Technique 1: Round the LP solution.

We first solve the LP-relaxation and then we round the fractional values so that we obtain an integral solution.

Set Cover relaxation:

$$
\begin{array}{|crrl}
\hline \min & & \sum_{i=1}^{k} w_{i} x_{i} & \\
\mathrm{s.t.} & \forall u \in U & \sum_{i: u \in S_{i}} x_{i} \geq 1 \\
& \forall i \in\{1, \ldots, k\} & x_{i} \in[0,1] \\
\hline
\end{array}
$$

Let f_{u} be the number of sets that the element u is contained in (the frequency of u). Let $f=\max _{u}\left\{f_{u}\right\}$ be the maximum frequency.

Technique 1: Round the LP solution.

Rounding Algorithm:

Set all x_{i}-values with $x_{i} \geq \frac{1}{f}$ to 1 . Set all other x_{i}-values to 0 .

Technique 1: Round the LP solution.

Lemma 2

The rounding algorithm gives an f-approximation.
Proof: Every $u \in U$ is covered.

- We know that $\sum_{i: u \in S_{i}} x_{i} \geq 1$.
- The sum contains at most $f_{u} \leq f$ elements.
- Therefore one of the sets that contain u must have $x_{i} \geq 1 / f$.
- This set will be selected. Hence, u is covered.

Technique 1: Round the LP solution.

The cost of the rounded solution is at most f. OPT.

$$
\begin{aligned}
\sum_{i \in I} w_{i} & \leq \sum_{i=1}^{k} w_{i}\left(f \cdot x_{i}\right) \\
& =f \cdot \operatorname{cost}(x) \\
& \leq f \cdot \text { OPT }
\end{aligned}
$$

Technique 2: Rounding the Dual Solution.

Relaxation for Set Cover

Primal:

\min	$\sum_{i \in I} w_{i} x_{i}$
s.t. $\forall u$	$\sum_{i: u \in S_{i}} x_{i} \geq 1$
	$x_{i} \geq 0$

Dual:

\max	$\sum_{u \in U} y_{u}$	
s.t. $\forall i$	$\sum_{u: u \in S_{i}} y_{u}$	$\leq w_{i}$
y_{u}	≥ 0	

Technique 2: Rounding the Dual Solution.

Rounding Algorithm:

Let I denote the index set of sets for which the dual constraint is tight. This means for all $i \in I$

$$
\sum_{u: u \in S_{i}} y_{u}=w_{i}
$$

Technique 2: Rounding the Dual Solution.

Lemma 3

The resulting index set is an f-approximation.

Proof:
Every $u \in U$ is covered.

- Suppose there is a u that is not covered.
- This means $\sum_{u: u \in S_{i}} y_{u}<w_{i}$ for all sets S_{i} that contain u.
- But then y_{u} could be increased in the dual solution without violating any constraint. This is a contradiction to the fact that the dual solution is optimal.

Technique 2: Rounding the Dual Solution.

Proof:

$$
\begin{aligned}
\sum_{i \in I} w_{i} & =\sum_{i \in I} \sum_{u: u \in S_{i}} y_{u} \\
& =\sum_{u}\left|\left\{i \in I: u \in S_{i}\right\}\right| \cdot y_{u} \\
& \leq \sum_{u} f_{u} y_{u} \\
& \leq f \sum_{u} y_{u} \\
& \leq f \operatorname{cost}\left(x^{*}\right) \\
& \leq f \cdot \operatorname{OPT}
\end{aligned}
$$

Let I denote the solution obtained by the first rounding algorithm and I^{\prime} be the solution returned by the second algorithm. Then

$$
I \subseteq I^{\prime}
$$

This means I^{\prime} is never better than I.

- Suppose that we take S_{i} in the first algorithm. I.e., $i \in I$.
- This means $x_{i} \geq \frac{1}{f}$.
- Because of Complementary Slackness Conditions the corresponding constraint in the dual must be tight.
- Hence, the second algorithm will also choose S_{i}.

Technique 3: The Primal Dual Method

The previous two rounding algorithms have the disadvantage that it is necessary to solve the LP. The following method also gives an f-approximation without solving the LP.

For estimating the cost of the solution we only required two properties.

1. The solution is dual feasible and, hence,

$$
\sum_{u} y_{u} \leq \operatorname{cost}\left(x^{*}\right) \leq \mathrm{OPT}
$$

where x^{*} is an optimum solution to the primal LP.
2. The set I contains only sets for which the dual inequality is tight.

Of course, we also need that I is a cover.

