Part II

Linear Programming

EADS II © Harald Räcke

11

13

Brewery Problem

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

How can brewer maximize profits?

only brew ale: 34 barrels of ale
⇒ 442€

only brew beer: 32 barrels of beer ⇒ 736€

► 7.5 barrels ale, 29.5 barrels beer ⇒ 776€

► 12 barrels ale, 28 barrels beer ⇒ 800€

Brewery Problem

Brewery brews ale and beer.

- Production limited by supply of corn, hops and barley malt
- Recipes for ale and beer require different amounts of resources

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

EADS II © Harald Räcke

3 Introduction

12

Brewery Problem

Linear Program

- ▶ Introduce variables *a* and *b* that define how much ale and beer to produce.
- ► Choose the variables in such a way that the objective function (profit) is maximized.
- ► Make sure that no constraints (due to limited supply) are violated.

Standard Form LPs

LP in standard form:

- ▶ input: numbers a_{ij} , c_j , b_i
- \triangleright output: numbers x_i
- ightharpoonup n = #decision variables, m = #constraints
- maximize linear objective function subject to linear (in)equalities

$$\max \sum_{\substack{j=1\\n}}^{n} c_j x_j$$
s.t.
$$\sum_{j=1}^{n} a_{ij} x_j = b_i \ 1 \le i \le m$$

$$x_j \ge 0 \ 1 \le j \le n$$

$$\begin{array}{rcl}
\text{max} & c^T x \\
\text{s.t.} & Ax &= b \\
& x & \ge 0
\end{array}$$

EADS II © Harald Räcke 3 Introduction

15

17

Standard Form LPs

Original LP

Standard Form

Add a slack variable to every constraint.

EADS II © Harald Räcke

3 Introduction

16

Standard Form LPs

There are different standard forms:

standard form

$$\begin{array}{rcl}
\max & c^T x \\
\text{s.t.} & Ax &= b \\
& x & \ge 0
\end{array}$$

standard maximization form

$$\begin{array}{ccc} \text{max} & \text{max} & \text{c}^T x \\ \text{s.t.} & Ax & \leq & b \\ & x & \geq & 0 \end{array}$$

s.t.
$$Ax = b$$

 $x \ge 0$

standard

minimization form

$$\begin{array}{rcl}
\min & c^T x \\
\text{s.t.} & Ax & \geq & b \\
& x & \geq & 0
\end{array}$$

Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

less or equal to equality:

$$a - 3b + 5c \le 12 \implies a - 3b + 5c + s = 12$$
$$s \ge 0$$

greater or equal to equality:

$$a - 3b + 5c \ge 12 \implies a - 3b + 5c - s = 12$$
$$s \ge 0$$

min to max:

$$\min a - 3b + 5c \implies \max -a + 3b - 5c$$

3 Introduction

Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

equality to less or equal:

$$a-3b+5c = 12 \implies a-3b+5c \le 12$$

 $-a+3b-5c \le -12$

• equality to greater or equal:

$$a - 3b + 5c = 12 \implies a - 3b + 5c \ge 12$$

 $-a + 3b - 5c \ge -12$

unrestricted to nonnegative:

$$x$$
 unrestricted $\Rightarrow x = x^+ - x^-, x^+ \ge 0, x^- \ge 0$

EADS II © Harald Räcke 3 Introduction

10

Fundamental Questions

Definition 1 (Linear Programming Problem (LP))

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^T x \ge \alpha$?

Questions:

- ► Is LP in NP?
- ► Is LP in co-NP?
- ▶ Is LP in P?

Input size:

ightharpoonup n number of variables, m constraints, L number of bits to encode the input

EADS II © Harald Räcke

Standard Form LPs

Observations:

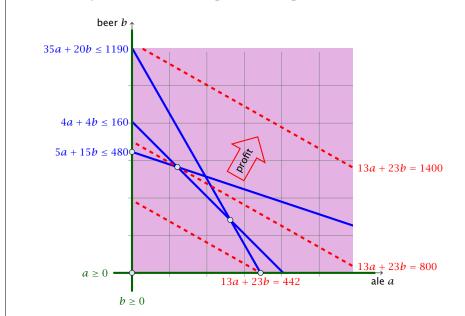
- a linear program does not contain x^2 , $\cos(x)$, etc.
- transformations between standard forms can be done efficiently and only change the size of the LP by a small constant factor
- for the standard minimization or maximization LPs we could include the nonnegativity constraints into the set of ordinary constraints; this is of course not possible for the standard form

EADS II © Harald Räcke

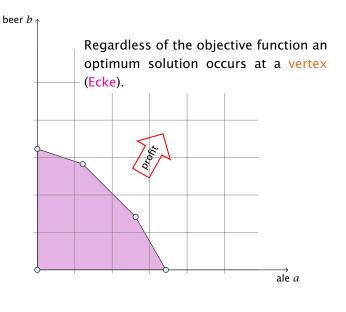
3 Introduction

20

Geometry of Linear Programming



Geometry of Linear Programming



Definition 2

Given points $x, y \in \mathbb{R}^n$, a point $z \in \mathbb{R}^n$ is a convex combination of x and y if

$$z = \lambda x + (1 - \lambda)y$$

for some $\lambda \in [0, 1]$.

Definition 3

A set $X \subseteq \mathbb{R}^n$ is convex if the convex combination of any two poins in X is also in X.

Definitions

Let for a Linear Program in standard form

$$P = \{x \mid Ax = b, x \ge 0\}.$$

- ▶ *P* is called the feasible region (Lösungsraum) of the LP.
- ▶ A point $x \in P$ is called a feasible point (gültige Lösung).
- ▶ If $P \neq \emptyset$ then the LP is called feasible (erfüllbar). Otherwise, it is called infeasible (unerfüllbar).
- An LP is bounded (beschränkt) if it is feasible and
 - $c^T x < \infty$ for all $x \in P$ (for maximization problems)
 - $c^T x > -\infty$ for all $x \in P$ (for minimization problems)

3 Introduction

24

Definition 4

A function $f:\mathbb{R}^n\to\mathbb{R}$ is convex if for $x,y\in\mathbb{R}^n$ and $\lambda\in[0,1]$ we have

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

Lemma 5

If $P \subseteq \mathbb{R}^n$, and $f : \mathbb{R}^n \to \mathbb{R}$ convex than also

$$Q = \{ x \in P \mid f(x) \le t \}$$

25

Definition 6

The dimension of a set $X \subseteq \mathbb{R}^n$ is the dimension of the vector space generated by vectors of the form (x - y) with $x, y \in X$.

Definition 7

A set $H \subseteq \mathbb{R}^n$ is a hyperplane if $H = \{x \mid a^T x = b\}$, for $a \neq 0$.

Definition 8

A set $H' \subseteq \mathbb{R}^n$ is a (closed) halfspace if $H = \{x \mid a^T x \le b\}$, for $a \ne 0$.

EADS II © Harald Räcke 3 Introduction

27

29

Definitions

Definition 10

A polyhedron is a set $P \subseteq \mathbb{R}^n$ that can be represented as the intersection of finitely many half-spaces $\{H(a_1,b_1),\ldots,H(a_m,b_m)\}$, where

$$H(a_i,b_i) = \{x \in \mathbb{R}^n \mid a_i x \le b_i\} .$$

Definition 11

A polyhedron P is bounded if there exists B s.t. $||x||_2 \le B$ for all $x \in P$.

Definitions

Definition 9

A polytop is a set $P \subseteq \mathbb{R}^n$ that is the convex hull of a finite set of points, i.e., P = conv(X) where

$$\operatorname{conv}(X) = \left\{ \sum_{i=1}^{\ell} \lambda_i x_i \mid \ell \in \mathbb{N}, x_1, \dots, x_{\ell} \in X, \lambda_i \ge 0, \sum_i \lambda_i = 1 \right\}$$

and |X| = c.

EADS II © Harald Räcke

3 Introduction

3 Introduction

28

Definitions

Theorem 12

P is a bounded polyhedron iff P is a polytop.

Definition 13

Let $P \subseteq \mathbb{R}^n$, $a \in \mathbb{R}^n$ and $b \in \mathbb{R}$. The hyperplane

$$H(a,b) = \{x \in \mathbb{R}^n \mid ax = b\}$$

is a supporting hyperplane of P if $\max\{ax \mid x \in P\} = b$.

Definition 14

Let $P \subseteq \mathbb{R}^n$. F is a face of P if F = P or $F = P \cap H$ for some supporting hyperplane H.

Definition 15

Let $P \subseteq \mathbb{R}^n$.

- \blacktriangleright a face v is a vertex of P if $\{v\}$ is a face of P.
- ▶ a face e is an edge of P if e is a face and dim(e) = 1.
- ▶ a face F is a facet of P if F is a face and $\dim(F) = \dim(P) - 1$.

3 Introduction

31

33

Observation

The feasible region of an LP is a Polyhedron.

Equivalent definition for vertex:

Definition 16

Given polyhedron P. A point $x \in P$ is a vertex if $\exists c \in \mathbb{R}^n$ such that $c^T x < c^T \gamma$, for all $\gamma \in P$.

Definition 17

Given polyhedron P. A point $x \in P$ is an extreme point if $\nexists a, b \neq x, a, b \in P$, with $\lambda a + (1 - \lambda)b = x$ for $\lambda \in [0, 1]$.

Lemma 18

A vertex is also an extreme point.

3 Introduction

32

Convex Sets

Theorem 19

If there exists an optimal solution to an LP (in standard form) then there exists an optimum solution that is an extreme point.

Proof

- suppose x is optimal solution that is not extreme point
- there exists direction $d \neq 0$ such that $x \pm d \in P$
- ightharpoonup Ad = 0 because $A(x \pm d) = b$
- ▶ Wlog. assume $c^T d \ge 0$ (by taking either d or -d)
- ► Consider $x + \lambda d$, $\lambda > 0$

Convex Sets

Case 1. $[\exists j \text{ s.t. } d_i < 0]$

- increase λ to λ' until first component of $x + \lambda d$ hits 0
- $x + \lambda' d$ is feasible. Since $A(x + \lambda' d) = b$ and $x + \lambda' d \ge 0$
- $x + \lambda' d$ has one more zero-component ($d_k = 0$ for $x_k = 0$ as $x \pm d \in P$
- $c^T x' = c^T (x + \lambda' d) = c^T x + \lambda' c^T d > c^T x$

Case 2. $[d_i \ge 0 \text{ for all } j \text{ and } c^T d > 0]$

- $\rightarrow x + \lambda d$ is feasible for all $\lambda \ge 0$ since $A(x + \lambda d) = b$ and $x + \lambda d \ge x \ge 0$
- \blacktriangleright as $\lambda \to \infty$, $c^T(x + \lambda d) \to \infty$ as $c^T d > 0$

3 Introduction

35

37

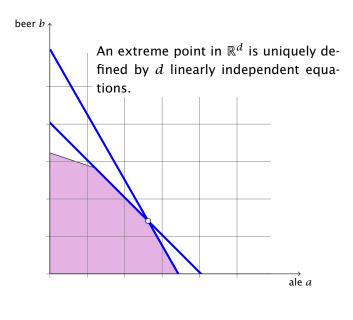
Notation

Suppose $B \subseteq \{1 \dots n\}$ is a set of column-indices. Define A_B as the subset of columns of A indexed by B.

Theorem 20

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point iff A_R has linearly independent columns.

Algebraic View



Theorem 20

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point **iff** A_B has linearly independent columns.

Proof (←)

□□ EADS II

- assume x is not extreme point
- there exists direction d s.t. $x \pm d \in P$
- Ad = 0 because $A(x \pm d) = b$
- ▶ define $B' = \{j \mid d_i \neq 0\}$
- $A_{B'}$ has linearly dependent columns as Ad = 0
- $d_i = 0$ for all j with $x_i = 0$ as $x \pm d \ge 0$
- ▶ Hence, $B' \subseteq B$, $A_{B'}$ is sub-matrix of A_B

Theorem 20

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point **iff** A_B has linearly independent columns.

Proof (⇒)

- \triangleright assume A_B has linearly dependent columns
- ▶ there exists $d \neq 0$ such that $A_B d = 0$
- ightharpoonup extend d to \mathbb{R}^n by adding 0-components
- ▶ now, Ad = 0 and $d_i = 0$ whenever $x_i = 0$
- for sufficiently small λ we have $x \pm \lambda d \in P$
- ► hence, *x* is not extreme point

3 Introduction

20

Observation

For an LP we can assume wlog. that the matrix A has full row-rank. This means $\operatorname{rank}(A) = m$.

- ▶ assume that rank(A) < m
- ▶ assume wlog. that the first row A_1 lies in the span of the other rows A_2, \ldots, A_m ; this means

$$A_1 = \sum_{i=2}^{m} \lambda_i \cdot A_i$$
, for suitable λ_i

- C1 if now $b_1 = \sum_{i=2}^m \lambda_i \cdot b_i$ then for all x with $A_i x = b_i$ we also have $A_1 x = b_1$; hence the first constraint is superfluous
- C2 if $b_1 \neq \sum_{i=2}^m \lambda_i \cdot b_i$ then the LP is infeasible, since for all x that fulfill constraints A_2, \ldots, A_m we have

$$A_1 x = \sum_{i=2}^m \lambda_i \cdot A_i x = \sum_{i=2}^m \lambda_i \cdot b_i \neq b_1$$

Theorem 20

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. If A_B has linearly independent columns then x is a vertex of P.

- ▶ define $c_j = \begin{cases} 0 & j \in B \\ 1 & j \notin B \end{cases}$
- ▶ then $c^T x = 0$ and $c^T y \ge 0$ for $y \in P$
- ▶ assume $c^T y = 0$; then $y_j = 0$ for all $j \notin B$
- $b = Ay = A_By_B = Ax = A_Bx_B$ gives that $A_B(x_B Y_B) = 0$;
- ▶ this means that $x_B = y_B$ since A_B has linearly independent columns
- we get y = x
- ▶ hence, *x* is a vertex of *P*

EADS II © Harald Räcke 3 Introduction

40

From now on we will always assume that the constraint matrix of a standard form LP has full row rank.

3 Introduction

42

Theorem 21

Given $P = \{x \mid Ax = b, x \ge 0\}$. x is extreme point iff there exists $B \subseteq \{1, \ldots, n\}$ with |B| = m and

- $ightharpoonup A_B$ is non-singular
- $x_B = A_R^{-1}b \ge 0$
- $\mathbf{x}_N = 0$

where $N = \{1, \ldots, n\} \setminus B$.

Proof

Take $B = \{j \mid x_i > 0\}$ and augment with linearly independent columns until |B| = m; always possible since rank(A) = m.

3 Introduction

43

45

Basic Feasible Solutions

A BFS fulfills the m equality constraints.

In addition, at least n-m of the x_i 's are zero. The corresponding non-negativity constraint is fulfilled with equality.

Fact:

In a BFS at least n constraints are fulfilled with equality.

Basic Feasible Solutions

 $x \in \mathbb{R}^n$ is called basic solution (Basislösung) if Ax = b and $rank(A_I) = |J|$ where $J = \{j \mid x_i \neq 0\};$

x is a basic feasible solution (gültige Basislösung) if in addition $x \geq 0$.

A basis (Basis) is an index set $B \subseteq \{1, ..., n\}$ with rank $(A_B) = m$ and |B| = m.

 $x \in \mathbb{R}^n$ with $A_B x = b$ and $x_i = 0$ for all $j \notin B$ is the basic solution associated to basis B (die zu B assoziierte Basislösung)

3 Introduction

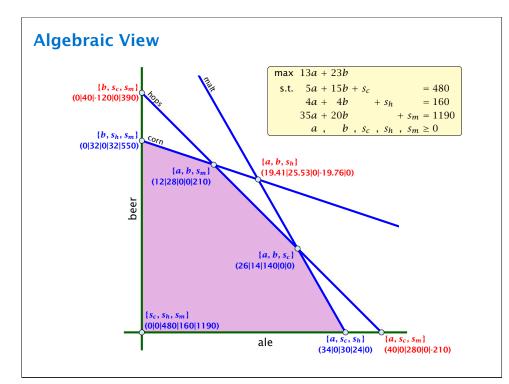
Basic Feasible Solutions

Definition 22

□□ EADS II

© Harald Räcke

For a general LP $(\min\{c^Tx \mid Ax \geq b\})$ with n variables a point xis a basic feasible solution if x is feasible and there exist n (linearly independent) constraints that are tight.



Observation

We can compute an optimal solution to a linear program in time $\mathcal{O}\left(\binom{n}{m}\cdot\operatorname{poly}(n,m)\right)$.

