Lemma 2 (Chernoff Bounds)

Let $X_1, ..., X_n$ be *n* independent 0-1 random variables, not necessarily identically distributed. Then for $X = \sum_{i=1}^n X_i$ and $\mu = E[X], L \le \mu \le U$, and $\delta > 0$

$$\Pr[X \ge (1+\delta)U] < \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^U \quad ,$$

and

$$\Pr[X \le (1-\delta)L] < \left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^L$$

EADS II ©Harald Räcke

388

Lemma 3

For $0 \le \delta \le 1$ *we have that*

 $\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^U \le e^{-U\delta^2/3}$

and
$$\left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^{L} \leq e^{-L\delta^{2}/2}$$

Proof of Chernoff Bounds

Set $p_i = \Pr[X_i = 1]$. Assume $p_i > 0$ for all *i*.

Cool Trick:

$$\Pr[X \ge (1+\delta)U] = \Pr[e^{tX} \ge e^{t(1+\delta)U}]$$

Now, we apply Markov:

$$\Pr[e^{tX} \ge e^{t(1+\delta)U}] \le \frac{\mathrm{E}[e^{tX}]}{e^{t(1+\delta)U}} ,$$

This may be a lot better (!?)

EADS II	18.1 Chernoff Bounds	
🛛 💾 🛛 🖉 🛛 🖾 🖾 🖾 🖉 🖉 🖉		392

Now, we apply Markov:

$$Pr[X \ge (1 + \delta)U] = Pr[e^{tX} \ge e^{t(1+\delta)U}]$$

$$\le \frac{E[e^{tX}]}{e^{t(1+\delta)U}} \le \frac{e^{(e^{t}-1)U}}{e^{t(1+\delta)U}} \le \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{U}$$
We choose $t = \ln(1 + \delta)$.

Proof of Chernoff Bounds $E\left[e^{tX}\right] = E\left[e^{t\sum_{i} X_{i}}\right] = E\left[\prod_{i} e^{tX_{i}}\right] = \prod_{i} E\left[e^{tX_{i}}\right]$ $E\left[e^{tX_{i}}\right] = (1 - p_{i}) + p_{i}e^{t} = 1 + p_{i}(e^{t} - 1) \le e^{p_{i}(e^{t} - 1)}$ $\prod_{i} E\left[e^{tX_{i}}\right] \le \prod_{i} e^{p_{i}(e^{t} - 1)} = e^{\sum p_{i}(e^{t} - 1)} = e^{(e^{t} - 1)U}$ For the second s

Lemma 4 For $0 \le \delta \le 1$ we have that

$$\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^U \le e^{-U\delta^2/3}$$

and

$$\left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^L \le e^{-L\delta^2/2}$$

EADS II ©Harald Räcke 18.1 Chernoff Bounds

Show:

$$\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^U \le e^{-U\delta^2/3}$$

Take logarithms:

$$U(\delta - (1+\delta)\ln(1+\delta)) \le -U\delta^2/3$$

True for $\delta = 0$. Divide by U and take derivatives:

$$-\ln(1+\delta) \le -2\delta/3$$

Reason:

As long as derivative of left side is smaller than derivative of right side the inequality holds.

הח (הה) EADS II	18.1 Chernoff Bounds	
UUU GHarald Räcke		396

For $\delta \ge 1$ we show

$$\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^U \le e^{-U\delta/3}$$

Take logarithms:

$$U(\delta - (1 + \delta)\ln(1 + \delta)) \le -U\delta/3$$

True for $\delta = 0$. Divide by U and take derivatives:

$$-\ln(1+\delta) \le -1/3 \iff \ln(1+\delta) \ge 1/3$$
 (true)

Reason:

As long as derivative of left side is smaller than derivative of right side the inequality holds.

