prime}, c^{\prime}\right)$ of $G=(V, E, c)$ such that for any edge $(i, j) \in E^{\prime} c^{\prime}(i, j) \geq c(i, j)$.

Then we can find a TSP-tour of cost at most

$$
\sum_{e \in E^{\prime}} c^{\prime}(e)
$$

- Find an Euler tour of G^{\prime}.
- Fix a permutation of the cities (i.e., a TSP-tour) by traversing the Euler tour and only note the first occurrence of a city.
- The cost of this TSP tour is at most the cost of the Euler tour because of triangle inequality.

This technique is known as short cutting the Euler tour.

TSP: A different approach

Consider the following graph:

- Compute an MST of G.
- Duplicate all edges.

This graph is Eulerian, and the total cost of all edges is at most $2 \cdot \operatorname{OPT}_{\mathrm{MST}}(G)$.

Hence, short-cutting gives a tour of cost no more than $2 \cdot \mathrm{OPT}_{\mathrm{MST}}(G)$ which means we have a 2-approximation.

TSP: A different approach

TSP: Can we do better?

TSP: Can we do better?

Duplicating all edges in the MST seems to be rather wasteful.
We only need to make the graph Eulerian.
For this we compute a Minimum Weight Matching between odd degree vertices in the MST (note that there are an even number of them).

Christofides. Tight Example

- optimal tour: n edges.
- MST: $n-1$ edges.
- weight of matching $(n+1) / 2-1$
- MST+matching $\approx 3 / 2 \cdot n$

TSP: Can we do better?

An optimal tour on the odd-degree vertices has cost at most $\mathrm{OPT}_{\mathrm{TSP}}(G)$.

However, the edges of this tour give rise to two disjoint matchings. One of these matchings must have weight less than $\operatorname{OPT}_{\text {TSP }}(G) / 2$.

Adding this matching to the MST gives an Eulerian graph with edge weight at most

$$
\mathrm{OPT}_{\mathrm{MST}}(G)+\mathrm{OPT}_{\mathrm{TSP}}(G) / 2 \leq \frac{3}{2} \mathrm{OPT}_{\mathrm{TSP}}(G)
$$

Short cutting gives a $\frac{3}{2}$-approximation for metric TSP.
This is the best that is known.

Tree shortcutting. Tight Example

- edges have Euclidean distance.

17 Rounding Data + Dynamic Programming

Knapsack:

Given a set of items $\{1, \ldots, n\}$, where the i-th item has weight $w_{i} \in \mathbb{N}$ and profit $p_{i} \in \mathbb{N}$, and given a threshold W. Find a subset $I \subseteq\{1, \ldots, n\}$ of items of total weight at most W such that the profit is maximized (we can assume each $w_{i} \leq W$).

\max		$\sum_{i=1}^{n} p_{i} x_{i}$	
s.t.	$\forall i \in\{1, \ldots, n\}$	$\sum_{i=1}^{n} w_{i} x_{i} \leq$	W
	x_{i}	$\in\{0,1\}$	

17 Rounding Data + Dynamic Programming

Definition 22

An algorithm is said to have pseudo-polynomial running time if the running time is polynomial when the numerical part of the input is encoded in unary.

17 Rounding Data + Dynamic Programming

```
Algorithm 1 Knapsack
    \(A(1) \leftarrow\left[(0,0),\left(p_{1}, w_{1}\right)\right]\)
    for \(j \leftarrow 2\) to \(n\) do
        \(A(j) \leftarrow A(j-1)\)
        for each \((p, w) \in A(j-1)\) do
            if \(w+w_{j} \leq W\) then
                    add \(\left(p+p_{j}, w+w_{j}\right)\) to \(A(j)\)
            remove dominated pairs from \(A(j)\)
    return \(\max _{(p, w) \in A(n)} p\)
```

The running time is $\mathcal{O}(n \cdot \min \{W, P\})$, where $P=\sum_{i} p_{i}$ is the total profit of all items. This is only pseudo-polynomial.

17 Rounding Data + Dynamic Programming

- Let M be the maximum profit of an element.
- Set $\mu:=\epsilon M / n$.
- Set $p_{i}^{\prime}:=\left\lfloor p_{i} / \mu\right\rfloor$ for all i.
- Run the dynamic programming algorithm on this revised instance.

Running time is at most

$$
\mathcal{O}\left(n P^{\prime}\right)=\mathcal{O}\left(n \sum_{i} p_{i}^{\prime}\right)=\mathcal{O}\left(n \sum_{i}\left\lfloor\frac{p_{i}}{\epsilon M / n}\right\rfloor\right) \leq \mathcal{O}\left(\frac{n^{3}}{\epsilon}\right) .
$$

17 Rounding Data + Dynamic Programming

Let S be the set of items returned by the algorithm, and let O be an optimum set of items.

$$
\begin{aligned}
\sum_{i \in S} p_{i} & \geq \mu \sum_{i \in S} p_{i}^{\prime} \\
& \geq \mu \sum_{i \in O} p_{i}^{\prime} \\
& \geq \sum_{i \in O} p_{i}-|O| \mu \\
& \geq \sum_{i \in O} p_{i}-n \mu \\
& =\sum_{i \in O} p_{i}-\epsilon M \\
& \geq(1-\epsilon) \mathrm{OPT}
\end{aligned}
$$

17.2 Scheduling Revisited

Partition the input into long jobs and short jobs.
A job j is called short if

$$
p_{j} \leq \frac{1}{k m} \sum_{i} p_{i}
$$

Idea:

1. Find the optimum Makespan for the long jobs by brute force.
2. Then use the list scheduling algorithm for the short jobs, always assigning the next job to the least loaded machine.

Scheduling Revisited

The previous analysis of the scheduling algorithm gave a makespan of

$$
\frac{1}{m} \sum_{j \neq \ell} p_{j}+p_{\ell}
$$

where ℓ is the last job to complete.
Together with the obervation that if each $p_{i} \geq \frac{1}{3} C_{\text {max }}^{*}$ then LPT is optimal this gave a 4/3-approximation.

We still have the inequality

$$
\frac{1}{m} \sum_{j \neq \ell} p_{j}+p_{\ell}
$$

where ℓ is the last job (this only requires that all machines are busy before time S_{ℓ}).

If ℓ is a long job, then the schedule must be optimal, as it consists of an optimal schedule of long jobs plus a schedule for short jobs.

If ℓ is a short job its length is at most

$$
p_{\ell} \leq \sum_{j} p_{j} /(m k)
$$

which is at most $C_{\text {max }}^{*} / k$.

Hence we get a schedule of length at most

$$
\left(1+\frac{1}{k}\right) C_{\max }^{*}
$$

There are at most km long jobs. Hence, the number of possibilities of scheduling these jobs on m machines is at most m^{km}, which is constant if m is constant. Hence, it is easy to implement the algorithm in polynomial time.

Theorem 23

The above algorithm gives a polynomial time approximation scheme (PTAS) for the problem of scheduling n jobs on m identical machines if m is constant.

We choose $k=\left\lceil\frac{1}{\epsilon}\right\rceil$.

How to get rid of the requirement that m is constant?

We first design an algorithm that works as follows:
On input of T it either finds a schedule of length $\left(1+\frac{1}{k}\right) T$ or certifies that no schedule of length at most T exists (assume $T \geq \frac{1}{m} \sum_{j} p_{j}$).

We partition the jobs into long jobs and short jobs:

- A job is long if its size is larger than T / k.
- Otw. it is a short job.
- We round all long jobs down to multiples of T / k^{2}.
- For these rounded sizes we first find an optimal schedule.
- If this schedule does not have length at most T we conclude that also the original sizes don't allow such a schedule.
- If we have a good schedule we extend it by adding the short jobs according to the LPT rule.

After the first phase the rounded sizes of the long jobs assigned to a machine add up to at most T.

There can be at most k (long) jobs assigned to a machine as otw. their rounded sizes would add up to more than T (note that the rounded size of a long job is at least T / k).

Since, jobs had been rounded to multiples of T / k^{2} going from rounded sizes to original sizes gives that the Makespan is at most

$$
\left(1+\frac{1}{k}\right) T
$$

During the second phase there always must exist a machine with load at most T, since T is larger than the average load.
Assigning the current (short) job to such a machine gives that the new load is at most

$$
T+\frac{T}{k} \leq\left(1+\frac{1}{k}\right) T
$$

Let $\operatorname{OPT}\left(n_{1}, \ldots, n_{k^{2}}\right)$ be the number of machines that are required to schedule input vector $\left(n_{1}, \ldots, n_{k^{2}}\right)$ with Makespan at most T.

If $\operatorname{OPT}\left(n_{1}, \ldots, n_{k^{2}}\right) \leq m$ we can schedule the input.

We have

$$
\begin{aligned}
& \operatorname{OPT}\left(n_{1}, \ldots, n_{k^{2}}\right) \\
& \quad= \begin{cases}0 & \left(n_{1}, \ldots, n_{k^{2}}\right)=0 \\
1+\min _{\left(s_{1}, \ldots, s_{k^{2}}\right) \in C} \operatorname{OPT}\left(n_{1}-s_{1}, \ldots, n_{k^{2}}-s_{k^{2}}\right) & \left(n_{1}, \ldots, n_{k^{2}}\right) \neq 0 \\
\infty & \text { otw. }\end{cases}
\end{aligned}
$$

where C is the set of all configurations
Hence, the running time is roughly $(k+1)^{k^{2}} n^{k^{2}} \approx(n k)^{k^{2}}$.