- there are only $\binom{n}{m}$ different bases.
- compute the profit of each of them and take the maximum

Fundamental Questions

Linear Programming Problem (LP)

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^T x \ge \alpha$?

Questions:

- ▶ Is LP in NP? yes!
- ▶ Is I P in co-NP?
- ▶ Is LP in P?

Proof:

▶ Given a basis B we can compute the associated basis solution by calculating $A_B^{-1}b$ in polynomial time; then we can also compute the profit.

3 Introduction

48

4 Simplex Algorithm

Enumerating all basic feasible solutions (BFS), in order to find the optimum is slow.

Simplex Algorithm [George Dantzig 1947]

Move from BFS to adjacent BFS, without decreasing objective function.

Two BFSs are called adjacent if the bases just differ in one variable.

49

4 Simplex Algorithm

max
$$13a + 23b$$

s.t. $5a + 15b + s_c = 480$
 $4a + 4b + s_h = 160$
 $35a + 20b + s_m = 1190$
 a , b , s_c , s_h , $s_m \ge 0$

basis =
$$\{s_c, s_h, s_m\}$$

 $A = B = 0$
 $Z = 0$
 $s_c = 480$
 $s_h = 160$
 $s_m = 1190$

EADS II © Harald Räcke 4 Simplex Algorithm

51

basis =
$$\{s_c, s_h, s_m\}$$

 $a = b = 0$
 $Z = 0$
 $s_c = 480$
 $s_h = 160$
 $s_m = 1190$

- ▶ Choose variable with coefficient ≥ 0 as entering variable.
- If we keep a=0 and increase b from 0 to $\theta>0$ s.t. all constraints ($Ax=b,x\geq 0$) are still fulfilled the objective value Z will strictly increase.
- ► For maintaining Ax = b we need e.g. to set $s_c = 480 15\theta$.
- ▶ Choosing $\theta = \min\{480/15, 160/4, 1190/20\}$ ensures that in the new solution one current basic variable becomes 0, and no variable goes negative.
- ► The basic variable in the row that gives $min\{480/15, 160/4, 1190/20\}$ becomes the leaving variable.

Pivoting Step

basis =
$$\{s_c, s_h, s_m\}$$

 $a = b = 0$
 $Z = 0$
 $s_c = 480$
 $s_h = 160$
 $s_m = 1190$

- choose variable to bring into the basis
- chosen variable should have positive coefficient in objective function
- apply min-ratio test to find out by how much the variable can be increased
- pivot on row found by min-ratio test
- the existing basis variable in this row leaves the basis

basis =
$$\{s_c, s_h, s_m\}$$

 $a = b = 0$
 $Z = 0$
 $s_c = 480$
 $s_h = 160$
 $s_m = 1190$

Substitute $b = \frac{1}{15}(480 - 5a - s_c)$.

$$\begin{array}{lllll} \max Z \\ & \frac{16}{3}a & -\frac{23}{15}s_c & -Z = -736 \\ & \frac{1}{3}a + b + \frac{1}{15}s_c & = 32 \\ & \frac{8}{3}a & -\frac{4}{15}s_c + s_h & = 32 \\ & \frac{85}{3}a & -\frac{4}{3}s_c & +s_m & = 550 \\ & a \ , \ b \ , \quad s_c \ , \ s_h \ , \ s_m & \geq 0 \end{array}$$

basis =
$$\{b, s_h, s_m\}$$

 $a = s_c = 0$
 $Z = 736$
 $b = 32$
 $s_h = 32$
 $s_m = 550$

basis =
$$\{b, s_h, s_m\}$$

 $a = s_c = 0$
 $Z = 736$
 $b = 32$
 $s_h = 32$
 $s_m = 550$

Choose variable *a* to bring into basis.

Computing $\min\{3 \cdot 32, 3 \cdot 32/8, 3 \cdot 550/85\}$ means pivot on line 2. Substitute $a = \frac{3}{8}(32 + \frac{4}{15}s_c - s_h)$.

basis =
$$\{a, b, s_m\}$$

 $s_c = s_h = 0$
 $Z = 800$
 $b = 28$
 $a = 12$
 $s_m = 210$

Matrix View

Let our linear program be

$$c_B^T x_B + c_N^T x_N = Z$$

$$A_B x_B + A_N x_N = b$$

$$x_B , x_N \ge 0$$

The simplex tableaux for basis B is

$$(c_N^T - c_B^T A_B^{-1} A_N) x_N = Z - c_B^T A_B^{-1} b$$
 $Ix_B + A_B^{-1} A_N x_N = A_B^{-1} b$
 $x_B , x_N \ge 0$

The BFS is given by $x_N = 0, x_B = A_B^{-1}b$.

If $(c_N^T - c_B^T A_B^{-1} A_N) \le 0$ we know that we have an optimum solution.

EADS II © Harald Räcke

4 Simplex Algorithm

Pivoting stops when all coefficients in the objective function are non-positive.

Solution is optimal:

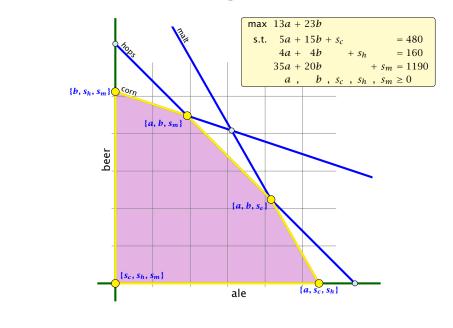
- any feasible solution satisfies all equations in the tableaux
- in particular: $Z = 800 s_c 2s_h$, $s_c \ge 0$, $s_h \ge 0$
- hence optimum solution value is at most 800
- ▶ the current solution has value 800

EADS II © Harald Räcke

4 Simplex Algorithm

56

Geometric View of Pivoting



Algebraic Definition of Pivoting

- Given basis B with BFS x^* .
- ▶ Choose index $j \notin B$ in order to increase x_i^* from 0 to $\theta > 0$.
 - ▶ Other non-basis variables should stay at 0.
 - ▶ Basis variables change to maintain feasibility.
- Go from x^* to $x^* + \theta \cdot d$.

Requirements for *d*:

- $\rightarrow d_i = 1$ (normalization)
- $A(x^* + \theta d) = b$ must hold. Hence Ad = 0.
- Altogether: $A_B d_B + A_{*j} = Ad = 0$, which gives $d_B = -A_B^{-1} A_{*j}$.

4 Simplex Algorithm

59

61

Algebraic Definition of Pivoting

Definition 24 (Reduced Cost)

For a basis B the value

$$\tilde{c}_i = c_i - c_B^T A_B^{-1} A_{*i}$$

is called the reduced cost for variable x_j .

Note that this is defined for every j. If $j \in B$ then the above term is 0.

Algebraic Definition of Pivoting

Definition 23 (*j***-th basis direction)**

Let B be a basis, and let $j \notin B$. The vector d with $d_j = 1$ and $d_\ell = 0, \ell \notin B, \ell \neq j$ and $d_B = -A_B^{-1}A_{*j}$ is called the j-th basis direction for B.

Going from x^* to $x^* + \theta \cdot d$ the objective function changes by

$$\theta \cdot c^T d = \theta (c_j - c_B^T A_B^{-1} A_{*j})$$

EADS II © Harald Räcke 4 Simplex Algorithm

Algebraic Definition of Pivoting

Let our linear program be

$$c_B^T x_B + c_N^T x_N = Z$$

$$A_B x_B + A_N x_N = b$$

$$x_B , x_N \ge 0$$

The simplex tableaux for basis B is

$$(c_N^T - c_B^T A_B^{-1} A_N) x_N = Z - c_B^T A_B^{-1} b$$

 $Ix_B + A_B^{-1} A_N x_N = A_B^{-1} b$
 $x_B , x_N \ge 0$

The BFS is given by $x_N = 0, x_B = A_B^{-1}b$.

If $(c_N^T - c_B^T A_B^{-1} A_N) \le 0$ we know that we have an optimum solution.

∐∐ © Harald Räcke

4 Simplex Algorithm

Ouestions:

- ightharpoonup What happens if the min ratio test fails to give us a value θ by which we can safely increase the entering variable?
- ▶ How do we find the initial basic feasible solution?
- ▶ Is there always a basis *B* such that

$$(c_N^T - c_R^T A_R^{-1} A_N) \le 0$$
 ?

Then we can terminate because we know that the solution is optimal.

▶ If yes how do we make sure that we reach such a basis?

4 Simplex Algorithm

63

65

Termination

The objective function does not decrease during one iteration of the simplex-algorithm.

Does it always increase?

Min Ratio Test

The min ratio test computes a value $\theta \ge 0$ such that after setting the entering variable to θ the leaving variable becomes 0 and all other variables stay non-negative.

For this, one computes b_i/A_{ie} for all constraints i and calculates the minimum positive value.

What does it mean that the ratio b_i/A_{ie} (and hence A_{ie}) is negative for a constraint?

This means that the corresponding basic variable will increase if we increase b. Hence, there is no danger of this basic variable becoming negative

What happens if **all** b_i/A_{ie} are negative? Then we do not have a leaving variable. Then the LP is unbounded!

Termination

пп EADS II

© Harald Räcke

The objective function may not increase!

Because a variable x_{ℓ} with $\ell \in B$ is already 0.

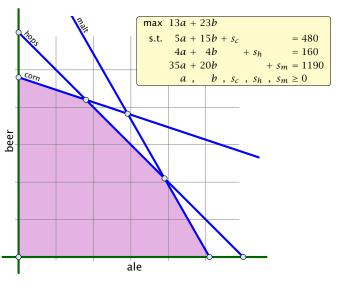
The set of inequalities is degenerate (also the basis is degenerate).

Definition 25 (Degeneracy)

A BFS x^* is called degenerate if the set $J = \{j \mid x_i^* > 0\}$ fulfills |J| < m.

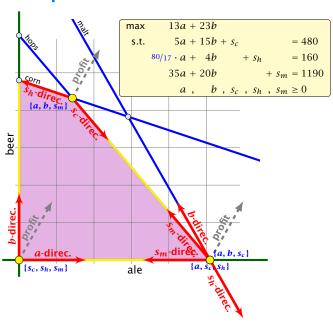
It is possible that the algorithm cycles, i.e., it cycles through a sequence of different bases without ever terminating. Happens, very rarely in practise.

Non Degenerate Example



- We can choose a column e as an entering variable if $\tilde{c}_e > 0$ (\tilde{c}_e is reduced cost for x_e).
- ▶ The standard choice is the column that maximizes \tilde{c}_e .
- ▶ If $A_{ie} \le 0$ for all $i \in \{1, ..., m\}$ then the maximum is not bounded.
- Otw. choose a leaving variable ℓ such that $b_{\ell}/A_{\ell e}$ is minimal among all variables i with $A_{ie} > 0$.
- If several variables have minimum $b_\ell/A_{\ell e}$ you reach a degenerate basis.
- ▶ Depending on the choice of ℓ it may happen that the algorithm runs into a cycle where it does not escape from a degenerate vertex.

Degenerate Example



Termination

What do we have so far?

Suppose we are given an initial feasible solution to an LP. If the LP is non-degenerate then Simplex will terminate.

Note that we either terminate because the min-ratio test fails and we can conclude that the LP is unbounded, or we terminate because the vector of reduced cost is non-positive. In the latter case we have an optimum solution.

69

How do we come up with an initial solution?

- $Ax \le b, x \ge 0$, and $b \ge 0$.
- ► The standard slack from for this problem is $Ax + Is = b, x \ge 0, s \ge 0$, where s denotes the vector of slack variables.
- ▶ Then s = b, x = 0 is a basic feasible solution (how?).
- ▶ We directly can start the simplex algorithm.

How do we find an initial basic feasible solution for an arbitrary problem?

EADS II © Harald Räcke 4 Simplex Algorithm

71

73

Optimality

Lemma 26

Let B be a basis and x^* a BFS corresponding to basis B. $\tilde{c} \le 0$ implies that x^* is an optimum solution to the LP.

Two phase algorithm

Suppose we want to maximize $c^T x$ s.t. $Ax = b, x \ge 0$.

- 1. Multiply all rows with $b_i < 0$ by -1.
- **2.** maximize $-\sum_i v_i$ s.t. Ax + Iv = b, $x \ge 0$, $v \ge 0$ using Simplex. x = 0, v = b is initial feasible.
- **3.** If $\sum_i v_i > 0$ then the original problem is infeasible.
- **4.** Otw. you have $x \ge 0$ with Ax = b.
- 5. From this you can get basic feasible solution.
- 6. Now you can start the Simplex for the original problem.

EADS II © Harald Räcke

4 Simplex Algorithm

72

Duality

How do we get an upper bound to a maximization LP?

max
$$13a + 23b$$

s.t. $5a + 15b \le 480$
 $4a + 4b \le 160$
 $35a + 20b \le 1190$
 $a, b \ge 0$

Note that a lower bound is easy to derive. Every choice of $a,b\geq 0$ gives us a lower bound (e.g. a=12,b=28 gives us a lower bound of 800).

If you take a conic combination of the rows (multiply the i-th row with $y_i \ge 0$) such that $\sum_i y_i a_{ij} \ge c_j$ then $\sum_i y_i b_i$ will be an upper bound.

Duality

Definition 27

Let $z = \max\{c^T x \mid Ax \le b, x \ge 0\}$ be a linear program P (called the primal linear program).

The linear program D defined by

$$w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$$

is called the dual problem.

5.1 Weak Duality

75

77

Weak Duality

Let $z = \max\{c^T x \mid Ax \le b, x \ge 0\}$ and $w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$ be a primal dual pair.

x is primal feasible iff $x \in \{x \mid Ax \le b, x \ge 0\}$

y is dual feasible, iff $y \in \{y \mid A^T y \ge c, y \ge 0\}$.

Theorem 29 (Weak Duality)

Let \hat{x} be primal feasible and let \hat{y} be dual feasible. Then

$$c^T \hat{x} \leq z \leq w \leq b^T \hat{v}$$
.

Duality

Lemma 28

The dual of the dual problem is the primal problem.

Proof:

- $w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$
- $w = -\max\{-b^T y \mid -A^T y \le -c, y \ge 0\}$

The dual problem is

- $z = -\min\{-c^T x \mid -Ax \ge -b, x \ge 0\}$
- $z = \max\{c^T x \mid Ax \le b, x \ge 0\}$

5.1 Weak Duality

76

Weak Duality

$$A^T \hat{y} \ge c \Rightarrow \hat{x}^T A^T \hat{y} \ge \hat{x}^T c \ (\hat{x} \ge 0)$$

$$A\hat{x} \leq b \Rightarrow y^T A\hat{x} \leq \hat{y}^T b \ (\hat{y} \geq 0)$$

This gives

$$c^T \hat{x} \leq \hat{y}^T A \hat{x} \leq b^T \hat{y}$$
.

Since, there exists primal feasible \hat{x} with $c^T\hat{x}=z$, and dual feasible \hat{y} with $b^Ty=w$ we get $z\leq w$.

If P is unbounded then D is infeasible.

The following linear programs form a primal dual pair:

$$z = \max\{c^T x \mid Ax = b, x \ge 0\}$$
$$w = \min\{b^T y \mid A^T y \ge c\}$$

This means for computing the dual of a standard form LP, we do not have non-negativity constraints for the dual variables.

EADS II © Harald Räcke 5.1 Weak Duality

79

81

Proof

Primal:

$$\max\{c^{T}x \mid Ax = b, x \ge 0\}$$

$$= \max\{c^{T}x \mid Ax \le b, -Ax \le -b, x \ge 0\}$$

$$= \max\{c^{T}x \mid \begin{bmatrix} A \\ -A \end{bmatrix} x \le \begin{bmatrix} b \\ -b \end{bmatrix}, x \ge 0\}$$

Dual:

$$\begin{aligned} & \min\{\left[b^T - b^T\right]y \mid \left[A^T - A^T\right]y \geq c, y \geq 0\} \\ &= \min\left\{\left[b^T - b^T\right] \cdot \begin{bmatrix} y^+ \\ y^- \end{bmatrix} \mid \left[A^T - A^T\right] \cdot \begin{bmatrix} y^+ \\ y^- \end{bmatrix} \geq c, y^- \geq 0, y^+ \geq 0\right\} \\ &= \min\left\{b^T \cdot (y^+ - y^-) \mid A^T \cdot (y^+ - y^-) \geq c, y^- \geq 0, y^+ \geq 0\right\} \\ &= \min\left\{b^T y' \mid A^T y' \geq c\right\} \end{aligned}$$

5.2 Simplex and Duality

The following linear programs form a primal dual pair:

$$z = \max\{c^T x \mid Ax = b, x \ge 0\}$$
$$w = \min\{b^T y \mid A^T y \ge c\}$$

This means for computing the dual of a standard form LP, we do not have non-negativity constraints for the dual variables.