50 (nn	EADS II
	© Harald Räcke

18.1 Chernoff Bounds

398

$$f(\delta) := -\ln(1+\delta) + 2\delta/3 \le 0$$

A convex function ($f''(\delta) \ge 0$) on an interval takes maximum at the boundaries.

$$f'(\delta) = -\frac{1}{1+\delta} + 2/3$$
 $f''(\delta) = \frac{1}{(1+\delta)^2}$

$$f(0) = 0$$
 and $f(1) = -\ln(2) + 2/3 < 0$

	18.1 Chernoff Bounds	207
🛛 🕒 🗆 🖾 © Harald Racke		397

Show:

$$\left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^L \le e^{-L\delta^2/2}$$

Take logarithms:

$$L(-\delta - (1 - \delta)\ln(1 - \delta)) \le -L\delta^2/2$$

True for $\delta = 0$. Divide by *L* and take derivatives:

 $\ln(1-\delta) \le -\delta$

Reason:

As long as derivative of left side is smaller than derivative of right side the inequality holds.

EADS II © Harald Räcke 18.1 Chernoff Bounds

$$\ln(1-\delta) \leq -\delta$$

True for $\delta = 0$. Take derivatives:
$$-\frac{1}{1-\delta} \leq -1$$

This holds for $0 \leq \delta < 1$.

Integer Multicommodity Flows

Randomized Rounding:

For each i choose one path from the set \mathcal{P}_i at random according to the probability distribution given by the Linear Programming solution.

Integer Multicommodity Flows

- Given s_i - t_i pairs in a graph.
- Connect each pair by a path such that not too many path use any given edge.

min		W		
s.t.	$\forall i$	$\sum_{p \in \mathcal{P}_i} x_p$	=	1
		$\sum_{p:e\in p} x_p$	\leq	W
		x_p	\in	$\{0, 1\}$
		P		

18.1 Chernoff Bounds

EADS II © Harald Räcke

Theorem 5

If $W^* \ge c \ln n$ for some constant c, then with probability at least $n^{-c/3}$ the total number of paths using any edge is at most $W^* + \sqrt{cW^* \ln n}$.

Theorem 6

With probability at least $n^{-c/3}$ the total number of paths using any edge is at most $W^* + c \ln n$.

402

400

401

Integer Multicommodity Flows

Let X_e^i be a random variable that indicates whether the path for s_i - t_i uses edge e.

Then the number of paths using edge *e* is $Y_e = \sum_i X_e^i$.

$$E[Y_e] = \sum_i \sum_{p \in \mathcal{P}_i: e \in p} x_p^* = \sum_{p: e \in P} x_p^* \le W^*$$

EADS II © Harald Räcke	18.1 Chernoff Bounds

19 MAXSAT

Problem definition:

- ► *n* Boolean variables
- *m* clauses C_1, \ldots, C_m . For example

 $C_7 = x_3 \vee \bar{x}_5 \vee \bar{x}_9$

- Non-negative weight w_j for each clause C_j .
- Find an assignment of true/false to the variables sucht that the total weight of clauses that are satisfied is maximum.

Integer Multicommodity Flows $Choose \ \delta = \sqrt{(c \ln n)/W^*}.$ Then $Pr[Y_e \ge (1+\delta)W^*] < e^{-W^*\delta^2/3} = \frac{1}{n^{c/3}}$

19 MAXSAT

Terminology:

- A variable x_i and its negation \bar{x}_i are called literals.
- ► Hence, each clause consists of a set of literals (i.e., no duplications: x_i ∨ x_i ∨ x̄_j is not a clause).
- We assume a clause does not contain x_i and \bar{x}_i for any i.
- x_i is called a positive literal while the negation x
 _i is called a negative literal.
- ► For a given clause C_j the number of its literals is called its length or size and denoted with ℓ_j .
- Clauses of length one are called unit clauses.

406

404

MAXSAT: Flipping Coins

Set each x_i independently to true with probability $\frac{1}{2}$ (and, hence, to false with probability $\frac{1}{2}$, as well).