Running Time for scheduling large jobs: There should not be a job with rounded size more than T as otw. the problem becomes trivial.

Hence, any large job has rounded size of $\frac{i}{k^{2}} T$ for $i \in\left\{k, \ldots, k^{2}\right\}$. Therefore the number of different inputs is at most $n^{k^{2}}$ (described by a vector of length k^{2} where, the i-th entry describes the number of jobs of size $\frac{i}{k^{2}} T$). This is polynomial.

The schedule/configuration of a particular machine x can be described by a vector of length k^{2} where the i-th entry describes the number of jobs of rounded size $\frac{i}{k^{2}} T$ assigned to x. There are only $(k+1)^{k^{2}}$ different vectors.

This means there are a constant number of different machine configurations. binary search. This gives a running time that is exponential in $1 / \epsilon$.

Can we do better?
Scheduling on identical machines with the goal of minimizing Makespan is a strongly NP-complete problem.

Theorem 24
There is no FPTAS for problems that are strongly NP-hard.

- Suppose we have an instance with polynomially bounded processing times $p_{i} \leq q(n)$
- We set $k:=\lceil 2 n q(n)\rceil \geq 2$ OPT
- Then

$$
\mathrm{ALG} \leq\left(1+\frac{1}{k}\right) \mathrm{OPT} \leq \mathrm{OPT}+\frac{1}{2}
$$

- But this means that the algorithm computes the optimal solution as the optimum is integral.
- This means we can solve problem instances if processing times are polynomially bounded
- Running time is $\mathcal{O}(\operatorname{poly}(n, k))=\mathcal{O}(\operatorname{poly}(n))$
- For strongly NP-complete problems this is not possible unless $P=N P$

Bin Packing

Given n items with sizes s_{1}, \ldots, s_{n} where

$$
1>s_{1} \geq \cdots \geq s_{n}>0
$$

Pack items into a minimum number of bins where each bin can hold items of total size at most 1 .

Theorem 25
There is no ρ-approximation for Bin Packing with $\rho<3 / 2$ unless $\mathrm{P}=\mathrm{NP}$.

More General

Let $\operatorname{OPT}\left(n_{1}, \ldots, n_{A}\right)$ be the number of machines that are required to schedule input vector (n_{1}, \ldots, n_{A}) with Makespan at most T (A : number of different sizes).

If $\operatorname{OPT}\left(n_{1}, \ldots, n_{A}\right) \leq m$ we can schedule the input.
$\operatorname{OPT}\left(n_{1}, \ldots, n_{A}\right)$

$$
= \begin{cases}0 & \left(n_{1}, \ldots, n_{A}\right)=0 \\ 1+\min _{\left(s_{1}, \ldots, s_{A}\right) \in C} \operatorname{OPT}\left(n_{1}-s_{1}, \ldots, n_{A}-s_{A}\right) & \left(n_{1}, \ldots, n_{A}\right) \ngtr 0 \\ \infty & \text { otw. }\end{cases}
$$

where C is the set of all configurations.
$|C| \leq(B+1)^{A}$, where B is the number of jobs that possibly can fit on the same machine.

The running time is then $O\left((B+1)^{A} n^{A}\right)$ because the dynamic programming table has just n^{A} entries.

Bin Packing

Proof

- In the partition problem we are given positive integers b_{1}, \ldots, b_{n} with $B=\sum_{i} b_{i}$ even. Can we partition the integers into two sets S and T s.t.

$$
\sum_{i \in S} b_{i}=\sum_{i \in T} b_{i} ?
$$

- We can solve this problem by setting $s_{i}:=2 b_{i} / B$ and asking whether we can pack the resulting items into 2 bins or not.
- A ρ-approximation algorithm with $\rho<3 / 2$ cannot output 3 or more bins when 2 are optimal.
- Hence, such an algorithm can solve Partition.

Bin Packing

Definition 26

An asymptotic polynomial-time approximation scheme (APTAS)
is a family of algorithms $\left\{A_{\epsilon}\right\}$ along with a constant c such that A_{ϵ} returns a solution of value at most $(1+\epsilon) \mathrm{OPT}+c$ for minimization problems.

- Note that for Set Cover or for Knapsack it makes no sense to differentiate between the notion of a PTAS or an APTAS because of scaling.
- However, we will develop an APTAS for Bin Packing.

Bin Packing

Again we can differentiate between small and large items.
Lemma 27
Any packing of items into ℓ bins can be extended with items of size at most γ s.t. we use only $\max \left\{\ell, \frac{1}{1-\gamma} \operatorname{SIZE}(I)+1\right\}$ bins, where $\operatorname{SIZE}(I)=\sum_{i} s_{i}$ is the sum of all item sizes.

- If after Greedy we use more than ℓ bins, all bins (apart from the last) must be full to at least $1-\gamma$.
- Hence, $r(1-\gamma) \leq \operatorname{SIZE}(I)$ where r is the number of nearly-full bins.
- This gives the lemma.

Bin Packing

Linear Grouping:

Generate an instance I^{\prime} (for large items) as follows.

- Order large items according to size.
- Let the first k items belong to group 1 ; the following k items belong to group 2; etc.
- Delete items in the first group;
- Round items in the remaining groups to the size of the largest item in the group.

Linear Grouping

Lemma 28
$\mathrm{OPT}\left(I^{\prime}\right) \leq \mathrm{OPT}(I) \leq \mathrm{OPT}\left(I^{\prime}\right)+k$

Proof 1:

- Any bin packing for I gives a bin packing for I^{\prime} as follows.
- Pack the items of group 2, where in the packing for I the items for group 1 have been packed;
- Pack the items of groups 3, where in the packing for I the items for group 2 have been packed;
- ...

Assume that our instance does not contain pieces smaller than
$\epsilon / 2$. Then $\operatorname{SIZE}(I) \geq \epsilon n / 2$.
We set $k=\lfloor\epsilon \operatorname{SIZE}(I)\rfloor$.
Then $n / k \leq n /\left\lfloor\epsilon^{2} n / 2\right\rfloor \leq 4 / \epsilon^{2}$ (here we used $\lfloor\alpha\rfloor \geq \alpha / 2$ for $\alpha \geq 1$).

Hence, after grouping we have a constant number of piece sizes $\left(4 / \epsilon^{2}\right)$ and at most a constant number $(2 / \epsilon)$ can fit into any bin.

We can find an optimal packing for such instances by the previous Dynamic Programming approach.

- cost (for large items) at most

$$
\mathrm{OPT}\left(I^{\prime}\right)+k \leq \operatorname{OPT}(I)+\epsilon \operatorname{SIZE}(I) \leq(1+\epsilon) \mathrm{OPT}(I)
$$

- running time $\mathcal{O}\left(\left(\frac{2}{\epsilon} n\right)^{4 / \epsilon^{2}}\right)$.

Can we do better?

In the following we show how to obtain a solution where the number of bins is only

$$
\mathrm{OPT}(I)+\mathcal{O}\left(\log ^{2}(\operatorname{SIZE}(I))\right) .
$$

Note that this is usually better than a guarantee of

$$
(1+\epsilon) \mathrm{OPT}(I)+1 .
$$

Configuration LP

A possible packing of a bin can be described by an m-tuple $\left(t_{1}, \ldots, t_{m}\right)$, where t_{i} describes the number of pieces of size s_{i}.
Clearly,

$$
\sum_{i} t_{i} \cdot s_{i} \leq 1
$$

We call a vector that fulfills the above constraint a configuration.

Configuration LP

Change of Notation:

- Group pieces of identical size.
- Let s_{1} denote the largest size, and let b_{1} denote the number of pieces of size s_{1}.
- s_{2} is second largest size and b_{2} number of pieces of size s_{2}
- ...
- s_{m} smallest size and b_{m} number of pieces of size s_{m}.
T EADS II \quad 17.4 Advanced Rounding for Bin Packing

Configuration LP

Let N be the number of configurations (exponential).

Let T_{1}, \ldots, T_{N} be the sequence of all possible configurations (a configuration T_{j} has $T_{j i}$ pieces of size s_{i}).

\[

\]

How to solve this LP?

later...

Harmonic Grouping

- Sort items according to size (monotonically decreasing).
- Process items in this order; close the current group if size of items in the group is at least 2 (or larger). Then open new group.
- I.e., G_{1} is the smallest cardinality set of largest items s.t. total size sums up to at least 2 . Similarly, for G_{2}, \ldots, G_{r-1}.
- Only the size of items in the last group G_{r} may sum up to less than 2.

We can assume that each item has size at least 1/SIZE(I),

Harmonic Grouping

From the grouping we obtain instance I^{\prime} as follows:

- Round all items in a group to the size of the largest group member.
- Delete all items from group G_{1} and G_{r}.
- For groups G_{2}, \ldots, G_{r-1} delete $n_{i}-n_{i-1}$ items.
- Observe that $n_{i} \geq n_{i-1}$.