EADS II © Harald Räcke

5.2 Simplex and Duality

. . .

Proof of Optimality Criterion for Simplex

Suppose that we have a basic feasible solution with reduced cost

$$\tilde{c} = c^T - c_R^T A_R^{-1} A \le 0$$

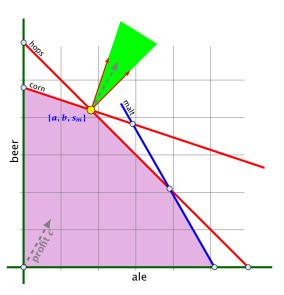
This is equivalent to $A^T(A_B^{-1})^T c_B \ge c$

 $y^* = (A_B^{-1})^T c_B$ is solution to the dual $\min\{b^T y | A^T y \ge c\}$.

$$b^{T}y^{*} = (Ax^{*})^{T}y^{*} = (A_{B}x_{B}^{*})^{T}y^{*}$$
$$= (A_{B}x_{B}^{*})^{T}(A_{B}^{-1})^{T}c_{B} = (x_{B}^{*})^{T}A_{B}^{T}(A_{B}^{-1})^{T}c_{B}$$
$$= c^{T}x^{*}$$

Hence, the solution is optimal.

?



The profit vector c lies in the cone generated by the normals for the hops and the corn constraint.

Strong Duality

Theorem 31 (Strong Duality)

Let P and D be a primal dual pair of linear programs, and let z^* and w^* denote the optimal solution to P and D, respectively. Then

$$z^* = w^*$$

Strong Duality

Theorem 30 (Strong Duality)

Let P and D be a primal dual pair of linear programs, and let z^* and w^* denote the optimal solution to P and D, respectively. Then

$$z^* = w^*$$

EADS II © Harald Räcke

5.3 Strong Duality A

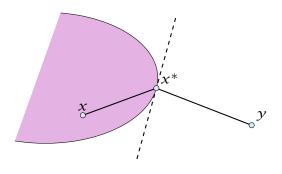
Lemma 32 (Weierstrass)

Let X be a compact set and let f(x) be a continuous function on *X.* Then $\min\{f(x): x \in X\}$ exists.

5.4 Strong Duality B

Lemma 33 (Projection Lemma)

Let $X \subseteq \mathbb{R}^m$ be a non-empty convex set, and let $y \notin X$. Then there exist $x^* \in X$ with minimum distance from y. Moreover for all $x \in X$ we have $(y - x^*)^T (x - x^*) \le 0$.



EADS II © Harald Räcke 5.4 Strong Duality B

97

Proof of the Projection Lemma (continued)

 x^* is minimum. Hence $||y - x^*||^2 \le ||y - x||^2$ for all $x \in X$.

By convexity: $x \in X$ then $x^* + \epsilon(x - x^*) \in X$ for all $0 \le \epsilon \le 1$.

$$||y - x^*||^2 \le ||y - x^* - \epsilon(x - x^*)||^2$$

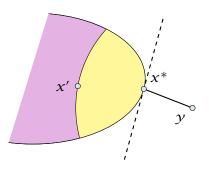
$$= ||y - x^*||^2 + \epsilon^2 ||x - x^*||^2 - 2\epsilon(y - x^*)^T (x - x^*)$$

Hence, $(y - x^*)^T (x - x^*) \le \frac{1}{2} \epsilon ||x - x^*||^2$.

Letting $\epsilon \to 0$ gives the result.

Proof of the Projection Lemma

- ▶ Define $f(x) = \|y x\|$.
- ▶ We want to apply Weierstrass but *X* may not be bounded.
- ▶ $X \neq \emptyset$. Hence, there exists $x' \in X$.
- ▶ Define $X' = \{x \in X \mid \|y x\| \le \|y x'\|\}$. This set is closed and bounded.
- ► Applying Weierstrass gives the existence.



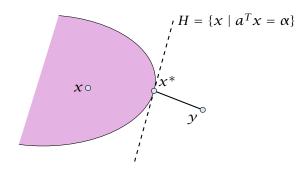
EADS II © Harald Räcke 5.4 Strong Duality B

Theorem 34 (Separating Hyperplane)

Let $X \subseteq \mathbb{R}^m$ be a non-empty closed convex set, and let $y \notin X$. Then there exists a separating hyperplane $\{x \in \mathbb{R} : a^Tx = \alpha\}$ where $a \in \mathbb{R}^m$, $\alpha \in \mathbb{R}$ that separates y from X. ($a^Ty < \alpha$; $a^Tx \ge \alpha$ for all $x \in X$)

Proof of the Hyperplane Lemma

- Let $x^* \in X$ be closest point to γ in X.
- ▶ By previous lemma $(y x^*)^T (x x^*) \le 0$ for all $x \in X$.
- Choose $a = (x^* y)$ and $\alpha = a^T x^*$.
- For $x \in X$: $a^T(x x^*) \ge 0$, and, hence, $a^Tx \ge \alpha$.
- Also, $a^T y = a^T (x^* a) = \alpha ||a||^2 < \alpha$



EADS II © Harald Räcke

5.4 Strong Duality B

Proof of Farkas Lemma

Now, assume that 1. does not hold.

Consider $S = \{Ax : x \ge 0\}$ so that S closed, convex, $b \notin S$.

We want to show that there is γ with $A^T \gamma \ge 0$, $b^T \gamma < 0$.

Let γ be a hyperplane that separates b from S. Hence, $\gamma^T b < \alpha$ and $v^T s \ge \alpha$ for all $s \in S$.

$$0 \in S \Rightarrow \alpha \le 0 \Rightarrow y^T b < 0$$

 $y^T A x \ge \alpha$ for all $x \ge 0$. Hence, $y^T A \ge 0$ as we can choose x arbitrarily large.

Lemma 35 (Farkas Lemma)

Let A be an $m \times n$ matrix, $b \in \mathbb{R}^m$. Then exactly one of the following statements holds.

- 1. $\exists x \in \mathbb{R}^n$ with Ax = b. $x \ge 0$
- **2.** $\exists \gamma \in \mathbb{R}^m$ with $A^T \gamma \geq 0$, $b^T \gamma < 0$

Assume \hat{x} satisfies 1. and \hat{y} satisfies 2. Then

$$0 > y^T b = y^T A x \ge 0$$

Hence, at most one of the statements can hold.

EADS II © Harald Räcke

5.4 Strong Duality B

Lemma 36 (Farkas Lemma; different version)

Let A be an $m \times n$ matrix, $b \in \mathbb{R}^m$. Then exactly one of the following statements holds.

- 1. $\exists x \in \mathbb{R}^n$ with $Ax \leq b$. $x \geq 0$
- **2.** $\exists \gamma \in \mathbb{R}^m$ with $A^T \gamma \geq 0$, $b^T \gamma < 0$, $\gamma \geq 0$

Rewrite the conditions:

- 1. $\exists x \in \mathbb{R}^n \text{ with } \begin{bmatrix} A \ I \end{bmatrix} \cdot \begin{bmatrix} x \\ s \end{bmatrix} = b, x \ge 0, s \ge 0$
- **2.** $\exists y \in \mathbb{R}^m \text{ with } \begin{bmatrix} A^T \\ I \end{bmatrix} y \ge 0, b^T y < 0$

Proof of Strong Duality

$$P: z = \max\{c^T x \mid Ax \le b, x \ge 0\}$$

D:
$$w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$$

Theorem 37 (Strong Duality)

Let P and D be a primal dual pair of linear programs, and let z and w denote the optimal solution to P and D, respectively (i.e., P and D are non-empty). Then

$$z=w$$
.



5.4 Strong Duality B

95

97

Proof of Strong Duality

$$\exists y \in \mathbb{R}^m; v \in \mathbb{R}$$
s.t.
$$A^T y - v \ge 0$$

$$b^T y - \alpha v < 0$$

$$y, v \ge 0$$

If the solution y, v has v = 0 we have that

$$\exists y \in \mathbb{R}^m$$
s.t. $A^T y \ge 0$

$$b^T y < 0$$

$$y \ge 0$$

is feasible. By Farkas lemma this gives that LP ${\cal P}$ is infeasible. Contradiction to the assumption of the lemma.

Proof of Strong Duality

 $z \le w$: follows from weak duality

 $z \geq w$:

We show $z < \alpha$ implies $w < \alpha$.

$$\exists x \in \mathbb{R}^n$$
s.t.
$$Ax \leq b$$

$$-c^T x \leq -\alpha$$

$$x \geq 0$$

$$\exists y \in \mathbb{R}^m; v \in \mathbb{R}$$
s.t. $A^T y - cv \ge 0$

$$b^T y - \alpha v < 0$$

$$y, v \ge 0$$

From the definition of α we know that the first system is infeasible; hence the second must be feasible.

5.4 Strong Duality B

. .

Proof of Strong Duality

Hence, there exists a solution y, v with v > 0.

We can rescale this solution (scaling both γ and ν) s.t. $\nu = 1$.

Then y is feasible for the dual but $b^Ty < \alpha$. This means that $w < \alpha$.

Fundamental Questions

Definition 38 (Linear Programming Problem (LP))

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^Tx \ge \alpha$?

Questions:

- ► Is LP in NP?
- ► Is LP in co-NP? yes!
- ▶ Is LP in P?

Proof:

- Given a primal maximization problem P and a parameter α . Suppose that $\alpha > \operatorname{opt}(P)$.
- ▶ We can prove this by providing an optimal basis for the dual.
- ▶ A verifier can check that the associated dual solution fulfills all dual constraints and that it has dual cost $< \alpha$.

5.4 Strong Duality B

.

Proof: Complementary Slackness

Analogous to the proof of weak duality we obtain

$$c^T x^* \le y^{*T} A x^* \le b^T y^*$$

Because of strong duality we then get

$$c^T x^* = v^{*T} A x^* = b^T v^*$$

This gives e.g.

$$\sum_{j} (y^T A - c^T)_j x_j^* = 0$$

From the constraint of the dual it follows that $y^TA \ge c^T$. Hence the left hand side is a sum over the product of non-negative numbers. Hence, if e.g. $(y^TA - c^T)_j > 0$ (the j-th constraint in the dual is not tight) then $x_j = 0$ (2.). The result for (1./3./4.) follows similarly.

EADS II © Harald Räcke

Complementary Slackness

Lemma 39

Assume a linear program $P = \max\{c^Tx \mid Ax \leq b; x \geq 0\}$ has solution x^* and its dual $D = \min\{b^Ty \mid A^Ty \geq c; y \geq 0\}$ has solution y^* .

- **1.** If $x_i^* > 0$ then the *j*-th constraint in *D* is tight.
- **2.** If the *j*-th constraint in *D* is not tight than $x_i^* = 0$.
- **3.** If $y_i^* > 0$ then the *i*-th constraint in *P* is tight.
- **4.** If the *i*-th constraint in *P* is not tight than $y_i^* = 0$.

If we say that a variable x_j^* (y_i^*) has slack if $x_j^* > 0$ ($y_i^* > 0$), (i.e., the corresponding variable restriction is not tight) and a contraint has slack if it is not tight, then the above says that for a primal-dual solution pair it is not possible that a constraint **and** its corresponding (dual) variable has slack.

5.5 Interpretation of Dual Variables

100

Interpretation of Dual Variables

Brewer: find mix of ale and beer that maximizes profits

```
max 13a + 23b

s.t. 5a + 15b \le 480

4a + 4b \le 160

35a + 20b \le 1190

a,b \ge 0
```

► Entrepeneur: buy resources from brewer at minimum cost *C*, *H*, *M*: unit price for corn, hops and malt.

min
$$480C$$
 + $160H$ + $1190M$
s.t. $5C$ + $4H$ + $35M \ge 13$
 $15C$ + $4H$ + $20M \ge 23$
 $C, H, M \ge 0$

Note that brewer won't sell (at least not all) if e.g. 5C + 4H + 35M < 13 as then brewing ale would be advantageous.

Interpretation of Dual Variables

Marginal Price:

- ► How much money is the brewer willing to pay for additional amount of Corn, Hops, or Malt?
- We are interested in the marginal price, i.e., what happens if we increase the amount of Corn, Hops, and Malt by ε_C , ε_H , and ε_M , respectively.

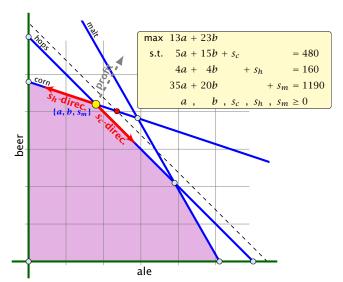
The profit increases to $\max\{c^Tx\mid Ax\leq b+\varepsilon; x\geq 0\}$. Because of strong duality this is equal to

$$\begin{array}{lll}
\min & (b^T + \epsilon^T)y \\
\text{s.t.} & A^T y & \geq c \\
& y & \geq 0
\end{array}$$

EADS II © Harald Räcke 5.5 Interpretation of Dual Variables

103

Example



The change in profit when increasing hops by one unit is $T = \frac{1}{2}$

$$=\underbrace{c_B^T A_B^{-1}}_{\mathcal{V}^*} e_h.$$

Interpretation of Dual Variables

If ϵ is "small" enough then the optimum dual solution y^* might not change. Therefore the profit increases by $\sum_i \varepsilon_i y_i^*$.

Therefore we can interpret the dual variables as marginal prices.

Note that with this interpretation, complementary slackness becomes obvious.

- ▶ If the brewer has slack of some resource (e.g. corn) then he is not willing to pay anything for it (corresponding dual variable is zero).
- ► If the dual variable for some resource is non-zero, then an increase of this resource increases the profit of the brewer. Hence, it makes no sense to have left-overs of this resource. Therefore its slack must be zero.

EADS II © Harald Räcke 5.5 Interpretation of Dual Variables

104

Of course, the previous argument about the increase in the primal objective only holds for the non-degenerate case.

If the optimum basis is degenerate then increasing the supply of one resource may not allow the objective value to increase.

Flows

Definition 40

An (s,t)-flow in a (complete) directed graph $G=(V,V\times V,c)$ is a function $f:V\times V\mapsto \mathbb{R}^+_0$ that satisfies

1. For each edge (x, y)

$$0 \le f_{xy} \le c_{xy}$$
.

(capacity constraints)

2. For each $v \in V \setminus \{s, t\}$

$$\sum_{x} f_{vx} = \sum_{x} f_{xv} .$$

(flow conservation constraints)

EADS II © Harald Räcke 5.5 Interpretation of Dual Variables

107

109

LP-Formulation of Maxflow

Flows

Definition 41

The value of an (s, t)-flow f is defined as

$$val(f) = \sum_{x} f_{sx} - \sum_{x} f_{xs} .$$

Maximum Flow Problem:

Find an (s, t)-flow with maximum value.

5.5 Interpretation of Dual Variables

108

LP-Formulation of Maxflow

$$\begin{array}{llll} & \sum_{(xy)} c_{xy} \ell_{xy} \\ \text{s.t.} & f_{xy} \ (x,y \neq s,t) : & 1\ell_{xy} - 1p_x + 1p_y \ \geq & 0 \\ & f_{sy} \ (y \neq s,t) : & 1\ell_{sy} - & 1 + 1p_y \ \geq & 0 \\ & f_{xs} \ (x \neq s,t) : & 1\ell_{xs} - 1p_x + & 1 \ \geq & 0 \\ & f_{ty} \ (y \neq s,t) : & 1\ell_{ty} - & 0 + 1p_y \ \geq & 0 \\ & f_{xt} \ (x \neq s,t) : & 1\ell_{xt} - 1p_x + & 0 \ \geq & 0 \\ & f_{st} : & 1\ell_{st} - & 1 + & 0 \ \geq & 0 \\ & f_{ts} : & 1\ell_{ts} - & 0 + & 1 \ \geq & 0 \\ & \ell_{xy} \ \geq & 0 \end{array}$$

LP-Formulation of Maxflow

$$\begin{array}{llll} & & \sum_{(xy)} c_{xy} \ell_{xy} \\ \text{s.t.} & f_{xy} \ (x,y \neq s,t) : & 1 \ell_{xy} - 1 p_x + 1 p_y \ \geq & 0 \\ & f_{sy} \ (y \neq s,t) : & 1 \ell_{sy} - p_s + 1 p_y \ \geq & 0 \\ & f_{xs} \ (x \neq s,t) : & 1 \ell_{xs} - 1 p_x + p_s \ \geq & 0 \\ & f_{ty} \ (y \neq s,t) : & 1 \ell_{ty} - p_t + 1 p_y \ \geq & 0 \\ & f_{xt} \ (x \neq s,t) : & 1 \ell_{xt} - 1 p_x + p_t \ \geq & 0 \\ & f_{st} : & 1 \ell_{st} - p_s + p_t \ \geq & 0 \\ & f_{ts} : & 1 \ell_{ts} - p_t + p_s \ \geq & 0 \\ & \ell_{xy} \ \geq & 0 \end{array}$$

with $p_t = 0$ and $p_s = 1$.