© Harald Räcke	19 MAXSAT	408

$$E[W] = \sum_{j} w_{j}E[X_{j}]$$

= $\sum_{j} w_{j}\Pr[C_{j} \text{ is satisified}]$
= $\sum_{j} w_{j} \left(1 - \left(\frac{1}{2}\right)^{\ell_{j}}\right)$
\ge $\frac{1}{2}\sum_{j} w_{j}$
\ge $\frac{1}{2}OPT$

Define random variable X_i with

 $X_j = \begin{cases} 1 & \text{if } C_j \text{ satisfied} \\ 0 & \text{otw.} \end{cases}$

Then the total weight W of satisfied clauses is given by

 $W = \sum_{j} w_{j} X_{j}$ The second s

MAXSAT: LP formulation

► Let for a clause *C_j*, *P_j* be the set of positive literals and *N_j* the set of negative literals.

$$C_j = \bigvee_{j \in P_j} x_i \lor \bigvee_{j \in N_j} \bar{x}_i$$

max		$\sum_j w_j z_j$		
s.t.	$\forall j$	$\sum_{i\in P_i} \mathcal{Y}_i + \sum_{i\in N_i} (1-\mathcal{Y}_i)$	\geq	z_j
	$\forall i$	\mathcal{Y}_i	\in	$\{0, 1\}$
	$\forall j$	Z_j	\leq	1

EADS II © Harald Räcke

410

19 MAXSAT

MAXSAT: Randomized Rounding

Set each x_i independently to true with probability y_i (and, hence, to false with probability $(1 - y_i)$).

EADS II ©Harald Räcke	19 MAXSAT	

Definition 8

A function f on an interval I is concave if for any two points s and r from I and any $\lambda \in [0, 1]$ we have

 $f(\lambda s + (1 - \lambda)r) \ge \lambda f(s) + (1 - \lambda)f(r)$

Lemma 9

Let f be a concave function on the interval [0,1], with f(0) = aand f(1) = a + b. Then

$$f(\lambda) = f((1 - \lambda)0 + \lambda 1)$$

$$\geq (1 - \lambda)f(0) + \lambda f(1)$$

$$= a + \lambda b$$

for $\lambda \in [0, 1]$.

	19 MAXSAT
UUU © Harald Räcke	

414

412

Lemma 7 (Geometric Mean \leq **Arithmetic Mean)** For any nonnegative a_1, \ldots, a_k

$$\left(\prod_{i=1}^k a_i\right)^{1/k} \le \frac{1}{k} \sum_{i=1}^k a_i$$

EADS II © Harald Räcke	19 MAXSAT	413

$$\Pr[C_{j} \text{ not satisfied}] = \prod_{i \in P_{j}} (1 - y_{i}) \prod_{i \in N_{j}} y_{i}$$

$$\leq \left[\frac{1}{\ell_{j}} \left(\sum_{i \in P_{j}} (1 - y_{i}) + \sum_{i \in N_{j}} y_{i} \right) \right]^{\ell_{j}}$$

$$= \left[1 - \frac{1}{\ell_{j}} \left(\sum_{i \in P_{j}} y_{i} + \sum_{i \in N_{j}} (1 - y_{i}) \right) \right]^{\ell_{j}}$$

$$\leq \left(1 - \frac{z_{j}}{\ell_{j}} \right)^{\ell_{j}} .$$
EADS II

The function $f(z) = 1 - (1 - \frac{z}{\ell})^{\ell}$ is concave. Hence,

$$\Pr[C_j \text{ satisfied}] \ge 1 - \left(1 - \frac{z_j}{\ell_j}\right)^{\ell_j}$$
$$\ge \left[1 - \left(1 - \frac{1}{\ell_j}\right)^{\ell_j}\right] \cdot z_j .$$

 $f''(z) = -\frac{\ell-1}{\ell} \Big[1 - \frac{z}{\ell} \Big]^{\ell-2} \le 0$ for $z \in [0, 1]$. Therefore, f is concave.