Lemma 30

The number of different sizes in I^{\prime} is at most SIZE(I)/2.

- Each group that survives (recall that G_{1} and G_{Y} are deleted) has total size at least 2.
- Hence, the number of surviving groups is at most $\operatorname{SIZE}(I) / 2$.
- All items in a group have the same size in I^{\prime}.

Analysis

$$
\operatorname{OPT}_{\mathrm{LP}}\left(I_{1}\right)+\operatorname{OPT}_{\mathrm{LP}}\left(I_{2}\right) \leq \mathrm{OPT}_{\mathrm{LP}}\left(I^{\prime}\right) \leq \mathrm{OPT}_{\mathrm{LP}}(I)
$$

Proof:

- Each piece surviving in I^{\prime} can be mapped to a piece in I of no lesser size. Hence, $\mathrm{OPT}_{\mathrm{LP}}\left(I^{\prime}\right) \leq \mathrm{OPT}_{\mathrm{LP}}(I)$
- $\left\lfloor x_{j}\right\rfloor$ is feasible solution for I_{1} (even integral).
- $x_{j}-\left\lfloor x_{j}\right\rfloor$ is feasible solution for I_{2}.

Lemma 31

The total size of deleted items is at most $\mathcal{O}(\log (\operatorname{SIZE}(I)))$.

- The total size of items in G_{1} and G_{r} is at most 6 as a group has total size at most 3 .
- Consider a group G_{i} that has strictly more items than G_{i-1}.
- It discards $n_{i}-n_{i-1}$ pieces of total size at most

$$
3 \frac{n_{i}-n_{i-1}}{n_{i}} \leq \sum_{j=n_{i-1}+1}^{n_{i}} \frac{3}{j}
$$

since the smallest piece has size at most $3 / n_{i}$.

- Summing over all i that have $n_{i}>n_{i-1}$ gives a bound of at most

$$
\sum_{j=1}^{n_{r-1}} \frac{3}{j} \leq \mathcal{O}(\log (\operatorname{SIZE}(I)))
$$

(note that $n_{r} \leq \operatorname{SIZE}(I)$ since we assume that the size of each item is at least $1 / \operatorname{SIZE}(I))$. no less in feasible solution for I_{1} (even integral)

Analysis

Each level of the recursion partitions pieces into three types

1. Pieces discarded at this level.
2. Pieces scheduled because they are in I_{1}.
3. Pieces in I_{2} are handed down to the next level.

Pieces of type 2 summed over all recursion levels are packed into at most $\mathrm{OPT}_{\mathrm{LP}}$ many bins.

Pieces of type 1 are packed into at most

$$
\mathcal{O}(\log (\operatorname{SIZE}(I))) \cdot L
$$

many bins where L is the number of recursion levels.

How to solve the LP?

Let T_{1}, \ldots, T_{N} be the sequence of all possible configurations (a configuration T_{j} has $T_{j i}$ pieces of size s_{i}).
In total we have b_{i} pieces of size s_{i}.

Primal

\[

\]

Dual

$$
\begin{array}{|rrr}
\hline \max & & \sum_{i=1}^{m} y_{i} b_{i} \\
\mathrm{s.t.} & \forall j \in\{1, \ldots, N\} & \sum_{i=1}^{m} T_{j i} y_{i} \leq 1 \\
& \forall i \in\{1, \ldots, m\} & y_{i} \geq 0
\end{array}
$$

Analysis

We can show that $\operatorname{SIZE}\left(I_{2}\right) \leq \operatorname{SIZE}(I) / 2$. Hence, the number of recursion levels is only $\mathcal{O}\left(\log \left(\operatorname{SIZE}\left(I_{\text {original }}\right)\right)\right)$ in total.

- The number of non-zero entries in the solution to the configuration LP for I^{\prime} is at most the number of constraints, which is the number of different sizes $(\leq \operatorname{SIZE}(I) / 2)$.
- The total size of items in I_{2} can be at most $\sum_{j=1}^{N} x_{j}-\left\lfloor x_{j}\right\rfloor$ which is at most the number of non-zero entries in the solution to the configuration LP.

Separation Oracle

Suppose that I am given variable assignment y for the dual.

How do I find a violated constraint?

I have to find a configuration $T_{j}=\left(T_{j 1}, \ldots, T_{j m}\right)$ that

- is feasible, i.e.,

$$
\sum_{i=1}^{m} T_{j i} \cdot s_{i} \leq 1
$$

- and has a large profit

$$
\sum_{i=1}^{m} T_{j i} y_{i}>1
$$

But this is the Knapsack problem.

Separation Oracle

We have FPTAS for Knapsack. This means if a constraint is violated with $1+\epsilon^{\prime}=1+\frac{\epsilon}{1-\epsilon}$ we find it, since we can obtain at least $(1-\epsilon)$ of the optimal profit.

The solution we get is feasible for:

Dual ${ }^{\prime}$

\max		$\sum_{i=1}^{m} y_{i} b_{i}$	
s.t.	$\forall j \in\{1, \ldots, N\}$	$\sum_{i=1}^{m} T_{j i} y_{i}$	$\leq 1+\epsilon^{\prime}$
	$\forall i \in\{1, \ldots, m\}$	$y_{i} \geq 0$	

Primal'

min		$\left(1+\epsilon^{\prime}\right) \sum_{j=1}^{N} x_{j}$	
$\mathrm{s.t}$.	$\forall i \in\{1 \ldots m\}$	$\sum_{j=1}^{N} T_{j i} x_{j}$	$\geq b_{i}$
	$\forall j \in\{1, \ldots, N\}$	x_{j}	≥ 0

Separation Oracle

If the value of the computed dual solution (which may be infeasible) is z then

$$
\mathrm{OPT} \leq z \leq\left(1+\epsilon^{\prime}\right) \mathrm{OPT}
$$

How do we get good primal solution (not just the value)?

- The constraints used when computing z certify that the solution is feasible for DUAL'.
- Suppose that we drop all unused constraints in DUAL. We will compute the same solution feasible for DUAL'.
- Let DUAL" be DUAL without unused constraints.
- The dual to DUAL" is PRIMAL where we ignore variables for which the corresponding dual constraint has not been used.
- The optimum value for PRIMAL" is at most $\left(1+\epsilon^{\prime}\right)$ OPT.
- We can compute the corresponding solution in polytime.

Lemma 32 (Chernoff Bounds)

Let X_{1}, \ldots, X_{n} be n independent 0-1 random variables, not necessarily identically distributed. Then for $X=\sum_{i=1}^{n} X_{i}$ and $\mu=E[X], L \leq \mu \leq U$, and $\delta>0$

$$
\operatorname{Pr}[X \geq(1+\delta) U]<\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{U}
$$

and

$$
\operatorname{Pr}[X \leq(1-\delta) L]<\left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^{L}
$$

Lemma 33

For $0 \leq \delta \leq 1$ we have that

$$
\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{U} \leq e^{-U \delta^{2} / 3}
$$

and

$$
\left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^{L} \leq e^{-L \delta^{2} / 2}
$$

Proof of Chernoff Bounds

Hence:

$$
\operatorname{Pr}[X \geq(1+\delta) U] \leq \frac{\mathrm{E}[X]}{(1+\delta) U} \approx \frac{1}{1+\delta}
$$

That's awfully weak :(

Proof of Chernoff Bounds

Markovs Inequality:

Let X be random variable taking non-negative values.
Then

$$
\operatorname{Pr}[X \geq a] \leq \mathrm{E}[X] / a
$$

Trivial!

Proof of Chernoff Bounds

Set $p_{i}=\operatorname{Pr}\left[X_{i}=1\right]$. Assume $p_{i}>0$ for all i.
Cool Trick:

$$
\operatorname{Pr}[X \geq(1+\delta) U]=\operatorname{Pr}\left[e^{t X} \geq e^{t(1+\delta) U}\right]
$$

Now, we apply Markov:

$$
\operatorname{Pr}\left[e^{t X} \geq e^{t(1+\delta) U}\right] \leq \frac{\mathrm{E}\left[e^{t X}\right]}{e^{t(1+\delta) U}}
$$

This may be a lot better (!?)

Proof of Chernoff Bounds

$$
\begin{gathered}
\mathrm{E}\left[e^{t X}\right]=\mathrm{E}\left[e^{t \sum_{i} X_{i}}\right]=\mathrm{E}\left[\prod_{i} e^{t X_{i}}\right]=\prod_{i} \mathrm{E}\left[e^{t X_{i}}\right] \\
\mathrm{E}\left[e^{t X_{i}}\right]=\left(1-p_{i}\right)+p_{i} e^{t}=1+p_{i}\left(e^{t}-1\right) \leq e^{p_{i}\left(e^{t}-1\right)} \\
\prod_{i} \mathrm{E}\left[e^{t X_{i}}\right] \leq \prod_{i} e^{p_{i}\left(e^{t}-1\right)}=e^{\sum p_{i}\left(e^{t}-1\right)}=e^{\left(e^{t}-1\right) U}
\end{gathered}
$$

Now, we apply Markov:

$$
\begin{aligned}
\operatorname{Pr}[X \geq(1+\delta) U] & =\operatorname{Pr}\left[e^{t X} \geq e^{t(1+\delta) U}\right] \\
& \leq \frac{\mathrm{E}\left[e^{t X}\right]}{e^{t(1+\delta) U}} \leq \frac{e^{\left(e^{t}-1\right) U}}{e^{t(1+\delta) U}} \leq\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{U}
\end{aligned}
$$

We choose $t=\ln (1+\delta)$.