EADS II © Harald Räcke 5.5 Interpretation of Dual Variables

111

113

One can show that there is an optimum LP-solution for the dual problem that gives an integral assignment of variables.

This means $p_X = 1$ or $p_X = 0$ for our case. This gives rise to a cut in the graph with vertices having value 1 on one side and the other vertices on the other side. The objective function then evaluates the capacity of this cut.

This shows that the Maxflow/Mincut theorem follows from linear programming duality.

LP-Formulation of Maxflow

min
$$\sum_{(xy)} c_{xy} \ell_{xy}$$
s.t. f_{xy} : $1\ell_{xy} - 1p_x + 1p_y \ge 0$

$$\ell_{xy} \ge 0$$

$$p_s = 1$$

$$p_t = 0$$

We can interpret the $\ell_{\chi\gamma}$ value as assigning a length to every edge.

The value p_x for a variable, then can be seen as the distance of x to t (where the distance from s to t is required to be 1 since $p_s = 1$).

The constraint $p_x \le \ell_{xy} + p_y$ then simply follows from triangle inequality $(d(x,t) \le d(x,y) + d(y,t) \Rightarrow d(x,t) \le \ell_{xy} + d(y,t))$.

EADS II © Harald Räcke

5.5 Interpretation of Dual Variables

112

Flows

Definition 42

An (s,t)-flow in a (complete) directed graph $G=(V,V\times V,c)$ is a function $f:V\times V\mapsto \mathbb{R}^+_0$ that satisfies

1. For each edge (x, y)

$$0 \le f_{xy} \le c_{xy} .$$

(capacity constraints)

2. For each $v \in V \setminus \{s, t\}$

$$\sum_{x} f_{vx} = \sum_{x} f_{xv} .$$

(flow conservation constraints)

Flows

Definition 43

The value of an (s, t)-flow f is defined as

$$val(f) = \sum_{x} f_{sx} - \sum_{x} f_{xs} .$$

Maximum Flow Problem:

Find an (s, t)-flow with maximum value.

5.6 Computing Duals

115

LP-Formulation of Maxflow

min
$$\sum_{(xy)} c_{xy} \ell_{xy}$$
s.t. $f_{xy}(x, y \neq s, t)$: $1\ell_{xy} - 1p_x + 1p_y \ge 0$

$$f_{sy}(y \neq s, t)$$
: $1\ell_{sy} - 1 + 1p_y \ge 0$

$$f_{xs}(x \neq s, t)$$
: $1\ell_{xs} - 1p_x + 1 \ge 0$

$$f_{ty}(y \neq s, t)$$
: $1\ell_{ty} - 0 + 1p_y \ge 0$

$$f_{xt}(x \neq s, t)$$
: $1\ell_{xt} - 1p_x + 0 \ge 0$

$$f_{st}$$
: $1\ell_{st} - 1 + 0 \ge 0$

$$f_{ts}$$
: $1\ell_{ts} - 0 + 1 \ge 0$

$$\ell_{xy} \ge 0$$

5.6 Computing Duals

LP-Formulation of Maxflow

$$\begin{array}{lllll} & & \sum_{(xy)} c_{xy} \ell_{xy} \\ & \text{s.t.} & f_{xy} \; (x,y \neq s,t) : & 1\ell_{xy} - 1p_x + 1p_y \; \geq \; 0 \\ & & f_{sy} \; (y \neq s,t) : & 1\ell_{sy} \; + 1p_y \; \geq \; 1 \\ & & f_{xs} \; (x \neq s,t) : & 1\ell_{xs} - 1p_x \; \; \geq \; -1 \\ & & f_{ty} \; (y \neq s,t) : & 1\ell_{ty} \; + 1p_y \; \geq \; 0 \\ & & f_{xt} \; (x \neq s,t) : & 1\ell_{xt} - 1p_x \; \; \geq \; 0 \\ & & f_{st} : & 1\ell_{st} \; \; \geq \; 1 \\ & & f_{ts} : & 1\ell_{ts} \; \; \geq \; -1 \\ & & \ell_{xy} \; \; \geq \; 0 \end{array}$$

EADS II © Harald Räcke

5.6 Computing Duals

116

LP-Formulation of Maxflow

$$\begin{array}{llll} & & \sum_{(xy)} c_{xy} \ell_{xy} \\ & \text{s.t.} & f_{xy} \; (x,y \neq s,t) \colon & 1\ell_{xy} - 1p_x + 1p_y \; \geq \; 0 \\ & f_{sy} \; (y \neq s,t) \colon & 1\ell_{sy} - p_s + 1p_y \; \geq \; 0 \\ & f_{xs} \; (x \neq s,t) \colon & 1\ell_{xs} - 1p_x + \; p_s \; \geq \; 0 \\ & f_{ty} \; (y \neq s,t) \colon & 1\ell_{ty} - \; p_t + 1p_y \; \geq \; 0 \\ & f_{xt} \; (x \neq s,t) \colon & 1\ell_{xt} - 1p_x + \; p_t \; \geq \; 0 \\ & f_{st} \colon & 1\ell_{st} - \; p_s + \; p_t \; \geq \; 0 \\ & f_{ts} \colon & 1\ell_{ts} - \; p_t + \; p_s \; \geq \; 0 \\ & \ell_{xy} \; \geq \; 0 \end{array}$$

with $p_t = 0$ and $p_s = 1$.

LP-Formulation of Maxflow

min
$$\sum_{(xy)} c_{xy} \ell_{xy}$$
s.t. f_{xy} : $1\ell_{xy} - 1p_x + 1p_y \ge 0$

$$\ell_{xy} \ge 0$$

$$p_s = 1$$

$$p_t = 0$$

We can interpret the ℓ_{xy} value as assigning a length to every edge.

The value p_x for a variable, then can be seen as the distance of x to t (where the distance from s to t is required to be 1 since $p_s = 1$).

The constraint $p_x \le \ell_{xy} + p_y$ then simply follows from triangle inequality $(d(x,t) \le d(x,y) + d(y,t) \Rightarrow d(x,t) \le \ell_{xy} + d(y,t))$.

EADS II © Harald Räcke 5.6 Computing Duals

119

Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may not make progress during an iteration of simplex.

Idea:

Change LP :=
$$\max\{c^Tx, Ax = b; x \ge 0\}$$
 into LP' := $\max\{c^Tx, Ax = b', x \ge 0\}$ such that

- I. LP is feasible
- II. If a set B of basis variables corresponds to an infeasible basis (i.e. $A_B^{-1}b \ngeq 0$) then B corresponds to an infeasible basis in LP' (note that columns in A_B are linearly independent).
- III. LP has no degenerate basic solutions

One can show that there is an optimum LP-solution for the dual problem that gives an integral assignment of variables.

This means $p_x=1$ or $p_x=0$ for our case. This gives rise to a cut in the graph with vertices having value 1 on one side and the other vertices on the other side. The objective function then evaluates the capacity of this cut.

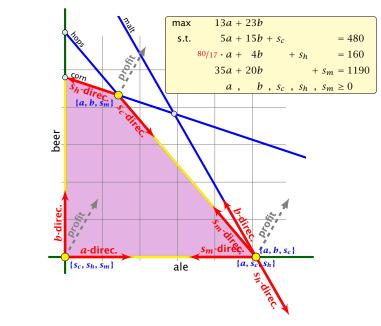
This shows that the Maxflow/Mincut theorem follows from linear programming duality.

EADS II © Harald Räcke

5.6 Computing Duals

120

Degenerate Example



Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may not make progress during an iteration of simplex.

Idea:

Given feasible LP := $\max\{c^Tx, Ax = b; x \ge 0\}$. Change it into LP' := $\max\{c^Tx, Ax = b', x \ge 0\}$ such that

- I. LP' is feasible
- II. If a set B of basis variables corresponds to an infeasible basis (i.e. $A_B^{-1}b \not\ge 0$) then B corresponds to an infeasible basis in LP' (note that columns in A_B are linearly independent).
- III. LP' has no degenerate basic solutions

EADS II © Harald Räcke 6 Degeneracy Revisited

123

125

Property I

The new LP is feasible because the set *B* of basis variables provides a feasible basis:

$$A_B^{-1}\left(b+A_B\begin{pmatrix}\varepsilon\\\vdots\\\varepsilon^m\end{pmatrix}\right)=\chi_B^*+\begin{pmatrix}\varepsilon\\\vdots\\\varepsilon^m\end{pmatrix}\geq 0.$$

Perturbation

Let B be index set of some basis with basic solution

$$x_B^* = A_B^{-1}b \ge 0, x_N^* = 0$$
 (i.e. *B* is feasible)

Fix

$$b' := b + A_B \begin{pmatrix} \varepsilon \\ \vdots \\ \varepsilon^m \end{pmatrix}$$
 for $\varepsilon > 0$.

This is the perturbation that we are using.

EADS II © Harald Räcke

6 Degeneracy Revisited

124

Property II

Let \tilde{B} be a non-feasible basis. This means $(A_{\tilde{B}}^{-1}b)_i<0$ for some row i.

Then for small enough $\epsilon > 0$

$$\left(A_{\tilde{B}}^{-1}\left(b+A_{B}\begin{pmatrix}\varepsilon\\\vdots\\\varepsilon^{m}\end{pmatrix}\right)\right)_{i} = (A_{\tilde{B}}^{-1}b)_{i} + \left(A_{\tilde{B}}^{-1}A_{B}\begin{pmatrix}\varepsilon\\\vdots\\\varepsilon^{m}\end{pmatrix}\right)_{i} < 0$$

Hence, \tilde{B} is not feasible.

Property III

Let \tilde{B} be a basis. It has an associated solution

$$x_{\tilde{B}}^* = A_{\tilde{B}}^{-1}b + A_{\tilde{B}}^{-1}A_{B}\begin{pmatrix} \varepsilon \\ \vdots \\ \varepsilon^{m} \end{pmatrix}$$

in the perturbed instance.

We can view each component of the vector as a polynom with variable ε of degree at most m.

 $A_{\tilde{B}}^{-1}A_{B}$ has rank m. Therefore no polynom is 0.

A polynom of degree at most m has at most m roots (Nullstellen).

Hence, $\epsilon > 0$ small enough gives that no component of the above vector is 0. Hence, no degeneracies.

6 Degeneracy Revisited

127

129

Lexicographic Pivoting

Doing calculations with perturbed instances may be costly. Also the right choice of ε is difficult.

Idea:

Simulate behaviour of LP' without explicitly doing a perturbation.

Since, there are no degeneracies Simplex will terminate when run on LP'.

▶ If it terminates because the reduced cost vector fulfills

$$\tilde{c} = (c^T - c_R^T A_R^{-1} A) \le 0$$

then we have found an optimal basis. Note that this basis is also optimal for LP, as the above constraint does not depend on b.

If it terminates because it finds a variable x_j with $\tilde{c}_j > 0$ for which the j-th basis direction d, fulfills $d \ge 0$ we know that LP' is unbounded. The basis direction does not depend on b. Hence, we also know that LP is unbounded.

EADS II © Harald Räcke

6 Degeneracy Revisited

128

Lexicographic Pivoting

We choose the entering variable arbitrarily as before ($\tilde{c}_e > 0$, of course).

If we do not have a choice for the leaving variable then LP' and LP do the same (i.e., choose the same variable).

Otherwise we have to be careful.

Lexicographic Pivoting

In the following we assume that $b \ge 0$. This can be obtained by replacing the initial system $(A_B \mid b)$ by $(A_B^{-1}A \mid A_B^{-1}b)$ where B is the index set of a feasible basis (found e.g. by the first phase of the Two-phase algorithm).

Then the perturbed instance is

$$b' = b + \begin{pmatrix} \varepsilon \\ \vdots \\ \varepsilon^m \end{pmatrix}$$

6 Degeneracy Revisited

131

133

Lexicographic Pivoting

LP chooses an arbitrary leaving variable that has $\hat{A}_{\ell e}>0$ and minimizes

$$\theta_{\ell} = rac{\hat{b}_{\ell}}{\hat{A}_{\ell e}} = rac{(A_B^{-1}b)_{\ell}}{(A_B^{-1}A_{*e})_{\ell}} \ .$$

 ℓ is the index of a leaving variable within B. This means if e.g. $B = \{1, 3, 7, 14\}$ and leaving variable is 3 then $\ell = 2$.

Matrix View

Let our linear program be

$$c_B^T x_B + c_N^T x_N = Z$$

$$A_B x_B + A_N x_N = b$$

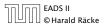
$$x_B , x_N \ge 0$$

The simplex tableaux for basis B is

$$(c_N^T - c_B^T A_B^{-1} A_N) x_N = Z - c_B^T A_B^{-1} b$$
 $Ix_B + A_B^{-1} A_N x_N = A_B^{-1} b$
 $x_B , x_N \ge 0$

The BFS is given by $x_N = 0$, $x_B = A_B^{-1}b$.

If $(c_N^T - c_B^T A_B^{-1} A_N) \le 0$ we know that we have an optimum solution.



6 Degeneracy Revisited

132

Lexicographic Pivoting

Definition 44

 $u \leq_{\text{lex}} v$ if and only if the first component in which u and v differ fulfills $u_i \leq v_i$.

Lexicographic Pivoting

LP' chooses an index that minimizes

$$\theta_{\ell} = \frac{\left(A_{B}^{-1}\left(b + \begin{pmatrix} \varepsilon \\ \vdots \\ \varepsilon^{m} \end{pmatrix}\right)\right)_{\ell}}{(A_{B}^{-1}A_{*e})_{\ell}} = \frac{\left(A_{B}^{-1}(b \mid I) \begin{pmatrix} 1 \\ \varepsilon \\ \vdots \\ \varepsilon^{m} \end{pmatrix}\right)_{\ell}}{(A_{B}^{-1}A_{*e})_{\ell}}$$

$$= \frac{\ell\text{-th row of } A_B^{-1}(b \mid I)}{(A_B^{-1}A_{*e})_{\ell}} \begin{pmatrix} 1 \\ \varepsilon \\ \vdots \\ \varepsilon^m \end{pmatrix}$$

6 Degeneracy Revisited

135

137

Number of Simplex Iterations

Each iteration of Simplex can be implemented in polynomial time.

If we use lexicographic pivoting we know that Simplex requires at most $\binom{n}{m}$ iterations, because it will not visit a basis twice.

The input size is $L \cdot n \cdot m$, where n is the number of variables, m is the number of constraints, and L is the length of the binary representation of the largest coefficient in the matrix A.

If we really require $\binom{n}{m}$ iterations then Simplex is not a polynomial time algorithm.

Can we obtain a better analysis?

Lexicographic Pivoting

This means you can choose the variable/row ℓ for which the vector

$$\frac{\ell\text{-th row of }A_B^{-1}(b\mid I)}{(A_B^{-1}A_{*\ell})_{\ell}}$$

is lexicographically minimal.

Of course only including rows with $(A_R^{-1}A_{*e})_{\ell} > 0$.

This technique guarantees that your pivoting is the same as in the perturbed case. This guarantees that cycling does not occur.

EADS II © Harald Räcke

6 Degeneracy Revisited

136

Number of Simplex Iterations

Observation

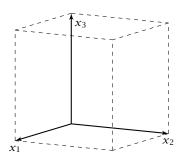
Simplex visits every feasible basis at most once.

However, also the number of feasible bases can be very large.

EADS II

Example

$$\max c^T x$$
s.t. $0 \le x_1 \le 1$
 $0 \le x_2 \le 1$
 \vdots
 $0 \le x_n \le 1$



2n constraint on n variables define an n-dimensional hypercube as feasible region.

The feasible region has 2^n vertices.

7 Klee Minty Cube

139

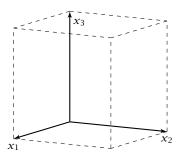
Pivoting Rule

A Pivoting Rule defines how to choose the entering and leaving variable for an iteration of Simplex.

In the non-degenerate case after choosing the entering variable the leaving variable is unique.