Technique 3: The Primal Dual Method

```
Algorithm 1 PrimalDual
    1: \(y \leftarrow 0\)
    2: \(I \leftarrow \emptyset\)
    3: while exists \(u \notin \bigcup_{i \in I} S_{i}\) do
    4: increase dual variable \(y_{u}\) until constraint for some
    new set \(S_{\ell}\) becomes tight
5: \(\quad I \leftarrow I \cup\{\ell\}\)
```


Technique 4: The Greedy Algorithm

$$
\begin{aligned}
& \text { Algorithm } 1 \text { Greedy } \\
& \hline \text { 1: } I \leftarrow \emptyset \\
& \text { 2: } \hat{S}_{j} \leftarrow S_{j} \quad \text { for all } j \\
& \text { 3: while } I \text { not a set cover do } \\
& \text { 4: } \quad \ell \leftarrow \arg \min _{j: \hat{S}_{j} \neq 0} \frac{w_{j}}{\left|\hat{S}_{j}\right|} \\
& \text { 5: } \quad I \leftarrow I \cup\{\ell\} \\
& \text { 6: } \quad \hat{S}_{j} \leftarrow \hat{S}_{j}-S_{\ell} \quad \text { for all } j \\
& \hline
\end{aligned}
$$

In every round the Greedy algorithm takes the set that covers remaining elements in the most cost-effective way.

We choose a set such that the ratio between cost and still uncovered elements in the set is minimized.

Technique 4: The Greedy Algorithm

Lemma 4

Given positive numbers a_{1}, \ldots, a_{k} and b_{1}, \ldots, b_{k}, and $S \subseteq\{1, \ldots, k\}$ then

$$
\min _{i} \frac{a_{i}}{b_{i}} \leq \frac{\sum_{i \in S} a_{i}}{\sum_{i \in S} b_{i}} \leq \max _{i} \frac{a_{i}}{b_{i}}
$$

Technique 4: The Greedy Algorithm

Let n_{ℓ} denote the number of elements that remain at the beginning of iteration $\ell . n_{1}=n=|U|$ and $n_{s+1}=0$ if we need s iterations.

In the ℓ-th iteration

$$
\min _{j} \frac{w_{j}}{\left|\hat{S}_{j}\right|} \leq \frac{\sum_{j \in \mathrm{OPT}} w_{j}}{\sum_{j \in \mathrm{OPT}}\left|\hat{S}_{j}\right|}=\frac{\mathrm{OPT}}{\sum_{j \in \mathrm{OPT}}\left|\hat{S}_{j}\right|} \leq \frac{\mathrm{OPT}}{n_{\ell}}
$$

since an optimal algorithm can cover the remaining n_{ℓ} elements with cost OPT.

Let \hat{S}_{j} be a subset that minimizes this ratio. Hence, $w_{j}| | \hat{S}_{j} \left\lvert\, \leq \frac{\mathrm{OPT}}{n_{\ell}}\right.$.

Technique 4: The Greedy Algorithm

Adding this set to our solution means $n_{\ell+1}=n_{\ell}-\left|\hat{S}_{j}\right|$.

$$
w_{j} \leq \frac{\left|\hat{S}_{j}\right| \mathrm{OPT}}{n_{\ell}}=\frac{n_{\ell}-n_{\ell+1}}{n_{\ell}} \cdot \mathrm{OPT}
$$

Technique 4: The Greedy Algorithm

$$
\begin{aligned}
\sum_{j \in I} w_{j} & \leq \sum_{\ell=1}^{s} \frac{n_{\ell}-n_{\ell+1}}{n_{\ell}} \cdot \mathrm{OPT} \\
& \leq \mathrm{OPT} \sum_{\ell=1}^{s}\left(\frac{1}{n_{\ell}}+\frac{1}{n_{\ell}-1}+\cdots+\frac{1}{n_{\ell+1}+1}\right) \\
& =\mathrm{OPT} \sum_{i=1}^{k} \frac{1}{i} \\
& =H_{n} \cdot \mathrm{OPT} \leq \mathrm{OPT}(\ln n+1)
\end{aligned}
$$

Technique 4: The Greedy Algorithm

A tight example:

Technique 5: Randomized Rounding

One round of randomized rounding:
Pick set S_{j} uniformly at random with probability $1-x_{j}$ (for all j).
Version A: Repeat rounds until you have a cover.

Version B: Repeat for s rounds. If you have a cover STOP. Otherwise, repeat the whole algorithm.