Show:

$$
\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{U} \leq e^{-U \delta^{2} / 3}
$$

Take logarithms:

$$
U(\delta-(1+\delta) \ln (1+\delta)) \leq-U \delta^{2} / 3
$$

True for $\delta=0$. Divide by U and take derivatives:

$$
-\ln (1+\delta) \leq-2 \delta / 3
$$

Reason:

As long as derivative of left side is smaller than derivative of right side the inequality holds.

$$
f(\delta):=-\ln (1+\delta)+2 \delta / 3 \leq 0
$$

A convex function $\left(f^{\prime \prime}(\delta) \geq 0\right)$ on an interval takes maximum at the boundaries.

$$
f^{\prime}(\delta)=-\frac{1}{1+\delta}+2 / 3 \quad f^{\prime \prime}(\delta)=\frac{1}{(1+\delta)^{2}}
$$

$f(0)=0$ and $f(1)=-\ln (2)+2 / 3<0$

Show:

$$
\left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^{L} \leq e^{-L \delta^{2} / 2}
$$

Take logarithms:

$$
L(-\delta-(1-\delta) \ln (1-\delta)) \leq-L \delta^{2} / 2
$$

True for $\delta=0$. Divide by L and take derivatives:

$$
\ln (1-\delta) \leq-\delta
$$

Reason:

As long as derivative of left side is smaller than derivative of right side the inequality holds.
Take logarithms:

For $\delta \geq 1$ we show

$$
\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{U} \leq e^{-U \delta / 3}
$$

Take logarithms:

$$
U(\delta-(1+\delta) \ln (1+\delta)) \leq-U \delta / 3
$$

True for $\delta=0$. Divide by U and take derivatives:

$$
-\ln (1+\delta) \leq-1 / 3 \Longleftrightarrow \ln (1+\delta) \geq 1 / 3 \quad \text { (true) }
$$

Reason:

As long as derivative of left side is smaller than derivative of right side the inequality holds.

Integer Multicommodity Flows

- Given $s_{i}-t_{i}$ pairs in a graph.
- Connect each pair by a path such that not too many path use any given edge.

$$
\begin{array}{rlrl}
\min & & \\
\text { s.t. } & \forall i \quad \sum_{p \in \mathcal{P}_{i}} x_{p} & =1 \\
& & \sum_{p: e \in p} x_{p} & \leq W \\
& x_{p} & \in\{0,1\}
\end{array}
$$

Integer Multicommodity Flows

Randomized Rounding:

For each i choose one path from the set \mathcal{P}_{i} at random according to the probability distribution given by the Linear Programming solution.

Theorem 35
If $W^{*} \geq c \ln n$ for some constant c, then with probability at least
$n^{-c / 3}$ the total number of paths using any edge is at most $W^{*}+\sqrt{c W^{*} \ln n}$.

Theorem 36
With probability at least $n^{-c / 3}$ the total number of paths using any edge is at most $W^{*}+c \ln n$.

Integer Multicommodity Flows

Let X_{e}^{i} be a random variable that indicates whether the path for $s_{i}-t_{i}$ uses edge e.

Then the number of paths using edge e is $Y_{e}=\sum_{i} X_{e}^{i}$.

$$
E\left[Y_{e}\right]=\sum_{i} \sum_{p \in \mathcal{P}_{i}: e \in p} x_{p}^{*}=\sum_{p: e \in P} x_{p}^{*} \leq W^{*}
$$

Integer Multicommodity Flows

Choose $\delta=\sqrt{(c \ln n) / W^{*}}$.

Then

$$
\operatorname{Pr}\left[Y_{e} \geq(1+\delta) W^{*}\right]<e^{-W^{*} \delta^{2} / 3}=\frac{1}{n^{c / 3}}
$$

19 MAXSAT

Terminology:

- A variable x_{i} and its negation \bar{x}_{i} are called literals.
- Hence, each clause consists of a set of literals (i.e., no duplications: $x_{i} \vee x_{i} \vee \bar{x}_{j}$ is not a clause).
- We assume a clause does not contain x_{i} and \bar{x}_{i} for any i.
- x_{i} is called a positive literal while the negation \bar{x}_{i} is called a negative literal.
- For a given clause C_{j} the number of its literals is called its length or size and denoted with ℓ_{j}.
- Clauses of length one are called unit clauses.

19 MAXSAT

Problem definition:

- n Boolean variables
- m clauses C_{1}, \ldots, C_{m}. For example

$$
C_{7}=x_{3} \vee \bar{x}_{5} \vee \bar{x}_{9}
$$

- Non-negative weight w_{j} for each clause C_{j}.
- Find an assignment of true/false to the variables sucht that the total weight of clauses that are satisfied is maximum.

MAXSAT: Flipping Coins

Set each x_{i} independently to true with probability $\frac{1}{2}$ (and, hence, to false with probability $\frac{1}{2}$, as well).

Define random variable X_{j} with

$$
X_{j}= \begin{cases}1 & \text { if } C_{j} \text { satisfied } \\ 0 & \text { otw } .\end{cases}
$$

Then the total weight W of satisfied clauses is given by

$$
W=\sum_{j} w_{j} X_{j}
$$

MAXSAT: LP formulation

- Let for a clause C_{j}, P_{j} be the set of positive literals and N_{j} the set of negative literals

$$
C_{j}=\bigvee_{j \in P_{j}} x_{i} \vee \bigvee_{j \in N_{j}} \bar{x}_{i}
$$

| \max | | $\sum_{j} w_{j} z_{j}$ | |
| :---: | :---: | :---: | :--- | :--- |
| s.t. | $\forall j$ | $\sum_{i \in P_{j}} y_{i}+\sum_{i \in N_{j}}\left(1-y_{i}\right)$ | $\geq z_{j}$ |
| | $\forall i$ | y_{i} | $\in\{0,1\}$ |
| | $\forall j$ | z_{j} | ≤ 1 |

MAXSAT: Randomized Rounding

Set each x_{i} independently to true with probability y_{i} (and, hence, to false with probability $\left(1-y_{i}\right)$).

Lemma 37 (Geometric Mean \leq Arithmetic Mean)
For any nonnegative a_{1}, \ldots, a_{k}

$$
\left(\prod_{i=1}^{k} a_{i}\right)^{1 / k} \leq \frac{1}{k} \sum_{i=1}^{k} a_{i}
$$

Definition 38

A function f on an interval I is concave if for any two points s
and r from I and any $\lambda \in[0,1]$ we have

$$
f(\lambda s+(1-\lambda) r) \geq \lambda f(s)+(1-\lambda) f(r)
$$

Lemma 39

Let f be a concave function on the interval $[0,1]$, with $f(0)=a$ and $f(1)=a+b$. Then

$$
\begin{aligned}
f(\lambda) & =f((1-\lambda) 0+\lambda 1) \\
& \geq(1-\lambda) f(0)+\lambda f(1) \\
& =a+\lambda b
\end{aligned}
$$

for $\lambda \in[0,1]$.

The function $f(z)=1-\left(1-\frac{z}{\ell}\right)^{\ell}$ is concave. Hence,

$$
\begin{aligned}
\operatorname{Pr}\left[C_{j} \text { satisfied }\right] & \geq 1-\left(1-\frac{z_{j}}{\ell_{j}}\right)^{\ell_{j}} \\
& \geq\left[1-\left(1-\frac{1}{\ell_{j}}\right)^{\ell_{j}}\right] \cdot z_{j}
\end{aligned}
$$

$f^{\prime \prime}(z)=-\frac{\ell-1}{\ell}\left[1-\frac{z}{\ell}\right]^{\ell-2} \leq 0$ for $z \in[0,1]$. Therefore, f is concave.

$$
\begin{aligned}
E[W] & =\sum_{j} w_{j} \operatorname{Pr}\left[C_{j} \text { is satisfied }\right] \\
& \geq \sum_{j} w_{j} z_{j}\left[1-\left(1-\frac{1}{\ell_{j}}\right)^{\ell_{j}}\right] \\
& \geq\left(1-\frac{1}{e}\right) \mathrm{OPT} .
\end{aligned}
$$

Let W_{1} be the value of randomized rounding and W_{2} the value obtained by coin flipping.

$$
\begin{aligned}
E[\max & \left.\left\{W_{1}, W_{2}\right\}\right] \\
& \geq E\left[\frac{1}{2} W_{1}+\frac{1}{2} W_{2}\right] \\
& \geq \frac{1}{2} \sum_{j} w_{j} z_{j}\left[1-\left(1-\frac{1}{\ell_{j}}\right)^{\ell_{j}}\right]+\frac{1}{2} \sum_{j} w_{j}\left(1-\left(\frac{1}{2}\right)^{\ell_{j}}\right) \\
& \geq \sum_{j} w_{j} z_{j}[\underbrace{\frac{1}{2}\left(1-\left(1-\frac{1}{\ell_{j}}\right)^{\ell_{j}}\right)+\frac{1}{2}\left(1-\left(\frac{1}{2}\right)^{\ell_{j}}\right)}_{\geq \frac{3}{4} \text { for all integers }}] \\
& \geq \frac{3}{4} \mathrm{OPT}
\end{aligned}
$$

MAXSAT: The better of two

Theorem 40
Choosing the better of the two solutions given by randomized rounding and coin flipping yields a $\frac{3}{4}$-approximation.