Example

$$\max c^T x$$
s.t. $0 \le x_1 \le 1$
 $0 \le x_2 \le 1$
 \vdots
 $0 \le x_n \le 1$



However, Simplex may still run quickly as it usually does not visit all feasible bases.

In the following we give an example of a feasible region for which there is a bad Pivoting Rule.



7 Klee Minty Cube

140

Klee Minty Cube

$$\max x_n$$
s.t.
$$0 \le x_1 \le 1$$

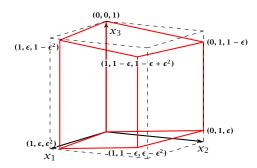
$$\epsilon x_1 \le x_2 \le 1 - \epsilon x_1$$

$$\epsilon x_2 \le x_3 \le 1 - \epsilon x_2$$

$$\vdots$$

$$\epsilon x_{n-1} \le x_n \le 1 - \epsilon x_{n-1}$$

$$x_i \ge 0$$



Observations

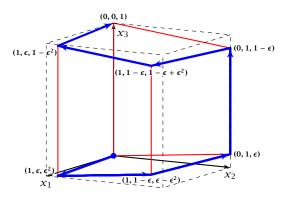
- \blacktriangleright We have 2n constraints, and 3n variables (after adding slack variables to every constraint).
- \blacktriangleright Every basis is defined by 2n variables, and n non-basic variables.
- ▶ There exist degenerate vertices.
- ▶ The degeneracies come from the non-negativity constraints, which are superfluous.
- ▶ In the following all variables x_i stay in the basis at all times.
- ▶ Then, we can uniquely specify a basis by choosing for each variable whether it should be equal to its lower bound, or equal to its upper bound (the slack variable corresponding to the non-tight constraint is part of the basis).
- ▶ We can also simply identify each basis/vertex with the corresponding hypercube vertex obtained by letting $\epsilon \to 0$.

Klee Minty Cube

$$\max x_n$$
s.t. $0 \le x_1 \le 1$

$$\epsilon x_1 \le x_2 \le 1 - \epsilon x_1$$

$$\epsilon x_2 \le x_3 \le 1 - \epsilon x_2$$



Analysis

- In the following we specify a sequence of bases (identified by the corresponding hypercube node) along which the objective function strictly increases.
- \blacktriangleright The basis $(0, \dots, 0, 1)$ is the unique optimal basis.
- Our sequence S_n starts at (0, ..., 0) ends with (0, ..., 0, 1)and visits every node of the hypercube.
- ▶ An unfortunate Pivoting Rule may choose this sequence, and, hence, require an exponential number of iterations.

EADS II © Harald Räcke EADS II

EADS II

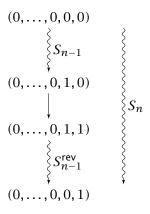
∐||||| © Harald Räcke

7 Klee Minty Cube

144

Analysis

The sequence S_n that visits every node of the hypercube is defined recursively



The non-recursive case is $S_1 = 0 \rightarrow 1$

Analysis

Lemma 45

The objective value x_n is increasing along path S_n .

Proof by induction:

n = 1: obvious, since $S_1 = 0 \rightarrow 1$, and 1 > 0.

 $n-1 \rightarrow n$

- For the first part the value of $x_n = \epsilon x_{n-1}$.
- ▶ By induction hypothesis x_{n-1} is increasing along S_{n-1} , hence, also x_n .
- ▶ Going from (0,...,0,1,0) to (0,...,0,1,1) increases x_n for small enough ϵ .
- ▶ For the remaining path S_{n-1}^{rev} we have $x_n = 1 \epsilon x_{n-1}$.
- ▶ By induction hypothesis x_{n-1} is increasing along S_{n-1} , hence $-\epsilon x_{n-1}$ is increasing along S_{n-1}^{rev} .

Remarks about Simplex

Theorem

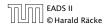
For almost all known deterministic pivoting rules (rules for choosing entering and leaving variables) there exist lower bounds that require the algorithm to have exponential running time ($\Omega(2^{\Omega(n)})$) (e.g. Klee Minty 1972).

Remarks about Simplex

Observation

The simplex algorithm takes at most $\binom{n}{m}$ iterations. Each iteration can be implemented in time $\mathcal{O}(mn)$.

In practise it usually takes a linear number of iterations.



7 Klee Minty Cube

148

Remarks about Simplex

Theorem

149

For some standard randomized pivoting rules there exist subexponential lower bounds ($\Omega(2^{\Omega(n^{\alpha})})$ for $\alpha>0$) (Friedmann, Hansen, Zwick 2011).

150

Remarks about Simplex

Conjecture (Hirsch 1957)

The edge-vertex graph of an m-facet polytope in d-dimensional Euclidean space has diameter no more than m-d.

The conjecture has been proven wrong in 2010.

But the question whether the diameter is perhaps of the form $\mathcal{O}(\operatorname{poly}(m,d))$ is open.

7 Klee Minty Cube

151

153

8 Seidels LP-algorithm

Setting:

▶ We assume an LP of the form

$$\begin{array}{cccc}
\min & c^T x \\
\text{s.t.} & Ax & \geq & b \\
& & x & \geq & 0
\end{array}$$

▶ We assume that the LP is bounded.

8 Seidels LP-algorithm

- ▶ Suppose we want to solve $\min\{c^Tx \mid Ax \ge b; x \ge 0\}$, where $x \in \mathbb{R}^d$ and we have m constraints.
- In the worst-case Simplex runs in time roughly $\mathcal{O}(m(m+d)\binom{m+d}{m}) \approx (m+d)^m$. (slightly better bounds on the running time exist, but will not be discussed here).
- ▶ If d is much smaller than m one can do a lot better.
- ▶ In the following we develop an algorithm with running time $O(d! \cdot m)$, i.e., linear in m.

8 Seidels LP-algorithm

152

Ensuring Conditions

Given a standard minimization LP

$$\begin{array}{rcl}
\min & c^T x \\
\text{s.t.} & Ax & \geq & b \\
& x & \geq & 0
\end{array}$$

how can we obtain an LP of the required form?

Compute a lower bound on c^Tx for any basic feasible solution.

Computing a Lower Bound

Let s denote the smallest common multiple of all denominators of entries in A, b.

Multiply entries in A, b by s to obtain integral entries. This does not change the feasible region.

Add slack variables to A; denote the resulting matrix with \bar{A} .

If B is an optimal basis then x_B with $\bar{A}_B x_B = \bar{b}$, gives an optimal assignment to the basis variables (non-basic variables are 0).

EADS II © Harald Räcke 8 Seidels LP-algorithm

155

157

Proof:

Define

$$X_j = \begin{pmatrix} | & | & | & | \\ e_1 & \cdots & e_{j-1} & \mathbf{x} & e_{j+1} & \cdots & e_n \\ | & | & | & | & | \end{pmatrix}$$

Note that expanding along the j-th column gives that $det(X_j) = x_j$.

Further, we have

$$MX_j = \begin{pmatrix} | & | & | & | & | \\ Me_1 \cdots Me_{j-1} & Mx & Me_{j+1} \cdots Me_n \\ | & | & | & | \end{pmatrix} = M_j$$

► Hence,

$$x_j = \det(X_j) = \frac{\det(M_j)}{\det(M)}$$

EADS II © Harald Räcke

Let M be a matrix with $det(M) \neq 0$. Then the solution to the system Mx = b is given by

$$x_j = \frac{\det(M_j)}{\det(M)} ,$$

where M_j is the matrix obtained from M by replacing the j-th column by the vector b.

EADS II © Harald Räcke

8 Seidels LP-algorithm

156

Bounding the Determinant

Let Z be the maximum absolute entry occurring in \bar{A} , \bar{b} or c. Let C denote the matrix obtained from \bar{A}_B by replacing the j-th column with vector \bar{b} .

Observe that

$$|\det(C)| = \left| \sum_{\pi \in S_m} \operatorname{sgn}(\pi) \prod_{1 \le i \le m} C_{i\pi(i)} \right|$$

$$\le \sum_{\pi \in S_m} \prod_{1 \le i \le m} |C_{i\pi(i)}|$$

$$\le m! \cdot Z^m.$$

Bounding the Determinant

Alternatively, Hadamards inequality gives

$$|\det(C)| \le \prod_{i=1}^{m} ||C_{*i}|| \le \prod_{i=1}^{m} (\sqrt{m}Z)$$

 $\le m^{m/2} Z^m$.

8 Seidels LP-algorithm

159

Ensuring Conditions

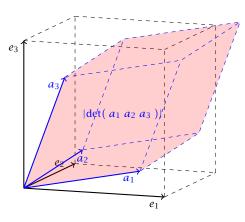
Given a standard minimization LP

$$\begin{array}{cccc}
\min & c^T x \\
\text{s.t.} & Ax & \geq & b \\
& x & \geq & 0
\end{array}$$

how can we obtain an LP of the required form?

▶ Compute a lower bound on c^Tx for any basic feasible solution. Add the constraint $c^Tx \ge -mZ(m! \cdot Z^m) - 1$. Note that this constraint is superfluous unless the LP is unbounded.

Hadamards Inequality



Hadamards inequality says that the volume of the red parallelepiped (Spat) is smaller than the volume in the black cube (if $\|e_1\| = \|a_1\|$, $\|e_2\| = \|a_2\|$, $\|e_3\| = \|a_3\|$).

EADS II © Harald Räcke

8 Seidels LP-algorithm

160

Ensuring Conditions

Compute an optimum basis for the new LP.

- ▶ If the cost is $c^T x = -(mZ)(m! \cdot Z^m) 1$ we know that the original LP is unbounded.
- ▶ Otw. we have an optimum basis.

8 Seidels LP-algorithm

162

In the following we use \mathcal{H} to denote the set of all constraints apart from the constraint $c^Tx \geq -mZ(m! \cdot Z^m) - 1$.

We give a routine SeidelLP(\mathcal{H},d) that is given a set \mathcal{H} of explicit, non-degenerate constraints over d variables, and minimizes c^Tx over all feasible points.

In addition it obeys the implicit constraint $c^T x \ge -(mZ)(m! \cdot Z^m) - 1$.

8 Seidels LP-algorithm

163

165

8 Seidels LP-algorithm

- ▶ If d = 1 we can solve the 1-dimensional problem in time O(m).
- ▶ If d > 1 and m = 0 we take time O(d) to return d-dimensional vector x.
- ▶ The first recursive call takes time T(m-1,d) for the call plus O(d) for checking whether the solution fulfills h.
- If we are unlucky and \hat{x}^* does not fulfill h we need time $\mathcal{O}(d(m+1)) = \mathcal{O}(dm)$ to eliminate x_ℓ . Then we make a recursive call that takes time T(m-1,d-1).
- The probability of being unlucky is at most d/m as there are at most d constraints whose removal will decrease the objective function

Algorithm 1 SeidelLP(\mathcal{H}, d)

- 1: **if** d = 1 **then** solve 1-dimensional problem and return;
- 2: if $\mathcal{H} = \emptyset$ then return x on implicit constraint hyperplane
- 3: choose random constraint $h \in \mathcal{H}$
- 4: $\hat{\mathcal{H}} \leftarrow \mathcal{H} \setminus \{h\}$
- 5: $\hat{x}^* \leftarrow \text{SeidelLP}(\hat{\mathcal{H}}, d)$
- 6: **if** \hat{x}^* = infeasible **then return** infeasible
- 7: **if** \hat{x}^* fulfills h **then return** \hat{x}^*
- 8: // optimal solution fulfills h with equality, i.e., $a_h^T x = b_h$
- 9: solve $a_h^T x = b_h$ for some variable x_ℓ ;
- 10: eliminate x_ℓ in constraints from $\hat{\mathcal{H}}$ and in implicit constr.;
- 11: $\hat{x}^* \leftarrow \text{SeidelLP}(\hat{\mathcal{H}}, d-1)$
- 12: **if** \hat{x}^* = infeasible **then**
- 13: return infeasible
- 14: **else**
- add the value of x_ℓ to \hat{x}^* and return the solution

8 Seidels LP-algorithm

This gives the recurrence

$$T(m,d) = \begin{cases} \mathcal{O}(m) & \text{if } d=1\\ \mathcal{O}(d) & \text{if } d>1 \text{ and } m=0\\ \mathcal{O}(d) + T(m-1,d) + \\ \frac{d}{m}(\mathcal{O}(dm) + T(m-1,d-1)) & \text{otw.} \end{cases}$$

Note that T(m, d) denotes the expected running time.

8 Seidels LP-algorithm

Let C be the largest constant in the \mathcal{O} -notations.

$$T(m,d) = \begin{cases} Cm & \text{if } d = 1\\ Cd & \text{if } d > 1 \text{ and } m = 0\\ Cd + T(m-1,d) + \\ \frac{d}{m}(Cdm + T(m-1,d-1)) & \text{otw.} \end{cases}$$

Note that T(m, d) denotes the expected running time.

EADS II © Harald Räcke 8 Seidels LP-algorithm

167

169

8 Seidels LP-algorithm

d > 1; m > 1:

(by induction hypothesis statm. true for $d' < d, m' \ge 0$; and for d' = d, m' < m)

$$T(m,d) = \mathcal{O}(d) + T(m-1,d) + \frac{d}{m} \Big(\mathcal{O}(dm) + T(m-1,d-1) \Big)$$

$$\leq Cd + Cf(d)(m-1) + Cd^2 + \frac{d}{m}Cf(d-1)(m-1)$$

$$\leq 2Cd^2 + Cf(d)(m-1) + dCf(d-1)$$

$$\leq Cf(d)m$$

if $f(d) \ge df(d-1) + 2d^2$.

8 Seidels LP-algorithm

Let C be the largest constant in the \mathcal{O} -notations.

We show $T(m, d) \le Cf(d) \max\{1, m\}$.

d = 1:

 $T(m, 1) \le Cm \le Cf(1) \max\{1, m\} \text{ for } f(1) \ge 1$

d > 1: m = 0:

 $T(0,d) \le \mathcal{O}(d) \le Cd \le Cf(d) \max\{1,m\} \text{ for } f(d) \ge d$

d > 1: m = 1:

 $T(1,d) = \mathcal{O}(d) + T(0,d) + d\Big(\mathcal{O}(d) + T(0,d-1)\Big)$ $\leq Cd + Cd + Cd^2 + dCf(d-1)$ $\leq Cf(d) \max\{1, m\} \text{ for } f(d) \geq 3d^2 + df(d-1)$

8 Seidels LP-algorithm

▶ Define $f(1) = 3 \cdot 1^2$ and $f(d) = df(d-1) + 3d^2$ for d > 1.

Then

$$f(d) = 3d^{2} + df(d-1)$$

$$= 3d^{2} + d\left[3(d-1)^{2} + (d-1)f(d-2)\right]$$

$$= 3d^{2} + d\left[3(d-1)^{2} + (d-1)\left[3(d-2)^{2} + (d-2)f(d-3)\right]\right]$$

$$= 3d^{2} + 3d(d-1)^{2} + 3d(d-1)(d-2)^{2} + \dots$$

$$+ 3d(d-1)(d-2) \cdot \dots \cdot 4 \cdot 3 \cdot 2 \cdot 1^{2}$$

$$= 3d! \left(\frac{d^{2}}{d!} + \frac{(d-1)^{2}}{(d-1)!} + \frac{(d-2)^{2}}{(d-2)!} + \dots\right)$$

$$= \mathcal{O}(d!)$$

since $\sum_{i\geq 1}\frac{i^2}{i!}$ is a constant.

Complexity

LP Feasibility Problem (LP feasibility)

- ▶ Given $A \in \mathbb{Z}^{m \times n}$, $b \in \mathbb{Z}^m$. Does there exist $x \in \mathbb{R}$ with Ax = b, $x \ge 0$?
- ▶ Note that allowing *A*, *b* to contain rational numbers does not make a difference, as we can multiply every number by a suitable large constant so that everything becomes integral but the feasible region does not change.

Is this problem in NP or even in P?

EADS II © Harald Räcke 9 The Ellipsoid Algorithm

171

173

- ▶ In the following we sometimes refer to L := L([A|b]) as the input size (even though the real input size is something in $\Theta(L([A|b]))$).
- In order to show that LP-decision is in NP we show that if there is a solution x then there exists a small solution for which feasibility can be verified in polynomial time (polynomial in L([A|b])).

The Bit Model

Input size

▶ The number of bits to represent a number $a \in \mathbb{Z}$ is

$$\lceil \log_2(|a|) \rceil + 1$$

Let for an $m \times n$ matrix M, L(M) denote the number of bits required to encode all the numbers in M.

$$L(M) := \sum_{i,j} \lceil \log_2(|m_{ij}|) + 1 \rceil$$

- ▶ In the following we assume that input matrices are encoded in a standard way, where each number is encoded in binary and then suitable separators are added in order to separate distinct number from each other.
- ▶ Then the input length is $\Theta(L([A|b]))$.

