Technique 1: Round the LP solution.

We first solve the LP-relaxation and then we round the fractional values so that we obtain an integral solution.

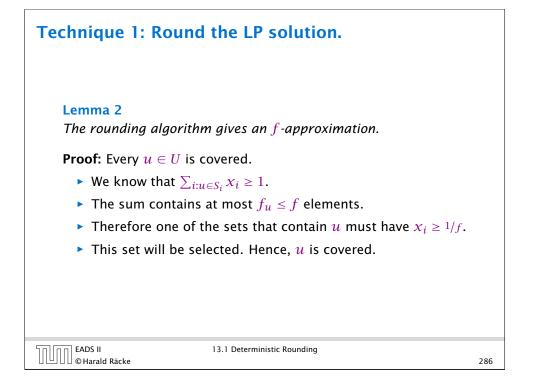
Set Cover relaxation:

min		$\sum_{i=1}^k w_i x_i$		
s.t.	$\forall u \in U$	$\sum_{i:u\in S_i} x_i$	\geq	1
	$\forall i \in \{1, \dots, k\}$	x_i	\in	[0, 1]

Let f_u be the number of sets that the element u is contained in (the frequency of u). Let $f = \max_u \{f_u\}$ be the maximum frequency.

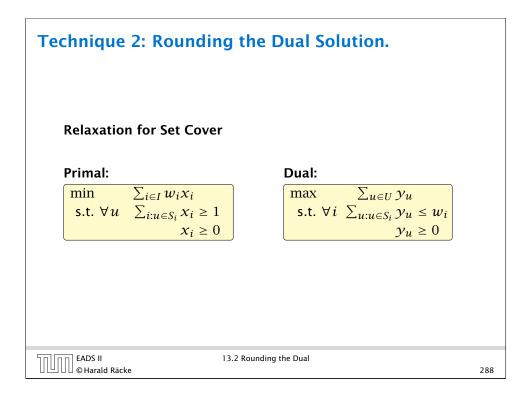
ነጠ	ПП	EADS II © Harald Räcke
		© Harald Räcke

284



EXAMPLANT The remaining the second second

Technique 1: Round the LP solution.	
The cost of the rounded solution is at most $f \cdot \text{OPT}$. $\sum_{i \in I} w_i \leq \sum_{i=1}^k w_i (f \cdot x_i)$ $= f \cdot \text{cost}(x)$ $\leq f \cdot \text{OPT} .$	
EADS II 13.1 Deterministic Rounding © Harald Räcke	287



Technique 2: Rounding the Dual Solution.

Lemma 3

The resulting index set is an f-approximation.

Proof:

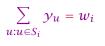
Every $u \in U$ is covered.

- Suppose there is a *u* that is not covered.
- This means $\sum_{u:u\in S_i} y_u < w_i$ for all sets S_i that contain u.
- But then y_u could be increased in the dual solution without violating any constraint. This is a contradiction to the fact that the dual solution is optimal.

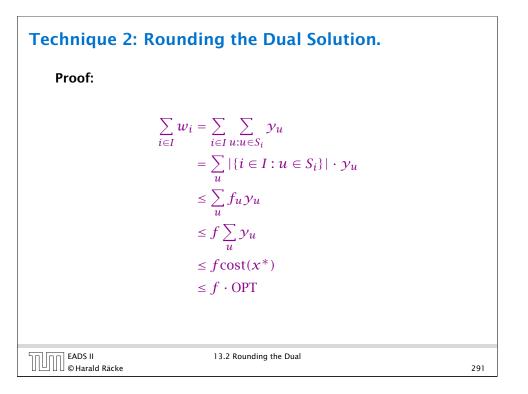
Technique 2: Rounding the Dual Solution.

Rounding Algorithm:

Let I denote the index set of sets for which the dual constraint is tight. This means for all $i \in I$



EADS II	13.2 Rounding the Dual	
UUU©Harald Räcke		289



290

Let I denote the solution obtained by the first rounding algorithm and I' be the solution returned by the second algorithm. Then

 $I \subseteq I'$.

This means I' is never better than I.

- Suppose that we take S_i in the first algorithm. I.e., $i \in I$.
- This means $x_i \ge \frac{1}{f}$.

EADS II

∐||||| © Harald Räcke

- Because of Complementary Slackness Conditions the corresponding constraint in the dual must be tight.
- Hence, the second algorithm will also choose S_i .

	13.2 Rounding the Dual	
🛛 🕒 🗋 🕼 🛛 🖓 Harald Räcke		292

Techni	ique 3: The Primal Dual Method
A	Igorithm 1 PrimalDual
	$1: y \leftarrow 0$ $2: I \leftarrow \emptyset$
	 a: while exists u ∉ ∪_{i∈I} S_i do a: increase dual variable y_u until constraint for some new set S_ℓ becomes tight
!	5: $I \leftarrow I \cup \{\ell\}$

13.3 Primal Dual Technique

Technique 3: The Primal Dual Method

The previous two rounding algorithms have the disadvantage that it is necessary to solve the LP. The following method also gives an f-approximation without solving the LP.