EADS II © Harald Räcke	19 MAXSAT

MAXSAT: The better of two

Theorem 10

Choosing the better of the two solutions given by randomized rounding and coin flipping yields a $\frac{3}{4}$ -approximation.

החוחר	EADS II
	© Harald Räcke

418

416

	$E[W] = \sum_{j} w_{j} \Pr[C_{j} \text{ is satisfied}]$ $\geq \sum_{j} w_{j} z_{j} \left[1 - \left(1 - \frac{1}{\ell_{j}}\right)^{\ell_{j}} \right]$ $\geq \left(1 - \frac{1}{e}\right) \text{ OPT }.$	
EADS II © Harald Räcke	19 MAXSAT	417

Let W_1 be the value of randomized rounding and W_2 the value obtained by coin flipping.

MAXSAT: Nonlinear Randomized Rounding

So far we used linear randomized rounding, i.e., the probability that a variable is set to 1/true was exactly the value of the corresponding variable in the linear program.

We could define a function $f : [0,1] \rightarrow [0,1]$ and set x_i to true with probability $f(y_i)$.

הח EADS II	19 MAXSAT	
🛛 🛄 🖓 🖾 🕼 Harald Räcke		421

Let $f:[0,1] \rightarrow [0,1]$ be a function with $1-4^{-x} \leq f(x) \leq 4^{x-1}$

MAXSAT: Nonlinear Randomized Rounding

Theorem 11

Rounding the LP-solution with a function f of the above form gives a $\frac{3}{4}$ -approximation.

EADS II © Harald Räcke

$$\Pr[C_j \text{ not satisfied}] = \prod_{i \in P_j} (1 - f(y_i)) \prod_{i \in N_j} f(y_i)$$

$$\leq \prod_{i \in P_j} 4^{-y_i} \prod_{i \in N_j} 4^{y_i - 1}$$

$$= 4^{-(\sum_{i \in P_j} y_i + \sum_{i \in N_j} (1 - y_i))}$$

$$\leq 4^{-z_j}$$

Can we do better?

Not if we compare ourselves to the value of an optimum LP-solution.

Definition 12 (Integrality Gap)

The integrality gap for an ILP is the worst-case ratio over all instances of the problem of the value of an optimal IP-solution to the value of an optimal solution to its linear programming relaxation.

Note that the integrality is less than one for maximization problems and larger than one for minimization problems (of course, equality is possible).

Note that an integrality gap only holds for one specific ILP formulation.

The function $g(z) = 1 - 4^{-z}$ is concave on [0, 1]. Hence,

$$\Pr[C_j \text{ satisfied}] \ge 1 - 4^{-z_j} \ge \frac{3}{4}z_j$$
.

Therefore,

$$E[W] = \sum_{j} w_{j} \Pr[C_{j} \text{ satisfied}] \ge \frac{3}{4} \sum_{j} w_{j} z_{j} \ge \frac{3}{4} \operatorname{OPT}$$

EADS II ©Harald Räcke	19 MAXSAT	425

Lemma 13

Our ILP-formulation for the MAXSAT problem has integrality gap at most $\frac{3}{4}$.

$$\begin{array}{|c|c|c|c|c|c|} \hline \max & & \sum_{j} w_{j} z_{j} \\ \text{s.t.} & \forall j & \sum_{i \in P_{j}} y_{i} + \sum_{i \in N_{j}} (1 - y_{i}) & \geq & z_{j} \\ & \forall i & & y_{i} & \in & \{0, 1\} \\ & \forall j & & z_{j} & \leq & 1 \end{array}$$

Consider: $(x_1 \lor x_2) \land (\bar{x}_1 \lor x_2) \land (x_1 \lor \bar{x}_2) \land (\bar{x}_1 \lor \bar{x}_2)$

- any solution can satisfy at most 3 clauses
- we can set $y_1 = y_2 = 1/2$ in the LP; this allows to set $z_1 = z_2 = z_3 = z_4 = 1$
- hence, the LP has value 4.