Suppose that Ax = b; $x \ge 0$ is feasible.

Then there exists a basic feasible solution. This means a set ${\it B}$ of basic variables such that

$$x_B = A_B^{-1}b$$

and all other entries in x are 0.

Size of a Basic Feasible Solution

Lemma 47

Let $M \in \mathbb{Z}^{m \times m}$ be an invertable matrix and let $b \in \mathbb{Z}^m$. Further define $L' = L([M \mid b]) + n \log_2 n$. Then a solution to Mx = b has rational components x_j of the form $\frac{D_j}{D}$, where $|D_j| \le 2^{L'}$ and $|D| \le 2^{L'}$.

Proof:

Cramers rules says that we can compute x_i as

$$x_j = \frac{\det(M_j)}{\det(M)}$$

where M_j is the matrix obtained from M by replacing the j-th column by the vector b.

EADS II © Harald Räcke 9 The Ellipsoid Algorithm

175

This means if Ax = b, $x \ge 0$ is feasible we only need to consider vectors x where an entry x_j can be represented by a rational number with encoding length polynomial in the input length L.

Hence, the \boldsymbol{x} that we have to guess is of length polynomial in the input-length \boldsymbol{L} .

For a given vector \boldsymbol{x} of polynomial length we can check for feasibility in polynomial time.

Hence, LP feasibility is in NP.

Bounding the Determinant

Let $X = A_B$. Then

$$|\det(X)| = \left| \sum_{\pi \in S_n} \operatorname{sgn}(\pi) \prod_{1 \le i \le n} X_{i\pi(i)} \right|$$

$$\le \sum_{\pi \in S_n} \prod_{1 \le i \le n} |X_{i\pi(i)}|$$

$$\le n! \cdot 2^{L([A|b])} \le n^n 2^L \le 2^{L'}.$$

Analogously for $det(M_i)$.

EADS II © Harald Räcke

9 The Ellipsoid Algorithm

176

Reducing LP-solving to LP decision.

Given an LP $\max\{c^Tx \mid Ax = b; x \ge 0\}$ do a binary search for the optimum solution

(Add constraint $c^Tx - \delta = M$; $\delta \ge 0$ or $(c^Tx \ge M)$. Then checking for feasibility shows whether optimum solution is larger or smaller than M).

If the LP is feasible then the binary search finishes in at most

$$\log_2\left(\frac{2n2^{2L'}}{1/2^{L'}}\right) = \mathcal{O}(L') ,$$

as the range of the search is at most $-n2^{2L'},\ldots,n2^{2L'}$ and the distance between two adjacent values is at least $\frac{1}{\det(A)} \geq \frac{1}{2L'}$.

Here we use $L' = L([A \mid b \mid c]) + n \log_2 n$ (it also includes the encoding size of c).

How do we detect whether the LP is unbounded?

Let $M_{\text{max}} = n2^{2L'}$ be an upper bound on the objective value of a basic feasible solution.

We can add a constraint $c^T x \ge M_{\text{max}} + 1$ and check for feasibility.

EADS II © Harald Räcke 9 The Ellipsoid Algorithm

179

181

Issues/Questions:

- ▶ How do you choose the first Ellipsoid? What is its volume?
- ▶ What if the polytop *K* is unbounded?
- ► How do you measure progress? By how much does the volume decrease in each iteration?
- ► When can you stop? What is the minimum volume of a non-empty polytop?

Ellipsoid Method

- Let *K* be a convex set.
- ► Maintain ellipsoid *E* that is guaranteed to contain *K* provided that *K* is non-empty.
- ▶ If center $z \in K$ STOP.

► Otw. find a hyperplane separating *K* from *z* (e.g. a violated constraint in the LP).

► Shift hyperplane to contain node *z*. *H* denotes half-space that contains *K*.

► Compute (smallest) ellipsoid E' that contains $K \cap H$.

► REPEAT

EADS II © Harald Räcke

9 The Ellipsoid Algorithm

180

Definition 48

A mapping $f: \mathbb{R}^n \to \mathbb{R}^n$ with f(x) = Lx + t, where L is an invertible matrix is called an affine transformation.

Definition 49

A ball in \mathbb{R}^n with center c and radius r is given by

$$B(c,r) = \{x \mid (x-c)^T (x-c) \le r^2\}$$
$$= \{x \mid \sum_i (x-c)_i^2 / r^2 \le 1\}$$

B(0,1) is called the unit ball.

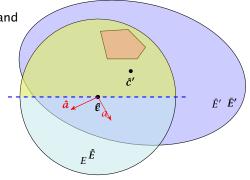
9 The Ellipsoid Algorithm

183

185

How to Compute the New Ellipsoid

- ▶ Use f^{-1} (recall that f = Lx + t is the affine transformation of the unit ball) to rotate/distort the ellipsoid (back) into the unit ball.
- Use a rotation R^{-1} to rotate the unit ball such that the normal vector of the halfspace is parallel to e_1 .
- ightharpoonup Compute the new center \hat{c}' and the new matrix \hat{O}' for this simplified setting.
- Use the transformations R and f to get the new center c' and the new matrix O' for the original ellipsoid *E*.



Definition 50

An affine transformation of the unit ball is called an ellipsoid.

From
$$f(x) = Lx + t$$
 follows $x = L^{-1}(f(x) - t)$.

$$f(B(0,1)) = \{f(x) \mid x \in B(0,1)\}$$

$$= \{y \in \mathbb{R}^n \mid L^{-1}(y-t) \in B(0,1)\}$$

$$= \{y \in \mathbb{R}^n \mid (y-t)^T L^{-1}^T L^{-1}(y-t) \le 1\}$$

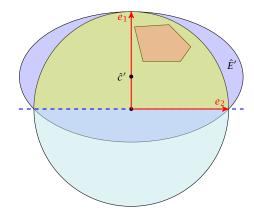
$$= \{y \in \mathbb{R}^n \mid (y-t)^T Q^{-1}(y-t) \le 1\}$$

where $Q = LL^T$ is an invertible matrix.

9 The Ellipsoid Algorithm

184

The Easy Case



- ▶ The new center lies on axis x_1 . Hence, $\hat{c}' = te_1$ for t > 0.
- ▶ The vectors $e_1, e_2,...$ have to fulfill the ellipsoid constraint with equality. Hence $(e_i - \hat{c}')^T \hat{Q}'^{-1} (e_i - \hat{c}') = 1$.

The Easy Case

- ▶ The obtain the matrix $\hat{O'}^{-1}$ for our ellipsoid $\hat{E'}$ note that $\hat{E'}$ is axis-parallel.
- \blacktriangleright Let a denote the radius along the x_1 -axis and let b denote the (common) radius for the other axes.
- ▶ The matrix

$$\hat{L}' = \left(\begin{array}{cccc} a & 0 & \dots & 0 \\ 0 & b & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & b \end{array}\right)$$

maps the unit ball (via function $\hat{f}'(x) = \hat{L}'x$) to an axis-parallel ellipsoid with radius a in direction x_1 and b in all other directions.

9 The Ellipsoid Algorithm

187

The Easy Case

 $(e_1 - \hat{c}')^T \hat{O}'^{-1} (e_1 - \hat{c}') = 1$ gives

$$\begin{pmatrix} 1-t \\ 0 \\ \vdots \\ 0 \end{pmatrix}^T \cdot \begin{pmatrix} \frac{1}{a^2} & 0 & \cdots & 0 \\ 0 & \frac{1}{b^2} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \frac{1}{b^2} \end{pmatrix} \cdot \begin{pmatrix} 1-t \\ 0 \\ \vdots \\ 0 \end{pmatrix} = 1$$

► This gives $(1-t)^2 = a^2$.

The Easy Case

As $\hat{O}' = \hat{L}' \hat{L}'^t$ the matrix \hat{O}'^{-1} is of the form

$$\hat{Q}'^{-1} = \begin{pmatrix} \frac{1}{a^2} & 0 & \dots & 0 \\ 0 & \frac{1}{b^2} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \frac{1}{b^2} \end{pmatrix}$$

EADS II © Harald Räcke EADS II

9 The Ellipsoid Algorithm

188

190

The Easy Case

EADS II

© Harald Räcke

► For $i \neq 1$ the equation $(e_i - \hat{c}')^T \hat{O}'^{-1} (e_i - \hat{c}') = 1$ gives

$$\begin{pmatrix} -t \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}^{T} \cdot \begin{pmatrix} \frac{1}{a^{2}} & 0 & \dots & 0 \\ 0 & \frac{1}{b^{2}} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \frac{1}{b^{2}} \end{pmatrix} \cdot \begin{pmatrix} -t \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} = 1$$

► This gives $\frac{t^2}{a^2} + \frac{1}{h^2} = 1$, and hence

$$\frac{1}{b^2} = 1 - \frac{t^2}{a^2} = 1 - \frac{t^2}{(1-t)^2} = \frac{1-2t}{(1-t)^2}$$

9 The Ellipsoid Algorithm

Summary

So far we have

$$a = 1 - t$$
 and $b = \frac{1 - t}{\sqrt{1 - 2t}}$

EADS II © Harald Räcke EADS II

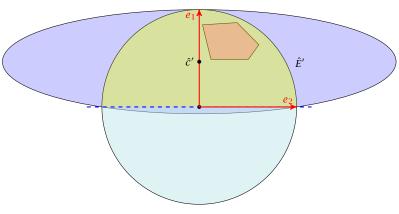
9 The Ellipsoid Algorithm

191

193

The Easy Case

We still have many choices for *t*:



Choose t such that the volume of \hat{E}' is minimal!!!

EADS II © Harald Räcke

9 The Ellipsoid Algorithm

192

The Easy Case

We want to choose t such that the volume of \hat{E}' is minimal.

Lemma 51

Let L be an affine transformation and $K \subseteq \mathbb{R}^n$. Then

$$vol(L(K)) = |det(L)| \cdot vol(K)$$
.

n-dimensional volume EADS II © Harald Räcke 9 The Ellipsoid Algorithm 194

The Easy Case

 \blacktriangleright We want to choose t such that the volume of \hat{E}' is minimal.

$$\operatorname{vol}(\hat{E}') = \operatorname{vol}(B(0,1)) \cdot |\det(\hat{L}')|,$$

where $\hat{O}' = \hat{L}' \hat{L}'^T$.

We have

$$\hat{L}'^{-1} = \begin{pmatrix} \frac{1}{a} & 0 & \dots & 0 \\ 0 & \frac{1}{b} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \frac{1}{b} \end{pmatrix} \text{ and } \hat{L}' = \begin{pmatrix} a & 0 & \dots & 0 \\ 0 & b & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & b \end{pmatrix}$$

 \blacktriangleright Note that a and b in the above equations depend on t, by the previous equations.

9 The Ellipsoid Algorithm

195

197

 $= vol(B(0,1)) \cdot ab^{n-1}$ $= \text{vol}(B(0,1)) \cdot (1-t) \cdot \left(\frac{1-t}{\sqrt{1-2t}}\right)^{n-1}$ $= \text{vol}(B(0,1)) \cdot \frac{(1-t)^n}{(\sqrt{1-2t})^{n-1}}$

 $\operatorname{vol}(\hat{E}') = \operatorname{vol}(B(0,1)) \cdot |\det(\hat{L}')|$

EADS II © Harald Räcke

The Easy Case

9 The Ellipsoid Algorithm

196

The Easy Case

$$\frac{\mathrm{d} \operatorname{vol}(\hat{E}')}{\mathrm{d} t} = \frac{\mathrm{d}}{\mathrm{d} t} \left(\frac{(1-t)^n}{(\sqrt{1-2t})^{n-1}} \right)$$

$$= \frac{1}{N^2} \cdot \left((-1) \cdot n(1-t)^{n-1} \cdot (\sqrt{1-2t})^{n-1} \right)$$

$$= \frac{1}{N^2} \cdot \left((-1) \cdot n(1-t)^{n-1} \cdot (\sqrt{1-2t})^{n-2} \cdot \frac{1}{2\sqrt{1-2t}} \cdot (\sqrt{1-2t})^{n-2} \cdot \frac{1}{2\sqrt{1-2t}} \cdot (\sqrt{1-2t})^{n-3} \cdot (1-t)^{n-1}$$

$$= \frac{1}{N^2} \cdot (\sqrt{1-2t})^{n-3} \cdot (1-t)^{n-1} \cdot \left((n+1)t-1 \right)$$

$$= \frac{1}{N^2} \cdot (\sqrt{1-2t})^{n-3} \cdot (1-t)^{n-1} \cdot \left((n+1)t-1 \right)$$

The Easy Case

- We obtain the minimum for $t = \frac{1}{n+1}$.
- For this value we obtain

$$a = 1 - t = \frac{n}{n+1}$$
 and $b = \frac{1-t}{\sqrt{1-2t}} = \frac{n}{\sqrt{n^2-1}}$

To see the equation for b, observe that

$$b^{2} = \frac{(1-t)^{2}}{1-2t} = \frac{(1-\frac{1}{n+1})^{2}}{1-\frac{2}{n+1}} = \frac{(\frac{n}{n+1})^{2}}{\frac{n-1}{n+1}} = \frac{n^{2}}{n^{2}-1}$$

The Easy Case

Let $\gamma_n = \frac{\operatorname{vol}(\hat{E}')}{\operatorname{vol}(B(0,1))} = ab^{n-1}$ be the ratio by which the volume changes:

$$y_n^2 = \left(\frac{n}{n+1}\right)^2 \left(\frac{n^2}{n^2 - 1}\right)^{n-1}$$

$$= \left(1 - \frac{1}{n+1}\right)^2 \left(1 + \frac{1}{(n-1)(n+1)}\right)^{n-1}$$

$$\le e^{-2\frac{1}{n+1}} \cdot e^{\frac{1}{n+1}}$$

$$= e^{-\frac{1}{n+1}}$$

where we used $(1+x)^a \le e^{ax}$ for $x \in \mathbb{R}$ and a > 0.

This gives $\gamma_n \leq e^{-\frac{1}{2(n+1)}}$.

EADS II © Harald Räcke 9 The Ellipsoid Algorithm

199

201

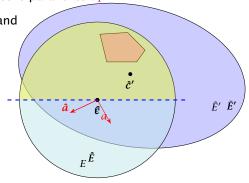
Our progress is the same:

$$e^{-\frac{1}{2(n+1)}} \ge \frac{\text{vol}(\hat{E}')}{\text{vol}(B(0,1))} = \frac{\text{vol}(\hat{E}')}{\text{vol}(\hat{E})} = \frac{\text{vol}(R(\hat{E}'))}{\text{vol}(R(\hat{E}))}$$
$$= \frac{\text{vol}(\bar{E}')}{\text{vol}(\bar{E})} = \frac{\text{vol}(f(\bar{E}'))}{\text{vol}(f(\bar{E}))} = \frac{\text{vol}(E')}{\text{vol}(E)}$$

Here it is important that mapping a set with affine function f(x) = Lx + t changes the volume by factor det(L).

How to Compute the New Ellipsoid

- ▶ Use f^{-1} (recall that f = Lx + t is the affine transformation of the unit ball) to rotate/distort the ellipsoid (back) into the unit ball.
- ▶ Use a rotation R^{-1} to rotate the unit ball such that the normal vector of the halfspace is parallel to e_1 .
- Compute the new center \hat{c}' and the new matrix \hat{Q}' for this simplified setting.
- ▶ Use the transformations R and f to get the new center c' and the new matrix Q' for the original ellipsoid E.



EADS II © Harald Räcke 9 The Ellipsoid Algorithm

200

The Ellipsoid Algorithm

How to Compute The New Parameters?

The transformation function of the (old) ellipsoid: f(x) = Lx + c;

The halfspace to be intersected: $H = \{x \mid a^T(x - c) \le 0\}$;

$$f^{-1}(H) = \{f^{-1}(x) \mid a^{T}(x - c) \le 0\}$$

$$= \{f^{-1}(f(y)) \mid a^{T}(f(y) - c) \le 0\}$$

$$= \{y \mid a^{T}(f(y) - c) \le 0\}$$

$$= \{y \mid a^{T}(Ly + c - c) \le 0\}$$

$$= \{y \mid (a^{T}L)y \le 0\}$$

This means $\bar{a} = L^T a$.