For estimating the cost of the solution we only required two properties.

1. The solution is dual feasible and, hence,

 $\sum_{u} y_{u} \le \operatorname{cost}(x^{*}) \le \operatorname{OPT}$

where x^* is an optimum solution to the primal LP.

2. The set *I* contains only sets for which the dual inequality is tight.

Of course, we also need that *I* is a cover.

50) (nn	EADS II © Harald Räcke
	© Harald Räcke

13.3 Primal Dual Technique

1.1

Fech	nique 4: The Greedy Algorithm
	Algorithm 1 Greedy
	$1: I \leftarrow \emptyset$
	2: $\hat{S}_j \leftarrow S_j$ for all j 3: while I not a set cover do
	3: while I not a set cover do
	4: $\ell \leftarrow \arg \min_{j:\hat{S}_j \neq 0} \frac{w_j}{ \hat{S}_j }$ 5: $I \leftarrow I \cup \{\ell\}$ 6: $\hat{S}_j \leftarrow \hat{S}_j - S_\ell$ for all j
	5: $I \leftarrow I \cup \{\ell\}$
	6: $\hat{S}_j \leftarrow \hat{S}_j - S_\ell$ for all j

In every round the Greedy algorithm takes the set that covers remaining elements in the most cost-effective way.

We choose a set such that the ratio between cost and still uncovered elements in the set is minimized.

294

293

Technique 4: The Greedy Algorithm

Lemma 4

Ш

Given positive numbers a_1, \ldots, a_k and b_1, \ldots, b_k , and $S \subseteq \{1, \ldots, k\}$ then

	$\min_{i} \frac{a_i}{b_i} \leq$	$\frac{\sum_{i \in S} a_i}{\sum_{i \in S} b_i} \le \max_i$	$\frac{a_i}{b_i}$	
EADS II © Harald Räcke		13.4 Greedy		

296

Technique 4: The Greedy Algorithm

 Adding this set to our solution means
$$n_{\ell+1} = n_{\ell} - |\hat{S}_j|$$
.

 $w_j \leq \frac{|\hat{S}_j| \text{OPT}}{n_{\ell}} = \frac{n_{\ell} - n_{\ell+1}}{n_{\ell}} \cdot \text{OPT}$

 EADS II

 13.4 Greedy

 OPT

Technique 4: The Greedy Algorithm

Let n_{ℓ} denote the number of elements that remain at the beginning of iteration ℓ . $n_1 = n = |U|$ and $n_{s+1} = 0$ if we need s iterations.

In the ℓ -th iteration

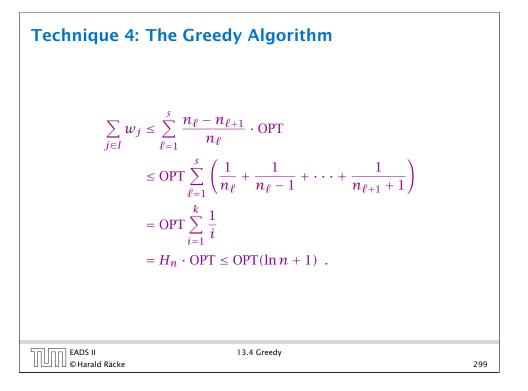
$$\min_{j} \frac{w_{j}}{|\hat{S}_{j}|} \le \frac{\sum_{j \in \text{OPT}} w_{j}}{\sum_{j \in \text{OPT}} |\hat{S}_{j}|} = \frac{\text{OPT}}{\sum_{j \in \text{OPT}} |\hat{S}_{j}|} \le \frac{\text{OPT}}{n_{\ell}}$$

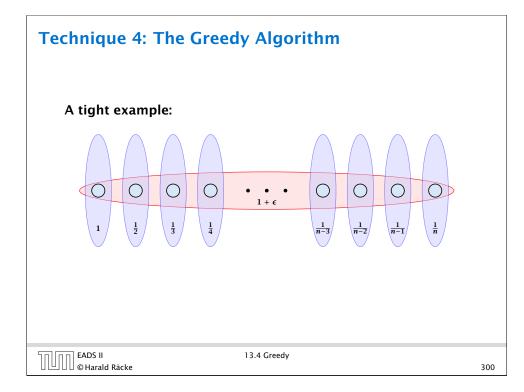
since an optimal algorithm can cover the remaining n_ℓ elements with cost OPT.

297

Let \hat{S}_j be a subset that minimizes this ratio. Hence, $w_j/|\hat{S}_j| \leq \frac{\text{OPT}}{n_\ell}$.

EADS II © Harald Räcke	13.4 Greedy
🛛 💾 🛛 🖉 🕼 🖉 Harald Räcke	





Technique 5: Randomized Rounding

One round of randomized rounding: Pick set S_j uniformly at random with probability $1 - x_j$ (for all *j*).