MAXSAT: Nonlinear Randomized Rounding

So far we used linear randomized rounding, i.e., the probability that a variable is set to 1 /true was exactly the value of the corresponding variable in the linear program.

We could define a function $f:[0,1] \rightarrow[0,1]$ and set x_{i} to true with probability $f\left(y_{i}\right)$.

MAXSAT: Nonlinear Randomized Rounding

Let $f:[0,1] \rightarrow[0,1]$ be a function with

$$
1-4^{-x} \leq f(x) \leq 4^{x-1}
$$

Theorem 41
Rounding the LP-solution with a function f of the above form gives a $\frac{3}{4}$-approximation.

$\begin{aligned} \operatorname{Pr}\left[C_{j} \text { not satisfied }\right] & =\prod_{i \in P_{j}}\left(1-f\left(y_{i}\right)\right) \prod_{i \in N_{j}} f\left(y_{i}\right) \\ & \leq \prod_{i \in P_{j}} 4^{-y_{i}} \prod_{i \in N_{j}} 4^{y_{i}-1} \\ & =4^{-\left(\sum_{i \in P_{j}} y_{i}+\sum_{i \in N_{j}}\left(1-y_{i}\right)\right)} \\ & \leq 4^{-z_{j}} \end{aligned}$	
EADS II 19 MAXSAT	424

The function $g(z)=1-4^{-z}$ is concave on [0, 1$]$. Hence,

$$
\operatorname{Pr}\left[C_{j} \text { satisfied }\right] \geq 1-4^{-z_{j}} \geq \frac{3}{4} z_{j}
$$

Therefore,

$$
E[W]=\sum_{j} w_{j} \operatorname{Pr}\left[C_{j} \text { satisfied }\right] \geq \frac{3}{4} \sum_{j} w_{j} z_{j} \geq \frac{3}{4} \mathrm{OPT}
$$

Lemma 43

Our ILP-formulation for the MAXSAT problem has integrality gap at most $\frac{3}{4}$.

$$
\begin{array}{rrrl}
\hline \max & & \sum_{j} w_{j} z_{j} & \\
\text { s.t. } & \forall j & \sum_{i \in P_{j}} y_{i}+\sum_{i \in N_{j}}\left(1-y_{i}\right) & \geq z_{j} \\
& \forall i & y_{i} & \in\{0,1\} \\
& \forall j & z_{j} & \leq 1
\end{array}
$$

Consider: $\left(x_{1} \vee x_{2}\right) \wedge\left(\bar{x}_{1} \vee x_{2}\right) \wedge\left(x_{1} \vee \bar{x}_{2}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{2}\right)$

- any solution can satisfy at most 3 clauses
- we can set $y_{1}=y_{2}=1 / 2$ in the LP; this allows to set $z_{1}=z_{2}=z_{3}=z_{4}=1$
- hence, the LP has value 4 .

Can we do better?

Not if we compare ourselves to the value of an optimum LP-solution.

Definition 42 (Integrality Gap)
The integrality gap for an ILP is the worst-case ratio over all instances of the problem of the value of an optimal IP-solution to the value of an optimal solution to its linear programming relaxation.

Note that the integrality is less than one for maximization problems and larger than one for minimization problems (of course, equality is possible).

Note that an integrality gap only holds for one specific ILP formulation.

Repetition: Primal Dual for Set Cover

Primal Relaxation:

$$
\begin{array}{crr}
\text { min } & & \sum_{i=1}^{k} w_{i} x_{i} \\
\text { s.t. } & \forall u \in U & \sum_{i: u \in S_{i}} x_{i} \geq 1 \\
& \forall i \in\{1, \ldots, k\} & x_{i} \geq 0
\end{array}
$$

Dual Formulation:

\max		$\sum_{u \in U} y_{u}$	
s.t.	$\forall i \in\{1, \ldots, k\}$	$\sum_{u: u \in S_{i}} y_{u}$	$\leq w_{i}$
	y_{u}	≥ 0	

Repetition: Primal Dual for Set Cover

Algorithm:

- Start with $y=0$ (feasible dual solution).

Start with $x=0$ (integral primal solution that may be infeasible).

- While x not feasible
- Identify an element e that is not covered in current primal integral solution.
- Increase dual variable y_{e} until a dual constraint becomes tight (maybe increase by 0!).
- If this is the constraint for set S_{j} set $x_{j}=1$ (add this set to your solution).

Repetition: Primal Dual for Set Cover

Analysis:

- For every set S_{j} with $x_{j}=1$ we have

$$
\sum_{e \in S_{j}} y_{e}=w_{j}
$$

- Hence our cost is

$$
\sum_{j} w_{j}=\sum_{j} \sum_{e \in S_{j}} y_{e}=\sum_{e}\left|\left\{j: e \in S_{j}\right\}\right| \cdot y_{e} \leq f \cdot \sum_{e} y_{e} \leq f \cdot \mathrm{OPT}
$$

Note that the constructed pair of primal and dual solution fulfills primal slackness conditions.

This means

$$
x_{j}>0 \Rightarrow \sum_{e \in S_{j}} y_{e}=w_{j}
$$

If we would also fulfill dual slackness conditions

$$
y_{e}>0 \Rightarrow \sum_{j: e \in S_{j}} x_{j}=1
$$

then the solution would be optimal!!!

We don't fulfill these constraint but we fulfill an approximate version:

$$
y_{e}>0 \Rightarrow 1 \leq \sum_{j: e \in S_{j}} x_{j} \leq f
$$

This is sufficient to show that the solution is an f-approximation.

Suppose we have a primal/dual pair

\min	$\sum_{j} c_{j} x_{j}$			
s.t.	$\forall i$	$\sum_{j:} a_{i j} x_{j}$	\geq	b_{i}
	$\forall j$	x_{j}	\geq	0

s.t. \& \forall j \& \sum_{i} a_{i j} y_{i} \& \leq \& c_{j}

\& \forall i \& y_{i} \& \geq \& 0\end{array}\right]\)
and solutions that fulfill approximate slackness conditions:

$$
\begin{aligned}
& x_{j}>0 \Rightarrow \sum_{i} a_{i j} y_{i} \geq \frac{1}{\alpha} c_{j} \\
& y_{i}>0 \Rightarrow \sum_{j} a_{i j} x_{j} \leq \beta b_{i}
\end{aligned}
$$

right hand side of j-th
dual constraint

$$
\begin{aligned}
& \sqrt{\sum_{j} \frac{\sqrt{C_{j}} x_{j}}{}} \leq \alpha \sum_{j}\left(\sum_{i} a_{i j} y_{i}\right) x_{j} \\
&{ } }=\alpha \sum_{i}\left(\sum_{j} a_{i j} x_{j}\right) y_{i} \\
& \leq \alpha \beta \cdot \sum_{i} b_{i} y_{i} \\
& \text { dual objective }
\end{aligned}
$$

Feedback Vertex Set for Undirected Graphs

- Given a graph $G=(V, E)$ and non-negative weights $w_{v} \geq 0$ for vertex $v \in V$.
- Choose a minimum cost subset of vertices s.t. every cycle contains at least one vertex.

We can encode this as an instance of Set Cover

- Each vertex can be viewed as a set that contains some cycles.
- However, this encoding gives a Set Cover instance of non-polynomial size.
- The $O(\log n)$-approximation for Set Cover does not help us to get a good solution.

Let C denote the set of all cycles (where a cycle is identified by its set of vertices)

Primal Relaxation:

\[

\]

Dual Formulation:

\[

\]

If we perform the previous dual technique for Set Cover we get the following:

- Start with $x=0$ and $y=0$
- While there is a cycle C that is not covered (does not contain a chosen vertex).
- Increase y_{C} until dual constraint for some vertex v becomes tight.
- set $x_{v}=1$.

Then

$$
\begin{aligned}
\sum_{v} w_{v} x_{v} & =\sum_{v} \sum_{C: v \in C} y_{C} x_{v} \\
& =\sum_{v \in S} \sum_{C: v \in C} y_{C} \\
& =\sum_{C}|S \cap C| \cdot y_{C}
\end{aligned}
$$

where S is the set of vertices we choose.