The Ellipsoid Algorithm

After rotating back (applying R^{-1}) the normal vector of the halfspace points in negative x_1 -direction. Hence,

$$R^{-1}\left(\frac{L^T a}{\|L^T a\|}\right) = -e_1 \quad \Rightarrow \quad -\frac{L^T a}{\|L^T a\|} = R \cdot e_1$$

Hence,

$$\bar{c}' = R \cdot \hat{c}' = R \cdot \frac{1}{n+1} e_1 = -\frac{1}{n+1} \frac{L^T a}{\|L^T a\|}$$

$$c' = f(\bar{c}') = L \cdot \bar{c}' + c$$

$$= -\frac{1}{n+1} L \frac{L^T a}{\|L^T a\|} + c$$

$$= c - \frac{1}{n+1} \frac{Qa}{\sqrt{a^T Qa}}$$

Recall that

$$\hat{Q}' = \begin{pmatrix} a^2 & 0 & \dots & 0 \\ 0 & b^2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & b^2 \end{pmatrix}$$

This gives

$$\hat{Q}' = \frac{n^2}{n^2 - 1} \left(I - \frac{2}{n+1} e_1 e_1^T \right)$$

because for a = n/n+1 and $b = n/\sqrt{n^2-1}$

$$b^{2} - b^{2} \frac{2}{n+1} = \frac{n^{2}}{n^{2} - 1} - \frac{2n^{2}}{(n-1)(n+1)^{2}}$$
$$= \frac{n^{2}(n+1) - 2n^{2}}{(n-1)(n+1)^{2}} = \frac{n^{2}(n-1)}{(n-1)(n+1)^{2}} = a^{2}$$

For computing the matrix Q' of the new ellipsoid we assume in the following that \hat{E}', \bar{E}' and E' refer to the ellipsoids centered in the origin.

9 The Ellipsoid Algorithm

204

9 The Ellipsoid Algorithm

$$\begin{split} \bar{E}' &= R(\hat{E}') \\ &= \{ R(x) \mid x^T \hat{Q'}^{-1} x \le 1 \} \\ &= \{ y \mid (R^{-1}y)^T \hat{Q'}^{-1} R^{-1} y \le 1 \} \\ &= \{ y \mid y^T (R^T)^{-1} \hat{Q'}^{-1} R^{-1} y \le 1 \} \\ &= \{ y \mid y^T (\underbrace{R\hat{Q'} R^T}_{\hat{Q'}})^{-1} y \le 1 \} \end{split}$$

9 The Ellipsoid Algorithm

Hence,

$$\begin{split} \bar{Q}' &= R \hat{Q}' R^T \\ &= R \cdot \frac{n^2}{n^2 - 1} \Big(I - \frac{2}{n+1} e_1 e_1^T \Big) \cdot R^T \\ &= \frac{n^2}{n^2 - 1} \Big(R \cdot R^T - \frac{2}{n+1} (Re_1) (Re_1)^T \Big) \\ &= \frac{n^2}{n^2 - 1} \Big(I - \frac{2}{n+1} \frac{L^T a a^T L}{\|L^T a\|^2} \Big) \end{split}$$

EADS II © Harald Räcke 9 The Ellipsoid Algorithm

207

9 The Ellipsoid Algorithm

$$\begin{split} E' &= L(\bar{E}') \\ &= \{L(x) \mid x^T \bar{Q}'^{-1} x \le 1\} \\ &= \{y \mid (L^{-1}y)^T \bar{Q}'^{-1} L^{-1} y \le 1\} \\ &= \{y \mid y^T (L^T)^{-1} \bar{Q}'^{-1} L^{-1} y \le 1\} \\ &= \{y \mid y^T (\underline{L}\bar{Q}' L^T)^{-1} y \le 1\} \end{split}$$

EADS II © Harald Räcke

9 The Ellipsoid Algorithm

208

9 The Ellipsoid Algorithm

Hence,

$$\begin{aligned} Q' &= L\bar{Q}'L^T \\ &= L \cdot \frac{n^2}{n^2 - 1} \Big(I - \frac{2}{n+1} \frac{L^T a a^T L}{a^T Q a} \Big) \cdot L^T \\ &= \frac{n^2}{n^2 - 1} \Big(Q - \frac{2}{n+1} \frac{Q a a^T Q}{a^T Q a} \Big) \end{aligned}$$

Incomplete Algorithm

Algorithm 1 ellipsoid-algorithm

1: **input**: point $c \in \mathbb{R}^n$, convex set $K \subseteq \mathbb{R}^n$

2: **output:** point $x \in K$ or "K is empty"

3: *Q* ← ???

4: repeat

5: if $c \in K$ then return c

6: **else**

a: choose a violated hyperplane a

8: $c \leftarrow c - \frac{1}{n+1} \frac{Qa}{\sqrt{a^T Qa}}$

9: $Q \leftarrow \frac{n^2}{n^2 - 1} \left(Q - \frac{2}{n+1} \frac{Q a a^T Q}{a^T Q a} \right)$

10: **endif**

11: until ???

12: **return** "K is empty"

Repeat: Size of basic solutions

Lemma 52

Let $P = \{x \in \mathbb{R}^n \mid Ax \leq b\}$ be a bounded polyhedron. Let $\langle a_{\max} \rangle$ be the maximum encoding length of an entry in A, b. Then every entry x_j in a basic solution fulfills $|x_j| = \frac{D_j}{D}$ with $D_j, D \leq 2^{2n\langle a_{\max} \rangle + 2n\log_2 n}$.

In the following we use $\delta := 2^{2n\langle a_{\max}\rangle + 2n\log_2 n}$.

Note that here we have $P = \{x \mid Ax \leq b\}$. The previous lemmas we had about the size of feasible solutions were slightly different as they were for different polytopes.

9 The Ellipsoid Algorithm

211

213

How do we find the first ellipsoid?

For feasibility checking we can assume that the polytop P is bounded; it is sufficient to consider basic solutions.

Every entry x_i in a basic solution fulfills $|x_i| \le \delta$.

Hence, *P* is contained in the cube $-\delta \le x_i \le \delta$.

A vector in this cube has at most distance $R := \sqrt{n}\delta$ from the origin.

Starting with the ball $E_0 := B(0,R)$ ensures that P is completely contained in the initial ellipsoid. This ellipsoid has volume at most $R^n B(0,1) \le (n\delta)^n B(0,1)$.

Repeat: Size of basic solutions

Proof:

Let $\bar{A} = \begin{bmatrix} A & -A \\ -A & A \end{bmatrix}$, $\bar{b} = \begin{pmatrix} b \\ -b \end{pmatrix}$, be the matrix and right-hand vector after transforming the system to standard form.

The determinant of the matrices \bar{A}_B and \bar{M}_j (matrix obt. when replacing the j-th column of \bar{A}_B by \bar{b}) can become at most

$$\begin{split} \det(\bar{A}_B), \det(\bar{M}_j) &\leq \|\vec{\ell}_{\max}\|^{2n} \\ &\leq (\sqrt{2n} \cdot 2^{\langle a_{\max} \rangle})^{2n} \leq 2^{2n\langle a_{\max} \rangle + 2n\log_2 n} \ , \end{split}$$

where $\vec{\ell}_{\text{max}}$ is the longest column-vector that can be obtained after deleting all but 2n rows and columns from \bar{A} .

This holds because columns from I_m selected when going from \bar{A} to \bar{A}_B do not increase the determinant. Only the at most 2n columns from matrices A and -A that \bar{A} consists of contribute.

When can we terminate?

Let $P:=\{x\mid Ax\leq b\}$ with $A\in\mathbb{Z}$ and $b\in\mathbb{Z}$ be a bounded polytop. Let $\langle a_{\max}\rangle$ be the encoding length of the largest entry in A or b.

Consider the following polyhedron

$$P_{\lambda} := \left\{ x \mid Ax \leq b + \frac{1}{\lambda} \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} \right\} ,$$

where $\lambda = \delta^2 + 1$.

214

Lemma 53

 P_{λ} is feasible if and only if P is feasible.

⇔: obvious!

EADS II © Harald Räcke 9 The Ellipsoid Algorithm

215

Let
$$\bar{A} = \begin{bmatrix} A & -A \\ -A & A \end{bmatrix}$$
, and $\bar{b} = \begin{pmatrix} b \\ -b \end{pmatrix}$.

 \bar{P}_{λ} feasible implies that there is a basic feasible solution represented by

$$x_B = \bar{A}_B^{-1}\bar{b} + \frac{1}{\lambda}\bar{A}_B^{-1} \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$$

(The other x-values are zero)

The only reason that this basic feasible solution is not feasible for \bar{P} is that one of the basic variables becomes negative.

Hence, there exists i with

$$(\bar{A}_B^{-1}\bar{b})_i < 0 \le (\bar{A}_B^{-1}\bar{b})_i + \frac{1}{\lambda}(\bar{A}_B^{-1}\vec{1})_i$$

⇒:

Consider the polyhedrons

$$\bar{P} = \left\{ x \mid \begin{bmatrix} A & -A \\ -A & A \end{bmatrix} x = \begin{pmatrix} b \\ -b \end{pmatrix}; x \ge 0 \right\}$$

and

$$\bar{P}_{\lambda} = \left\{ x \mid \begin{bmatrix} A & -A \\ -A & A \end{bmatrix} x = \begin{pmatrix} b \\ -b \end{pmatrix} + \frac{1}{\lambda} \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}; x \ge 0 \right\}.$$

P is feasible if and only if \bar{P} is feasible, and P_{λ} feasible if and only if \bar{P}_{λ} feasible.

 \bar{P}_{λ} is bounded since P_{λ} and P are bounded.

By Cramers rule we get

$$(\bar{A}_B^{-1}\bar{b})_i < 0 \quad \Longrightarrow \quad (\bar{A}_B^{-1}\bar{b})_i \le -\frac{1}{\det(\bar{A}_B)}$$

and

$$(\bar{A}_B^{-1}\vec{1})_i \le \det(\bar{M}_j) ,$$

where \bar{M}_j is obtained by replacing the j-th column of \bar{A}_B by $\vec{1}$.

However, we showed that the determinants of \bar{A}_B and \bar{M}_j can become at most δ .

Since, we chose $\lambda = \delta^2 + 1$ this gives a contradiction.

Lemma 54

If P_{λ} is feasible then it contains a ball of radius $r:=1/\delta^3$. This has a volume of at least $r^n \text{vol}(B(0,1)) = \frac{1}{\delta^{3n}} \text{vol}(B(0,1))$.

Proof:

If P_{λ} feasible then also P. Let x be feasible for P. This means Ax < h.

Let $\vec{\ell}$ with $\|\vec{\ell}\| \leq r$. Then

$$(A(x + \vec{\ell}))_i = (Ax)_i + (A\vec{\ell})_i \le b_i + \vec{a}_i^T \vec{\ell}$$

$$\le b_i + ||\vec{a}_i|| \cdot ||\vec{\ell}|| \le b_i + \sqrt{n} \cdot 2^{\langle a_{\text{max}} \rangle} \cdot r$$

$$\le b_i + \frac{\sqrt{n} \cdot 2^{\langle a_{\text{max}} \rangle}}{\delta^3} \le b_i + \frac{1}{\delta^2 + 1} \le b_i + \frac{1}{\lambda}$$

Hence, $x + \vec{\ell}$ is feasible for P_{λ} which proves the lemma.

EADS II © Harald Räcke

9 The Ellipsoid Algorithm

219

Algorithm 1 ellipsoid-algorithm

- 1: **input:** point $c \in \mathbb{R}^n$, convex set $K \subseteq \mathbb{R}^n$, radii R and r
- 2: with $K \subseteq B(c,R)$, and $B(x,r) \subseteq K$ for some x
- 3: **output:** point $x \in K$ or "K is empty"
- 4: $Q \leftarrow \text{diag}(R^2, ..., R^2) // \text{i.e., } L = \text{diag}(R, ..., R)$
- 5: repeat
- 6: if $c \in K$ then return c
- 7: else
- 8: choose a violated hyperplane *a*
- 9: $c \leftarrow c \frac{1}{n+1} \frac{Qa}{\sqrt{a^T Qa}}$
- 10: $Q \leftarrow \frac{n^2}{n^2 1} \left(Q \frac{2}{n+1} \frac{Qaa^TQ}{a^TQa} \right)$
- 11: endif
- 12: **until** $det(Q) \le r^{2n}$ // i.e., $det(L) \le r^n$
- 13: return "K is empty"

How many iterations do we need until the volume becomes too small?

$$e^{-\frac{i}{2(n+1)}} \cdot \operatorname{vol}(B(0,R)) < \operatorname{vol}(B(0,r))$$

Hence,

$$i > 2(n+1)\ln\left(\frac{\operatorname{vol}(B(0,R))}{\operatorname{vol}(B(0,r))}\right)$$

$$= 2(n+1)\ln\left(n^n\delta^n \cdot \delta^{3n}\right)$$

$$= 8n(n+1)\ln(\delta) + 2(n+1)n\ln(n)$$

$$= \mathcal{O}(\operatorname{poly}(n,\langle a_{\max}\rangle))$$

9 The Ellipsoid Algorithm

220

Separation Oracle:

Let $K \subseteq \mathbb{R}^n$ be a convex set. A separation oracle for K is an algorithm A that gets as input a point $x \in \mathbb{R}^n$ and either

- ightharpoonup certifies that $x \in K$,
- or finds a hyperplane separating x from K.

We will usually assume that \boldsymbol{A} is a polynomial-time algorithm.

In order to find a point in K we need

- a guarantee that a ball of radius r is contained in K,
- \blacktriangleright an initial ball B(c,R) with radius R that contains K,
- ightharpoonup a separation oracle for K.

The Ellipsoid algorithm requires $\mathcal{O}(\operatorname{poly}(n) \cdot \log(R/r))$ iterations. Each iteration is polytime for a polynomial-time Separation oracle.

9 The Ellipsoid Algorithm

10 Karmarkars Algorithm

- ▶ inequalities $Ax \le b$; $m \times n$ matrix A with rows a_i^T
- ▶ $P = \{x \mid Ax \le b\}; P^{\circ} := \{x \mid Ax < b\}$
- interior point algorithm: $x \in P^{\circ}$ throughout the algorithm
- for $x \in P^{\circ}$ define

$$s_i(x) := b_i - a_i^T x$$

as the slack of the *i*-th constraint

logarithmic barrier function:

$$\phi(x) = -\sum_{i=1}^{m} \log(s_i(x))$$

Penalty for point x; points close to the boundary have a very large penalty.

Gradient and Hessian

Taylor approximation:

$$\phi(x+\epsilon) \approx \phi(x) + \nabla \phi(x)^T \epsilon + \frac{1}{2} \epsilon^T \nabla^2 \phi(x) \epsilon$$

Gradient:

$$\nabla \phi(x) = \sum_{i=1}^{m} \frac{1}{s_i(x)} \cdot a_i = A^T d_x$$

where $d_x^T = (1/s_1(x), ..., 1/s_m(x))$. (d_x vector of inverse slacks)

Hessian:

$$H_X := \nabla^2 \phi(x) = \sum_{i=1}^m \frac{1}{s_i(x)^2} a_i a_i^T = A^T D_X^2 A$$

with $D_X = \operatorname{diag}(d_X)$.

picture of barrier function

EADS II © Harald Räcke 10 Karmarkars Algorithm

224

$$\frac{\partial \phi(x)}{\partial x_i} = \frac{\partial}{\partial x_i} \left(-\sum_r w_r \ln(s_r(x)) \right)$$

$$= -\sum_r w_r \frac{\partial}{\partial x_i} \left(\ln(s_r(x)) \right)$$

$$= -\sum_r w_r \frac{1}{s_r(x)} \frac{\partial}{\partial x_i} \left(s_r(x) \right)$$

$$= -\sum_r w_r \frac{1}{s_r(x)} \frac{\partial}{\partial x_i} \left(b_r - a_r^T x \right)$$

$$= \sum_r w_r \frac{1}{s_r(x)} \frac{\partial}{\partial x_i} \left(a_r^T x \right)$$

$$= \sum_r w_r \frac{1}{s_r(x)} A_{ri}$$

The *i*-th entry of the gradient vector is $\sum_r w_r/s_r(x) \cdot A_{ri}$. This gives that the gradient is

$$\nabla \phi(x) = \sum_{r} w_r / s_r(x) a_r = A^T D_x W \vec{1}$$

$$\frac{\partial}{\partial x_j} \left(\sum_r \frac{w_r}{s_r(x)} A_{ri} \right) = \sum_r w_r A_{ri} \left(-\frac{1}{s_r(x)^2} \right) \cdot \frac{\partial}{\partial x_j} \left(s_r(x) \right)$$
$$= \sum_r w_r A_{ri} \frac{1}{s_r(x)^2} A_{rj}$$

Note that $\sum_r A_{ri} A_{rj} = (A^T A)_{ij}$. Adding the additional factors $w_r/s_r(x)^2$ can be done with a diagonal matrix.