Probability that $u \in U$ is not covered (in one round):

$$
\begin{aligned}
& \operatorname{Pr}[u \text { not covered in one round }] \\
& =\prod_{j: u \in S_{j}}\left(1-x_{j}\right) \leq \prod_{j: u \in S_{j}} e^{-x_{j}} \\
& =e^{-\sum_{j: u \in S_{j}} x_{j}} \leq e^{-1} .
\end{aligned}
$$

Probability that $\boldsymbol{u} \in \boldsymbol{U}$ is not covered (after $\boldsymbol{\ell}$ rounds):

$$
\operatorname{Pr}[u \text { not covered after } \ell \text { round }] \leq \frac{1}{e^{\ell}} .
$$

$$
\begin{aligned}
& \operatorname{Pr}[\exists u \in U \text { not covered after } \ell \text { round }] \\
& \quad=\operatorname{Pr}\left[u_{1} \text { not covered } \vee u_{2} \text { not covered } \vee \ldots \vee u_{n} \text { not covered }\right] \\
& \quad \leq \sum_{i} \operatorname{Pr}\left[u_{i} \text { not covered after } \ell \text { rounds }\right] \leq n e^{-\ell} .
\end{aligned}
$$

Lemma 5
With high probability $\mathcal{O}(\log n)$ rounds suffice.

With high probability:
For any constant α the number of rounds is at most $\mathcal{O}(\log n)$ with probability at least $1-n^{-\alpha}$.

Proof: We have

$$
\operatorname{Pr}[\# \text { rounds } \geq(\alpha+1) \ln n] \leq n e^{-(\alpha+1) \ln n}=n^{-\alpha}
$$

Expected Cost

- Version A. Repeat for $s=(\alpha+1) \ln n$ rounds. If you don't have a cover simply take for each element u the cheapest set that contains u.

$$
E[\text { cost }] \leq(\alpha+1) \ln n \cdot \operatorname{cost}(L P)+(n \cdot \mathrm{OPT}) n^{-\alpha}=\mathcal{O}(\ln n) \cdot \mathrm{OPT}
$$

Expected Cost

- Version B.

Repeat for $s=(\alpha+1) \ln n$ rounds. If you don't have a cover simply repeat the whole process.

$$
\begin{aligned}
& E[\text { cost }]=\operatorname{Pr}[\text { success }] \cdot E[\text { cost } \mid \text { success }] \\
&+\operatorname{Pr}[\text { no success }] \cdot E[\text { cost } \mid \text { no success }]
\end{aligned}
$$

This means

$$
\begin{aligned}
& E[\text { cost | success }] \\
& \quad=\frac{1}{\operatorname{Pr}[\text { succ. }]}(E[\text { cost }]-\operatorname{Pr}[\text { no success }] \cdot E[\text { cost } \mid \text { no success }]) \\
& \\
& \quad \leq \frac{1}{\operatorname{Pr}[\text { succ. }]} E[\operatorname{cost}] \leq \frac{1}{1-n^{-\alpha}}(\alpha+1) \ln n \cdot \operatorname{cost}(\mathrm{LP}) \\
& \quad \leq 2(\alpha+1) \ln n \cdot \mathrm{OPT}
\end{aligned}
$$

for $n \geq 2$ and $\alpha \geq 1$.

Randomized rounding gives an $\mathcal{O}(\log n)$ approximation. The running time is polynomial with high probability.

Theorem 6 (without proof)

There is no approximation algorithm for set cover with approximation guarantee better than $\frac{1}{2} \log n$ unless NP has quasi-polynomial time algorithms (algorithms with running time $2^{\text {poly }(\log n)}$).

Integrality Gap

The integrality gap of the SetCover LP is $\Omega(\log n)$.

- $n=2^{k}-1$
- Elements are all vectors \vec{x} over $G F[2]$ of length k (excluding zero vector).
- Every vector \vec{y} defines a set as follows

$$
S_{\vec{y}}:=\left\{\vec{x} \mid \vec{x}^{T} \vec{y}=1\right\}
$$

- each set contains 2^{k-1} vectors; each vector is contained in 2^{k-1} sets
- $x_{i}=\frac{1}{2^{k-1}}=\frac{2}{n+1}$ is fractional solution.

Integrality Gap

Every collection of $p<k$ sets does not cover all elements.

Hence, we get a gap of $\Omega(\log n)$.

Techniques:

- Deterministic Rounding
- Rounding of the Dual
- Primal Dual
- Greedy
- Randomized Rounding
- Local Search
- Rounding Data + Dynamic Programming