If every cycle is short we get a good approximation ratio, but this is unrealistic.

```
Algorithm 1 FeedbackVertexSet
    : \(y \leftarrow 0\)
    \(x \leftarrow 0\)
    while exists cycle \(C\) in \(G\) do
        increase \(y_{C}\) until there is \(v \in C\) s.t. \(\sum_{C: v \in C} y_{C}=w_{v}\)
        \(x_{v}=1\)
        remove \(v\) from \(G\)
        repeatedly remove vertices of degree 1 from \(G\)
```


Idea:

Always choose a short cycle that is not covered. If we always find a cycle of length at most α we get an α-approximation.

Observation:

For any path P of vertices of degree 2 in G the algorithm chooses at most one vertex from P.

Primal Dual for Shortest Path

Given a graph $G=(V, E)$ with two nodes $s, t \in V$ and edge-weights $c: E \rightarrow \mathbb{R}^{+}$find a shortest path between s and t w.r.t. edge-weights c.

$$
\begin{aligned}
& \begin{array}{cll}
\min & & \sum_{e} c(e) x_{e} \\
\text { s.t. } & \forall S \in S & \sum_{e: \delta(S)} x_{e} \geq 1
\end{array} \\
& \forall e \in E \quad x_{e} \in\{0,1\}
\end{aligned}
$$

Here $\delta(S)$ denotes the set of edges with exactly one end-point in S, and $S=\{S \subseteq V: s \in S, t \notin S\}$.

Observation:

If we always choose a cycle for which the number of vertices of degree at least 3 is at most α we get a 2α-approximation.

Theorem 44
In any graph with no vertices of degree 1, there always exists a cycle that has at most $\mathcal{O}(\log n)$ vertices of degree 3 or more. We can find such a cycle in linear time.

This means we have

$$
y_{C}>0 \Rightarrow|S \cap C| \leq \mathcal{O}(\log n)
$$

Primal Dual for Shortest Path

The Dual:

\max	$\sum_{S} y_{S}$		
s.t.	$\forall e \in E$	$\sum_{S: e \in \delta(S)} y_{S} \leq c(e)$	
	$\forall S \in S$	$y_{S} \geq 0$	

Here $\delta(S)$ denotes the set of edges with exactly one end-point in S, and $S=\{S \subseteq V: s \in S, t \notin S\}$.

Primal Dual for Shortest Path

We can interpret the value y_{S} as the width of a moat surounding the set S.

Each set can have its own moat but all moats must be disjoint.

An edge cannot be shorter than all the moats that it has to cross.

Lemma 45

At each point in time the set F forms a tree.

Proof:

- In each iteration we take the current connected component from (V, F) that contains s (call this component C) and add some edge from $\delta(C)$ to F.
- Since, at most one end-point of the new edge is in C the edge cannot close a cycle.

```
```

Algorithm 1 PrimalDualShortestPath

```
```

Algorithm 1 PrimalDualShortestPath
1: $y \leftarrow 0$
1: $y \leftarrow 0$
$F \leftarrow \emptyset$
$F \leftarrow \emptyset$
: while there is no s - t path in (V, F) do
: while there is no s - t path in (V, F) do
Let C be the connected component of (V, F) con-
Let C be the connected component of (V, F) con-
taining s
taining s
5: Increase y_{C} until there is an edge $e^{\prime} \in \delta(C)$ such
5: Increase y_{C} until there is an edge $e^{\prime} \in \delta(C)$ such
that $\sum_{S: e^{\prime} \in \delta(S)} y_{S}=c\left(e^{\prime}\right)$
that $\sum_{S: e^{\prime} \in \delta(S)} y_{S}=c\left(e^{\prime}\right)$
$F \leftarrow F \cup\left\{e^{\prime}\right\}$
$F \leftarrow F \cup\left\{e^{\prime}\right\}$
7: Let P be an s - t path in (V, F)
7: Let P be an s - t path in (V, F)
8: return P

```
```

 8: return \(P\)
    ```
```

$$
\begin{aligned}
\sum_{e \in P} c(e) & =\sum_{e \in P} \sum_{S: e \in \delta(S)} y_{S} \\
& =\sum_{S: s \in S, t \notin S}|P \cap \delta(S)| \cdot y_{S} .
\end{aligned}
$$

If we can show that $y_{S}>0$ implies $|P \cap \delta(S)|=1$ gives

$$
\sum_{e \in P} c(e)=\sum_{S} y_{S} \leq \mathrm{OPT}
$$

by weak duality.

Hence, we find a shortest path.

If S contains two edges from P then there must exist a subpath P^{\prime} of P that starts and ends with a vertex from S (and all interior vertices are not in S).

When we increased y_{S}, S was a connected component of the set of edges F^{\prime} that we had chosen till this point.
$F^{\prime} \cup P^{\prime}$ contains a cycle. Hence, also the final set of edges contains a cycle.

This is a contradiction.

Steiner Forest Problem:

Given a graph $G=(V, E)$, together with source-target pairs $s_{i}, t_{i}, i=1, \ldots, k$, and a cost function $c: E \rightarrow \mathbb{R}^{+}$on the edges. Find a subset $F \subseteq E$ of the edges such that for every
$i \in\{1, \ldots, k\}$ there is a path between s_{i} and t_{i} only using edges in F.

| min | | $\sum_{e} c(e) x_{e}$ | |
| :---: | ---: | ---: | :--- |
| s.t. | $\forall S \subseteq V: S \in S_{i}$ for some i | $\sum_{e \in \delta(S)} x_{e}$ | ≥ 1 |
| | $\forall e \in E$ | $x_{e} \in$ | $\{0,1\}$ |
| | | | |

Here S_{i} contains all sets S such that $s_{i} \in S$ and $t_{i} \notin S$.
we have many more variables (sets for which we can generate a moat of non-zero width).
Algorithm 1 FirstTry
Algorithm 1 FirstTry
: $y-0$
: $y-0$
2: $F \leftarrow \emptyset$
2: $F \leftarrow \emptyset$
3: while not all $s_{i}-t_{i}$ pairs connected in F do
3: while not all $s_{i}-t_{i}$ pairs connected in F do
Let C be some connected component of (V, F)
Let C be some connected component of (V, F)
such that $\left|C \cap\left\{s_{i}, t_{i}\right\}\right|=1$ for some i.
such that $\left|C \cap\left\{s_{i}, t_{i}\right\}\right|=1$ for some i.
5: Increase y_{C} until there is an edge $e^{\prime} \in \delta(C)$ s.t.
5: Increase y_{C} until there is an edge $e^{\prime} \in \delta(C)$ s.t.
$\sum_{s \in S_{i} \cdot e^{\prime} \in \delta(S)} y_{S}=c_{e^{\prime}}$
$\sum_{s \in S_{i} \cdot e^{\prime} \in \delta(S)} y_{S}=c_{e^{\prime}}$
$F \leftarrow F \cup\left\{e^{\prime}\right\}$
$F \leftarrow F \cup\left\{e^{\prime}\right\}$
: return $\cup_{i} P_{i}$
: return $\cup_{i} P_{i}$

$$
\sum_{e \in F} c(e)=\sum_{e \in F} \sum_{S: e \in \delta(S)} y_{S}=\sum_{S}|\delta(S) \cap F| \cdot y_{S}
$$

If we show that $y_{S}>0$ implies that $|\delta(S) \cap F| \leq \alpha$ we are in good shape.

However, this is not true:

- Take a complete graph on $k+1$ vertices $v_{0}, v_{1}, \ldots, v_{k}$.
- The i-th pair is $v_{0}-v_{i}$.
- The first component C could be $\left\{v_{0}\right\}$.
- We only set $y_{\left\{v_{0}\right\}}=1$. All other dual variables stay 0 .
- The final set F contains all edges $\left\{v_{0}, v_{i}\right\}, i=1, \ldots, k$.
- $\mathcal{Y}_{\left\{v_{0}\right\}}>0$ but $\left|\delta\left(\left\{v_{0}\right\}\right) \cap F\right|=k$.