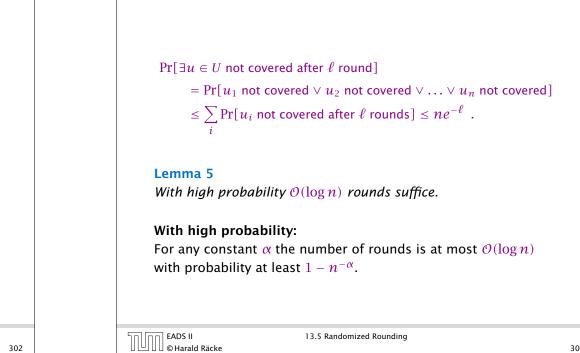
Version A: Repeat rounds until you have a cover.

Version B: Repeat for *s* rounds. If you have a cover STOP. Otherwise, repeat the whole algorithm.

EADS II © Harald Räcke

13.5 Randomized Rounding

301



Probability that $u \in U$ is not covered (in one round):

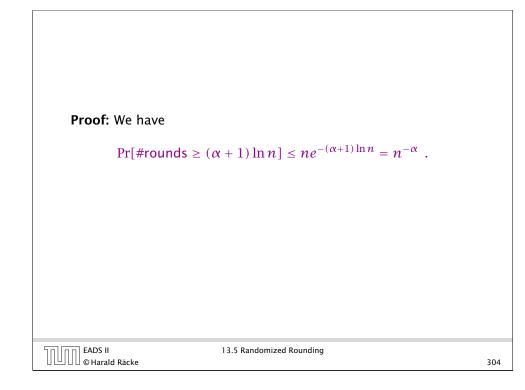
Pr[*u* not covered in one round]

$$= \prod_{j:u\in S_j} (1-x_j) \le \prod_{j:u\in S_j} e^{-x_j}$$
$$= e^{-\sum_{j:u\in S_j} x_j} \le e^{-1} .$$

Probability that $u \in U$ is not covered (after ℓ rounds):

$$\Pr[u \text{ not covered after } \ell \text{ round}] \leq \frac{1}{a\ell}$$

EADS II ||||||| © Harald Räcke



Expected Cost

Version B.

Repeat for $s = (\alpha + 1) \ln n$ rounds. If you don't have a cover simply repeat the whole process.

 $E[\text{cost}] = \Pr[\text{success}] \cdot E[\text{cost} \mid \text{success}]$

+ Pr[no success] · E[cost | no success]

This means

$$E[\operatorname{cost} | \operatorname{success}] = \frac{1}{\Pr[\operatorname{succ.}]} \left(E[\operatorname{cost}] - \Pr[\operatorname{no \ success}] \cdot E[\operatorname{cost} | \operatorname{no \ success}] \right)$$

$$\leq \frac{1}{\Pr[\operatorname{succ.}]} E[\operatorname{cost}] \leq \frac{1}{1 - n^{-\alpha}} (\alpha + 1) \ln n \cdot \operatorname{cost}(\operatorname{LP})$$

$$\leq 2(\alpha + 1) \ln n \cdot \operatorname{OPT}$$

for $n \geq 2$ and $\alpha \geq 1$.

EADS II ©Harald Räcke 13.5 Randomized Rounding

306

Expected Cost

Version A.

Repeat for $s = (\alpha + 1) \ln n$ rounds. If you don't have a cover simply take for each element u the cheapest set that contains u.

 $E[\cos t] \le (\alpha+1) \ln n \cdot \cot(LP) + (n \cdot OPT) n^{-\alpha} = \mathcal{O}(\ln n) \cdot OPT$

EADS II © Harald Räcke

13.5 Randomized Rounding

305

Randomized rounding gives an $\mathcal{O}(\log n)$ approximation. The running time is polynomial with high probability.

Theorem 6 (without proof)

There is no approximation algorithm for set cover with approximation guarantee better than $\frac{1}{2}\log n$ unless NP has quasi-polynomial time algorithms (algorithms with running time $2^{\text{poly}(\log n)}$).

EADS II © Harald Räcke 13.5 Randomized Rounding

Integrality Gap

The integrality gap of the SetCover LP is $\Omega(\log n)$.

- ▶ $n = 2^k 1$
- Elements are all vectors \vec{x} over GF[2] of length k (excluding zero vector).
- Every vector \vec{y} defines a set as follows

 $S_{\vec{y}} := \{ \vec{x} \mid \vec{x}^T \vec{y} = 1 \}$

- each set contains 2^{k-1} vectors; each vector is contained in 2^{k-1} sets
- $x_i = \frac{1}{2^{k-1}} = \frac{2}{n+1}$ is fractional solution.

EADS II	13.5 Randomized Rounding	
🛛 💾 🛛 🖉 © Harald Räcke		308

Integrality Gap	
Every collection of $p < k$ sets does not cover all elements.	
Hence, we get a gap of $\Omega(\log n)$.	
EADS II 13.5 Randomized Rounding	309

Techniques:

- Deterministic Rounding
- Rounding of the Dual
- Primal Dual
- Greedy

EADS II © Harald Räcke

- Randomized Rounding
- Local Search
- Rounding Data + Dynamic Programming

13.5 Randomized Rounding

310