Hence the Hessian is

$$H_X = A^T DW DA$$

Dilkin Ellipsoid

$$E_X = \{ y \mid (y - x)^T H_X (y - x) \le 1 \} = \{ y \mid ||y - x||_{H_X} \le 1 \}$$

Points in E_x are feasible!!!

$$(y-x)^T H_X(y-x) = (y-x)^T A^T D_X^2 A(y-x)$$

$$= \sum_{i=1}^m \frac{(a_i^T (y-x))^2}{s_i(x)^2}$$

$$= \sum_{i=1}^m \frac{(\text{change of distance to } i\text{-th constraint going from } x \text{ to } y)^2}{(\text{distance of } x \text{ to } i\text{-th constraint})^2}$$

$$\leq 1$$

In order to become infeasible when going from x to y one of the terms in the sum would need to be larger than 1.

 H_X is positive semi-definite for $X \in P^{\circ}$

$$u^{T}H_{X}u = u^{T}A^{T}D_{X}^{2}Au = ||D_{X}Au||_{2}^{2} \ge 0$$

This gives that $\phi(x)$ is convex.

If rank(A) = n, H_X is positive definite for $X \in P^{\circ}$

$$u^{T}H_{x}u = ||D_{x}Au||_{2}^{2} > 0 \text{ for } u \neq 0$$

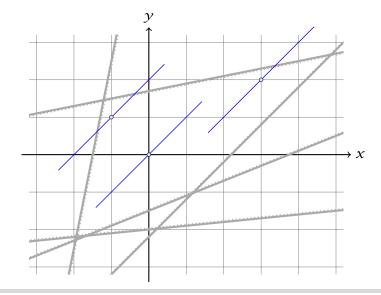
This gives that $\phi(x)$ is strictly convex.

 $\|u\|_{H_X}:=\sqrt{u^TH_Xu}$ is a (semi-)norm; the unit ball w.r.t. this norm is an ellipsoid.

EADS II © Harald Räcke 10 Karmarkars Algorithm

228

Dilkin Ellipsoids



EADS II

© Harald Räcke

10 Karmarkars Algorithm

230

Analytic Center

$$x_{ac} := \arg\min_{x \in P^{\circ}} \phi(x)$$

 \triangleright x_{ac} is solution to

$$\nabla \phi(x) = \sum_{i=1}^{m} \frac{1}{s_i(x)} a_i = 0$$

- depends on the description of the polytope
- $x_{\rm ac}$ exists and is unique iff P° is nonempty and bounded

EADS II © Harald Räcke 10 Karmarkars Algorithm

231

primal-dual pair:

$$\begin{cases}
\min c^T x \\
\text{s.t. } Ax \le b
\end{cases}$$

$$\max -b^{T}z$$
s.t. $A^{T}z + c = 0$
 $z \ge 0$

we assume primal and dual problems are strictly feasible; rank(A) = n.

Central Path

In the following we assume that the LP and its dual are strictly feasible and that rank(A) = n.

Central Path:

Set of points $\{x^*(t) \mid t > 0\}$ with

$$x^*(t) = \operatorname{argmin}_x \{tc^T x + \phi(x)\}\$$

- t = 0: analytic center
- ▶ $t = \infty$: optimum solution

 $x^*(t)$ exists and is unique for all $t \ge 0$.

EADS II © Harald Räcke

10 Karmarkars Algorithm

232

Point $x^*(t)$ on central path is solution to $tc + \nabla \phi(x) = 0$ (force field interpretation).

This means

$$tc + \sum_{i=1}^{m} \frac{1}{b_i - a_i^T x^*(t)} = 0$$

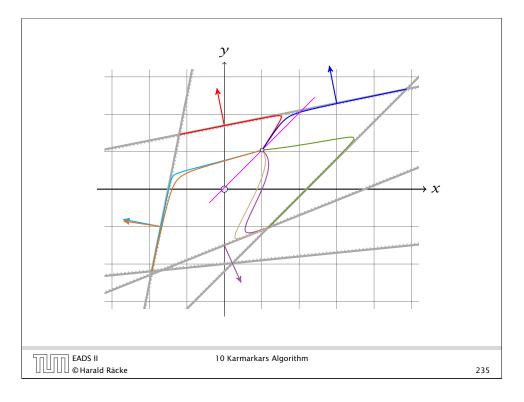
or

$$c + \sum_{i=1}^{m} z_i^*(t) a_i = 0$$
 with $z_i^*(t) = \frac{1}{t(b_i - a_i^T x^*(t))}$

- $z_i^*(t)$ is strictly dual feasible
- duality gap between $x := x^*(t)$ and $z := z^*(t)$ is

$$c^T x + b^T z = (b - Ax)^T z = \frac{m}{t}$$

• if this gap is less than $1/\Omega(2^L)$ we can snap to an optimum point



Centering Problem

minimize
$$f_t(x) = tc^T x + \phi(x)$$

minimizing this gives point $\chi^*(t)$ on central path

Path-following Methods

Algorithm 1 PathFollowing

- 1: start at analytic center
- 2: while solution not good enough do
- 3: make step to improve objective function
- 4: recenter to return to central path

Questions/Remarks

- how do we get to analytic center?
- when is solution "good enough"?
- (usually) improvement step tries to stay feasible, how?
- recentering step should
 - be fast
 - not undo (too much of) improvement

Newton Step at $x \in P^{\circ}$

$$\Delta x_{\mathsf{nt}} = -H^{-1} \nabla f_t(x)$$

$$= -H^{-1} (tc + \nabla \phi(x))$$

$$= -(A^T D_x^2 A)^{-1} (tc + A^T d_x)$$

Newton Iteration:

$$x := x + \Delta x_{\mathsf{nt}}$$

Measuring Progress of Newton Step

Newton decrement:

$$\lambda_t(x) = \|D_x A \Delta x_{\mathsf{nt}}\|$$
$$= \|\Delta x_{\mathsf{nt}}\|_{H_x}$$

Square of Newton decrement is linear estimate of reduction if we do a Newton step:

$$-\lambda_t(x)^2 = \nabla f_t(x)^T \Delta x_{\mathsf{nt}}$$

- $\lambda_t(x) = 0 \text{ iff } x = x^*(t)$
- $\rightarrow \lambda_t(x)$ is measure of proximity of x to $x^*(t)$

feasibility:

▶ $\lambda_t(x) = \|\Delta x_{\mathsf{nt}}\| < 1$; hence x_+ lies in the Dilkin ellipsoid around x.

Convergence of Newtons Method

Theorem 55

If $\lambda_t(x) < 1$ then

- $x_+ := x + \Delta x_{nt} \in P^\circ$ (new point feasible)
- $\lambda_t(x_+) \leq \lambda_t(x)^2$

This means we have quadratic convergence. Very fast.

bound on $\lambda_t(x^+)$:

we use $D := D_X = \operatorname{diag}(d_X)$ and $D_+ := D_{X^+} = \operatorname{diag}(d_{X^+})$

$$\lambda_{t}(x^{+})^{2} = \|D_{+}A\Delta x_{\mathsf{nt}}^{+}\|^{2}$$

$$\leq \|D_{+}A\Delta x_{\mathsf{nt}}^{+}\|^{2} + \|D_{+}A\Delta x_{\mathsf{nt}}^{+} + (I - D_{+}^{-1}D)DA\Delta x_{\mathsf{nt}}\|^{2}$$

$$= \|(I - D_{+}^{-1}D)DA\Delta x_{\mathsf{nt}}\|^{2}$$

To see the last equality

$$|a^2| + ||a + b||^2 = a^T a + (a^T + b^T)(a + b)$$

= $(a^T + b^T)a + a^T(a + b) + b^T b = ||b||^2$

if
$$a^T(a+b)=0$$
.

$$DA\Delta x_{nt} = DA(x^{+} - x)$$

$$= D(b - Ax - (b - Ax^{+}))$$

$$= D(D^{-1}\vec{1} + D^{-1}\vec{1})$$

$$= (I - D_{-}^{-1}D)\vec{1}$$

$$\begin{split} a^{T}(a+b) &= \Delta x_{\mathsf{nt}}^{+T} A^{T} D_{+} \left(D_{+} A \Delta x_{\mathsf{nt}}^{+} + (I - D_{+}^{-1} D) D A \Delta x_{\mathsf{nt}} \right) \\ &= \Delta x_{\mathsf{nt}}^{+T} \left(A^{T} D_{+}^{2} A \Delta x_{\mathsf{nt}}^{+} - A^{T} D^{2} A \Delta x_{\mathsf{nt}} + A^{T} D_{+} D A \Delta x_{\mathsf{nt}} \right) \\ &= \Delta x_{\mathsf{nt}}^{+T} \left(H_{+} \Delta x_{\mathsf{nt}}^{+} - H \Delta x_{\mathsf{nt}} + A^{T} D_{+} \vec{1} - A^{T} D \vec{1} \right) \\ &= \Delta x_{\mathsf{nt}}^{+T} \left(- \nabla f_{t}(x^{+}) + \nabla f_{t}(x) + A^{T} D_{+} \vec{1} - A^{T} D \vec{1} \right) \\ &= 0 \end{split}$$

bound on $\lambda_t(x^+)$:

we use $D := D_X = \operatorname{diag}(d_X)$ and $D_+ := D_{X^+} = \operatorname{diag}(d_{X^+})$

$$\lambda_{t}(x^{+})^{2} = \|D_{+}A\Delta x_{\mathsf{nt}}^{+}\|^{2}$$

$$\leq \|D_{+}A\Delta x_{\mathsf{nt}}^{+}\|^{2} + \|D_{+}A\Delta x_{\mathsf{nt}}^{+} + (I - D_{+}^{-1}D)DA\Delta x_{\mathsf{nt}}\|^{2}$$

$$= \|(I - D_{+}^{-1}D)DA\Delta x_{\mathsf{nt}}\|^{2}$$

$$= \|(I - D_{+}^{-1}D)^{2}\vec{1}\|^{2}$$

$$\leq \|(I - D_{+}^{-1}D)\vec{1}\|^{4}$$

$$= \|DA\Delta x_{\mathsf{nt}}\|^{4}$$

$$= \lambda_{t}(x)^{4}$$

The second inequality follows from $\sum_i y_i^4 \le (\sum_i y_i^2)^2$

$$DA\Delta x_{nt} = DA(x^{+} - x)$$

$$= D(b - Ax - (b - Ax^{+}))$$

$$= D(D^{-1}\vec{1} + D^{-1}\vec{1})$$

$$= (I - D_{+}^{-1}D)\vec{1}$$

$$a^{T}(a+b)$$

$$= \Delta x_{\mathsf{nt}}^{+T} A^{T} D_{+} \sqrt{W} \left(\sqrt{W} D_{+} A \Delta x_{\mathsf{nt}}^{+} + (I - D_{+}^{-1} D) \sqrt{W} D A \Delta x_{\mathsf{nt}} \right)$$

$$= \Delta x_{\mathsf{nt}}^{+T} \left(A^{T} D_{+} W D_{+} A \Delta x_{\mathsf{nt}}^{+} - A^{T} D W D A \Delta x_{\mathsf{nt}} + A^{T} D_{+} W D A \Delta x_{\mathsf{nt}} \right)$$

$$= \Delta x_{\mathsf{nt}}^{+T} \left(H_{+} \Delta x_{\mathsf{nt}}^{+} - H \Delta x_{\mathsf{nt}} + A^{T} D_{+} W \vec{1} - A^{T} D W \vec{1} \right)$$

$$= \Delta x_{\mathsf{nt}}^{+T} \left(- \nabla f_{t}(x^{+}) + \nabla f_{t}(x) + A^{T} D_{+} W \vec{1} - A^{T} D W \vec{1} \right)$$

$$= 0$$

Short step barrier method

simplifying assumptions:

- a first central point $x^*(t_0)$ is given
- $x^*(t)$ is computed exactly in each iteration

 ϵ is approximation we are aiming for

start at $t=t_0$, repeat until $m/t \leq \epsilon$

- compute $x^*(\mu t)$ using Newton starting from $x^*(t)$
- $ightharpoonup t := \mu t$

where
$$\mu = 1 + 1/(2\sqrt{m})$$

gradient of f_{t+} at $(x = x^*(t))$

$$\nabla f_{t+}(x) = \nabla f_t(x) + (\mu - 1)tc$$
$$= -(\mu - 1)A^T D_x \vec{1}$$

This holds because $0 = \nabla f_t(x) = tc + A^T D_x \vec{1}$.

The Newton decrement is

$$\begin{split} \lambda_{t^{+}}(x)^{2} &= (\nabla f_{t^{+}}(x))^{T} H^{-1} \nabla f_{t^{+}}(x) \\ &= (\mu - 1)^{2} \vec{1}^{T} B (B^{T} B)^{-1} B^{T} \vec{1} \qquad B = D_{x} A \\ &\leq (\mu - 1)^{2} m \\ &= 1/4 \end{split}$$

This means we are in the range of quadratic convergence!!!

How to start...

a damped Newton iteration goes in the direction of Δx_{nt} but only so far as to not leave the polytope:

Lemma 56 (without proof)

A damped Newton iteration starting at x_0 reaches a point with $\lambda_t(x) \leq \delta$ after

$$\frac{f_t(x_0) - \min_{\mathcal{Y}} f_t(\mathcal{Y})}{0.09} + \mathcal{O}(\log\log(1/\delta))$$

iterations.

This will allow us to quickly reach a point on the central path $(t \approx 2^L)$ when starting very close to it (e.g. at the analytic center).

Number of Iterations

the number of Newton iterations per outer iteration is very small; in practise only 1 or 2

Number of outer iterations:

We need $t_k = \mu^k t_0 \ge m/\epsilon$. This holds when

$$k \ge \frac{\log(m/(\epsilon t_0))}{\log(\mu)}$$

We get a bound of

$$\mathcal{O}\Big(\sqrt{m}\log\frac{m}{\epsilon t_0}\Big)$$

We show how to get a starting point with $t_0 = 1/2^L$. Together with $\epsilon \approx 2^L$ we get $\mathcal{O}(L\sqrt{m})$ iterations.

¬ □ EADS II

10 Karmarkars Algorithm

248

How to get close to analytic center?

Let $P = \{Ax \le b\}$ be our (feasible) polyhedron, and x_0 a feasible point.

We change $b \to b + \frac{1}{\lambda} \cdot \vec{1}$, where L = L(A, b) (encoding length) and $\lambda = 2^{2L}$. Recall that a basis is feasible in the old LP iff it is feasible in the new LP.

After, re-normalizing A and b (for integrality) we have that the point x_0 is at distance at least 1 from every constraint.

The determinant of the matrix A_B for a basis B went up by a factor of 2^{2nL} .

Start at x_0 .

Choose $c' := -\nabla \phi(x)$.

 $x_0 = x^*(1)$ is point on central path for c' and t = 1.

You can travel the central path in both directions. Go towards 0 until $t \approx 1/2^{nL}$. This requires $\sqrt{m}nL$ outer iterations.

Let $x_{c'}$ denote this point.

Let x_c denote the point that minimizes

$$t \cdot c^T x + \phi(x)$$

(i.e., same value for t but different c, hence, different central path).

10 Karmarkars Algorithm

251

$$t \cdot c^{T} x_{\hat{c}} + \phi(x_{\hat{c}}) \leq t \cdot c^{T} x_{\hat{c}} + \phi(x_{\hat{c}}) + t \cdot \hat{c}^{T} x_{\hat{c}}$$

$$\leq t \cdot c^{T} x_{\hat{c}} + \phi(x_{c}) + t \cdot \hat{c}^{T} x_{c}$$

$$\leq t \cdot c^{T} x_{c} + \phi(x_{c}) + t \cdot \left(c^{T} x_{\hat{c}} + \hat{c}^{T} x_{c}\right)$$

$$\leq t \cdot c^{T} x_{c} + \phi(x_{c}) + 2t2^{\langle c_{\text{max}} \rangle} 2^{nL}$$

Choosing $t=1/2^{\Omega(nL)}$) gives that the last term becomes very small. Hence, using damped Newton we can move to a point on the new central path (for c) quickly.

In total for this analysis we require $\mathcal{O}(\sqrt{m}nL)$ outer iterations for the whole algorithm.

One interation can be implemented in $\tilde{\mathcal{O}}(m^3)$ time.

500	EADS II © Harald Räcke
	© Harald Räcke

10 Karmarkars Algorithm

252

1			