```
Algorithm 1 SecondTry
    \(: y \leftarrow 0 ; F \leftarrow \emptyset ; \ell \leftarrow 0\)
    while not all \(s_{i}-t_{i}\) pairs connected in \(F\) do
        \(\ell \leftarrow \ell+1\)
    : Let \(C\) be set of all connected components \(C\) of \((V, F)\)
        such that \(\left|C \cap\left\{s_{i}, t_{i}\right\}\right|=1\) for some \(i\).
5: \(\quad\) Increase \(y_{C}\) for all \(C \in C\) uniformly until for some edge
        \(e_{\ell} \in \delta\left(C^{\prime}\right), C^{\prime} \in C\) s.t. \(\sum_{S: e_{\ell} \in \delta(S)} y_{S}=c_{e_{\ell}}\)
        \(F \leftarrow F \cup\left\{e_{\ell}\right\}\)
    \(F^{\prime} \leftarrow F\)
    for \(k \leftarrow \ell\) downto 1 do // reverse deletion
        if \(F^{\prime}-e_{k}\) is feasible solution then
            remove \(e_{k}\) from \(F^{\prime}\)
    return \(F^{\prime}\)
```


Lemma 46

For any C in any iteration of the algorithm

$$
\sum_{C \in C}\left|\delta(C) \cap F^{\prime}\right| \leq 2|C|
$$

This means that the number of times a moat from C is crossed in the final solution is at most twice the number of moats.

Proof: later..

Lemma 47

For any set of connected components C in any iteration of the algorithm

$$
\sum_{C \in C}\left|\delta(C) \cap F^{\prime}\right| \leq 2|C|
$$

Proof:

- At any point during the algorithm the set of edges forms a forest (why?).
- Fix iteration $i . e_{i}$ is the set we add to F. Let F_{i} be the set of edges in F at the beginning of the iteration. - Let $H=F^{\prime}-F_{i}$.
- All edges in H are necessary for the solution.

$$
\sum_{e \in F^{\prime}} c_{e}=\sum_{e \in F^{\prime}} \sum_{S: e \in \delta(S)} y_{S}=\sum_{S}\left|F^{\prime} \cap \delta(S)\right| \cdot y_{S} .
$$

We want to show that

$$
\sum_{S}\left|F^{\prime} \cap \delta(S)\right| \cdot y_{S} \leq 2 \sum_{S} y_{S}
$$

- In the i-th iteration the increase of the left-hand side is

$$
\epsilon \sum_{C \in C}\left|F^{\prime} \cap \delta(C)\right|
$$

and the increase of the right hand side is $2 \epsilon|C|$.

- Hence, by the previous lemma the inequality holds after the iteration if it holds in the beginning of the iteration.
- Contract all edges in F_{i} into single vertices V^{\prime}.
- We can consider the forest H on the set of vertices V^{\prime}.
- Let $\operatorname{deg}(v)$ be the degree of a vertex $v \in V^{\prime}$ within this forest.
- Color a vertex $v \in V^{\prime}$ red if it corresponds to a component from C (an active component). Otw. color it blue. (Let B the set of blue vertices (with non-zero degree) and R the set of red vertices)
- We have

$$
\sum_{v \in R} \operatorname{deg}(v) \geq \sum_{C \in C}\left|\delta(C) \cap F^{\prime}\right| \stackrel{?}{\leq} 2|C|=2|R|
$$

- Suppose that no node in B has degree one.
- Then

$$
\begin{aligned}
\sum_{v \in R} \operatorname{deg}(v) & =\sum_{v \in R \cup B} \operatorname{deg}(v)-\sum_{v \in B} \operatorname{deg}(v) \\
& \leq 2(|R|+|B|)-2|B|=2|R|
\end{aligned}
$$

- Every blue vertex with non-zero degree must have degree at least two.
- Suppose not. The single edge connecting $b \in B$ comes from H, and, hence, is necessary.
- But this means that the cluster corresponding to b must separate a source-target pair.
- But then it must be a red node.

21 Cuts \& Metrics

Minimum Cut

\[

\]

\mathcal{P} is the set of path that connect s and t.

The Dual:

$$
\begin{array}{crr}
\max & \sum_{P} y_{P} \\
\text { s.t. } & \forall e \in E & \sum P: e \in P y_{P} \leq c(e) \\
& \forall P \in \mathcal{P} & y_{P} \geq 0
\end{array}
$$

The Separation Problem for the Minimum Cut LP is the Shortest Path Problem.

21 Cuts \& Metrics

Shortest Path

| \min | $\sum_{e} c(e) x_{e}$ | | |
| ---: | ---: | ---: | :--- |
| s.t. | $\forall S \in S$ | $\sum_{e \in \delta(S)} x_{e} \geq 1$ | |
| | $\forall e \in E$ | $x_{e} \in\{0,1\}$ | |
| | | | |

S is the set of subsets that separate s from t.
The Dual:

| \max | $\sum_{S} y_{S}$ | | |
| :---: | ---: | ---: | :---: |
| s.t. | $\forall e \in E$ | $\sum_{S: e \in \delta(S)} y_{S} \leq c(e)$ | |
| | $\forall S \in S$ | $y_{S} \geq 0$ | |

The Separation Problem for the Shortest Path LP is the Minimum Cut Problem.

| $\sqrt{4}$ | EADS II
 © Harald Räcke |
| :---: | :---: |

21 Cuts \& Metrics

Observations:

Suppose that ℓ_{e}-values are solution to Minimum Cut LP.

- We can view ℓ_{e} as defining the length of an edge.
 Shortest Path Metric induced by ℓ_{e}.
- We have $d(u, v)=\ell_{e}$ for every edge $e=(u, v)$, as otw. we could reduce ℓ_{e} without affecting the distance between s and t.

Remark for bean-counters:

d is not a metric on V but a semimetric as two nodes u and v could have distance zero.

How do we round the LP?

- Let $B(s, r)$ be the ball of radius r around s (w.r.t. metric d). Formally:

$$
B=\{v \in V \mid d(s, v) \leq r\}
$$

- For $0 \leq r<1, B(s, r)$ is an s-t-cut.

Which value of r should we choose? choose randomly!!!

Formally:

choose r u.a.r. (uniformly at random) from interval [0,1)

What is the expected size of a cut?

$$
\mathrm{E}[\text { size of cut }]=\mathrm{E}\left[\sum_{e} c(e) \operatorname{Pr}[e \text { is cut }]\right]
$$

$$
\leq \sum_{e} c(e) \ell_{e}
$$

On the other hand:

$$
\sum_{e} c(e) \ell_{e} \leq \text { size of mincut }
$$

as the ℓ_{e} are the solution to the Mincut LP relaxation.

Hence, our rounding gives an optimal solution.

What is the probability that an edge (u, v) is in the cut?

- asssume wlog. $d(s, u) \leq d(s, v)$

$$
\begin{aligned}
\operatorname{Pr}[e \text { is cut }] & =\operatorname{Pr}[r \in[d(s, u), d(s, v))] \leq \frac{d(s, v)-d(s, u)}{1-0} \\
& \leq \ell_{e}
\end{aligned}
$$

Minimum Multicut:

Given a graph $G=(V, E)$, together with source-target pairs s_{i}, t_{i}, $i=1, \ldots, k$, and a capacity function $c: E \rightarrow \mathbb{R}^{+}$on the edges. Find a subset $F \subseteq E$ of the edges such that all $s_{i}-t_{i}$ pairs lie in different components in $G=(V, E \backslash F)$

$$
\begin{array}{rrrl}
\min & \sum_{e} c(e) \ell_{e} & \\
\text { s.t. } & \forall P \in \mathcal{P}_{i} \text { for some } i & \sum_{e \in P} \ell_{e} & \geq 1 \\
\forall e \in E & \ell_{e} & \in\{0,1\}
\end{array}
$$

Here \mathcal{P}_{i} contains all path P between s_{i} and t_{i}.

Re-using the analysis for the single-commodity case is

 difficult.$$
\operatorname{Pr}[e \text { is cut }] \leq ?
$$

- If for some R the balls $B\left(s_{i}, R\right)$ are disjoint between different sources, we get a $1 / R$ approximation.
- However, this cannot be guaranteed.
- Assume for simplicity that all edge-length ℓ_{e} are multiples of $\delta \ll 1$.
- Replace the graph G by a graph G^{\prime}, where an edge of length ℓ_{e} is replaced by ℓ_{e} / δ edges of length δ.
- Let $B\left(s_{i}, z\right)$ be the ball in G^{\prime} that contains nodes v with distance $d\left(s_{i}, v\right) \leq z \delta$.

```
Algorithm 1 RegionGrowing(si,p)
    z\leftharpoondown0
    repeat
        flip a coin (Pr[heads] = p)
        z\leftarrowz+1
    until heads
    return B(si,z)
```

```
Algorithm 1 Multicut(G')
    while }\exists\mp@subsup{s}{i}{}-\mp@subsup{t}{i}{}\mathrm{ pair in G}\mp@subsup{G}{}{\prime}\mathrm{ do
        C}\leftarrow\mathrm{ RegionGrowing(si,p)
        G}=\mp@subsup{G}{}{\prime}\C// cuts edges leaving 
    return B (si,z)
```

- probability of cutting an edge is only \boldsymbol{p}
- a source either does not reach an edge during Region Growing; then it is not cut
- if it reaches the edge then it either cuts the edge or protects the edge from being cut by other sources
- if we choose $p=\delta$ the probability of cutting an edge is only its LP-value; our expected cost are at most OPT.

Problem:

We may not cut all source-target pairs.
A component that we remove may contain an $s_{i}-t_{i}$ pair.
If we ensure that we cut before reaching radius $1 / 2$ we are in good shape.

- choose $p=6 \ln k \cdot \delta$
- we make $\frac{1}{2 \delta}$ trials before reaching radius $1 / 2$.
- we say a Region Growing is not successful if it does not terminate before reaching radius $1 / 2$.
$\operatorname{Pr}[$ not successful $] \leq(1-p)^{\frac{1}{2 \delta}}=\left((1-p)^{1 / p}\right)^{\frac{p}{2 \delta}} \leq e^{-\frac{p}{2 \delta}} \leq \frac{1}{k^{3}}$
- Hence,
$\operatorname{Pr}[\exists i$ that is not successful $] \leq \frac{1}{k^{2}}$

What is expected cost?

E [cutsize] $=\operatorname{Pr}[$ success $] \cdot \mathrm{E}[$ cutsize \mid success $]$
$+\operatorname{Pr}[$ no success] $\cdot \mathrm{E}[$ cutsize \mid no success]

E [cutsize \mid succ. $]=\frac{\mathrm{E}[\text { cutsize }]-\operatorname{Pr}[\text { no succ. }] \cdot \mathrm{E}[\text { cutsize | no succ.] }}{\operatorname{Pr}[\text { success }]}$

$$
\leq \frac{\mathrm{E}[\text { cutsize }]}{\operatorname{Pr}[\text { success }]} \leq \frac{1}{1-\frac{1}{k^{2}}} 6 \ln k \cdot \mathrm{OPT} \leq 8 \ln k \cdot \mathrm{OPT}
$$

Note: success means all source-target pairs separated We assume $k \geq 2$.
7 EADS II 21 Cuts \& Metrics

Facility Location

Given a set L of (possible) locations for placing facilities and a set D of customers together with cost functions $s: D \times L \rightarrow \mathbb{R}^{+}$ and $o: L \rightarrow \mathbb{R}^{+}$find a set of facility locations F together with an assignment $\phi: D \rightarrow F$ of customers to open facilities such that

$$
\sum_{f \in F} o(f)+\sum_{c} s(c, \phi(c))
$$

is minimized.
In the metric facility location problem we have

$$
s(c, f) \leq s\left(c, f^{\prime}\right)+s\left(c^{\prime}, f\right)+s\left(c^{\prime}, f^{\prime}\right)
$$

Facility Location

Integer Program

```
\(\min \quad \sum_{i \in F} f_{i} y_{i}+\sum_{i \in F} \sum_{j \in D} c_{i j} x_{i j}\)
    s.t. \(\forall j \in D \quad \sum_{i \in F} x_{i j}=1\)
    \(\forall i \in F, j \in D \quad x_{i j} \leq y_{i}\)
    \(\forall i \in F, j \in D \quad x_{i j} \in\{0,1\}\)
    \(\forall i \in F\)
    \(y_{i} \in\{0,1\}\)
```

As usual we get an LP by relaxing the integrality constraints.

Facility Location

Dual Linear Program
$\left.\begin{array}{|crrll}\hline \max & & \sum_{j \in D} v_{j} & \\ \text { s.t. } & \forall i \in F & \sum_{j \in D} w_{i j} & \leq & f_{i} \\ & \forall i \in F, j \in D & v_{j}-w_{i j} & \leq & c_{i j} \\ & \forall i \in F, j \in D & w_{i j} & \geq 0\end{array}\right]$

Lemma 49
If $\left(x^{*}, y^{*}\right)$ is an optimal solution to the facility location LP and
$\left(v^{*}, w^{*}\right)$ is an optimal dual solution, then $x_{i j}^{*}>0$ implies
$c_{i j} \leq v_{j}^{*}$.

Follows from slackness conditions.

Suppose we open set $S \subseteq F$ of facilities s.t. for all clients we have $S \cap N(j) \neq \emptyset$.

Then every client j has a facility i s.t. assignment cost for this client is at most $c_{i j} \leq v_{j}^{*}$.

Hence, the total assignment cost is

$$
\sum_{j} c_{i_{j} j} \leq \sum_{j} v_{j}^{*} \leq \mathrm{OPT}
$$

where i_{j} is the facility that client j is assigned to.

Problem: Facility cost may be huge!

Suppose we can partition a subset $F^{\prime} \subseteq F$ of facilities into neighbour sets of some clients. I.e.

$$
F^{\prime}=\biguplus_{k} N\left(j_{k}\right)
$$

where j_{1}, j_{2}, \ldots form a subset of the clients.

Now in each set $N\left(j_{k}\right)$ we open the cheapest facility. Call it $f_{i_{k}}$.
We have

$$
f_{i_{k}}=f_{i_{k}} \sum_{i \in N\left(j_{k}\right)} x_{i j_{k}}^{*} \leq \sum_{i \in N\left(j_{k}\right)} f_{i} x_{i j_{k}}^{*} \leq \sum_{i \in N\left(j_{k}\right)} f_{i} y_{i}^{*} .
$$

Summing over all k gives

$$
\sum_{k} f_{i_{k}} \leq \sum_{k} \sum_{i \in N\left(j_{k}\right)} f_{i} y_{i}^{*}=\sum_{i \in F^{\prime}} f_{i} y_{i}^{*} \leq \sum_{i \in F} f_{i} y_{i}^{*}
$$

Facility cost is at most the facility cost in an optimum solution.
Problem: so far clients j_{1}, j_{2}, \ldots have a neighboring facility. What about the others?

Definition 50
Let $N^{2}(j)$ denote all neighboring clients of the neighboring facilities of client j.

Note that $N(j)$ is a set of facilities while $N^{2}(j)$ is a set of clients.

THT EADS II | OHarald Räcke | 22 Facility Location | 484 |
| :--- | :--- | :--- |

```
Algorithm 1 FacilityLocation
    C\leftarrowD// unassigned clients
    k\leftarrow0
    while C}\not=0\mathrm{ do
        k\leftarrowk+1
        choose }\mp@subsup{j}{k}{}\inC\mathrm{ that minimizes }\mp@subsup{v}{j}{*
        choose }\mp@subsup{i}{k}{}\inN(\mp@subsup{j}{k}{})\mathrm{ as cheapest facility
        assign \mp@subsup{j}{k}{}}\mathrm{ and all unassigned clients in N}\mp@subsup{N}{}{2}(\mp@subsup{j}{k}{})\mathrm{ to }\mp@subsup{i}{k}{
        C}\leftarrowC-{\mp@subsup{j}{k}{}}-\mp@subsup{N}{}{2}(\mp@subsup{j}{k}{}
```

Facility cost of this algorithm is at most OPT because the sets $N\left(j_{k}\right)$ are disjoint.

Total assignment cost

- Fix k; set $j=j_{k}$ and $i=i_{k}$. We know that $c_{i j} \leq v_{j}^{*}$.
- Let $\ell \in N^{2}(j)$ and h (one of) its neighbour(s) in $N(j)$.

$$
c_{i \ell} \leq c_{i j}+c_{h j}+c_{h \ell} \leq v_{j}^{*}+v_{j}^{*}+v_{\ell}^{*} \leq 3 v_{\ell}^{*}
$$

Summing this over all facilities gives that the total assignment cost is at most 3 - OPT. Hence, we get a 4 -approximation.

Observation:

- Suppose when choosing a client j_{k}, instead of opening the cheapest facility in its neighborhood we choose a random facility according to $x_{i j_{k}}^{*}$.
- Then we incur connection cost

$$
\sum_{i} c_{i j_{k}} x_{i j_{k}}^{*}
$$

for client j_{k}. (In the previous algorithm we estimated this by $v_{j_{k}}^{*}$).

- Define

$$
C_{j}^{*}=\sum_{i} c_{i j} x_{i j}^{*}
$$

to be the connection cost for client j.

What will our facility cost be?

We only try to open a facility once (when it is in neighborhood of some j_{k}). (recall that neighborhoods of different $j_{k}^{\prime} s$ are disjoint).

We open facility i with probability $x_{i j_{k}} \leq y_{i}$ (in case it is in some neighborhood; otw. we open it with probability zero).

Hence, the expected facility cost is at most

$$
\sum_{i \in F} f_{i} y_{i}
$$

Total assignment cost

- Fix k; set $j=j_{k}$.
- Let $l \in N^{2}(j)$ and h (one of) its neighbour(s) in $N(j)$.
- If we assign a client ℓ to the same facility as i we pay at most

$$
\sum_{i} c_{i j} x_{i j_{k}}^{*}+c_{h j}+c_{h \ell} \leq C_{j}^{*}+v_{j}^{*}+v_{\ell}^{*} \leq C_{\ell}^{*}+2 v_{\ell}^{*}
$$

Summing this over all clients gives that the total assignment cost is at most

$$
\sum_{j} C_{j}^{*}+\sum_{j} 2 v_{j}^{*} \leq \sum_{j} C_{j}^{*}+2 \mathrm{OPT}
$$

Hence, it is at most 2OPT plus the total assignment cost in an optimum solution.

Adding the facility cost gives a 3-approximation.

```
Algorithm 1 FacilityLocation
    C\leftarrowD// unassigned clients
    k\leftarrow0
    while C}=0\mathrm{ do
        k}\leftarrowk+
        choose }\mp@subsup{j}{k}{}\inC\mathrm{ that minimizes }\mp@subsup{v}{j}{*}+\mp@subsup{C}{j}{*
        choose }\mp@subsup{i}{k}{}\inN(\mp@subsup{j}{k}{})\mathrm{ according to probability }\mp@subsup{x}{i\mp@subsup{j}{k}{}}{}\mathrm{ .
        assign \mp@subsup{j}{k}{}}\mathrm{ and all unassigned clients in N}\mp@subsup{N}{}{2}(\mp@subsup{j}{k}{})\mathrm{ to }\mp@subsup{i}{k}{
        C}\leftarrowC-{\mp@subsup{j}{k}{}}-\mp@subsup{N}{}{2}(\mp@subsup{j}{k}{}
```

