4 Simplex Algorithm

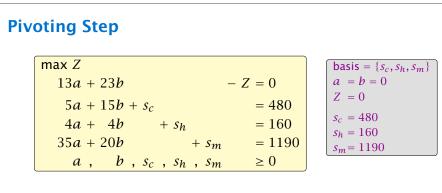
Enumerating all basic feasible solutions (BFS), in order to find the optimum is slow.

Simplex Algorithm [George Dantzig 1947] Move from BFS to adjacent BFS, without decreasing objective function.

Two BFSs are called adjacent if the bases just differ in one variable.

EADS II © Harald Räcke

50



- choose variable to bring into the basis
- chosen variable should have positive coefficient in objective function
- apply min-ratio test to find out by how much the variable can be increased
- pivot on row found by min-ratio test
- the existing basis variable in this row leaves the basis

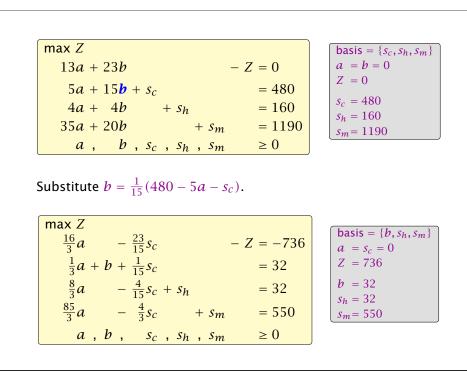
4 Simplex Algorithm

max	13a + 23b
s.t.	$5a + 15b + s_c = 480$
	$4a + 4b + s_h = 160$
	$35a + 20b + s_m = 1190$
	a , b , s_c , s_h , $s_m \ge 0$

	max Z		basis = { s_c, s_h, s_m }
	13a + 23b	-Z = 0	A = B = 0
	$5a + 15b + s_c$	= 480	Z = 0
	$4a + 4b + s_h$	= 160	$s_c = 480$ $s_h = 160$
	$35a + 20b + s_m$	= 1190	$s_m = 1190$ $s_m = 1190$
l	a , b , s_c , s_h , s_m	≥ 0	
חוחר	EADS II 4 Simple	ex Algorithm	
	🛛 🖾 🖾 🖉 🖉 🖉		51

max Z		basis = { s_c, s_h, s_m }
13 <i>a</i> + 23 b -	-Z = 0	a = b = 0
$5a + 15b + s_c$	= 480	Z = 0
$4a + 4b + s_h$	= 160	$s_c = 480$
$35a + 20b + s_m$	= 1190	$s_h = 160$ $s_m = 1190$
a, b, s_c, s_h, s_m	≥ 0	

- Choose variable with coefficient ≥ 0 as entering variable.
- If we keep a = 0 and increase b from 0 to θ > 0 s.t. all constraints (Ax = b, x ≥ 0) are still fulfilled the objective value Z will strictly increase.
- For maintaining Ax = b we need e.g. to set $s_c = 480 15\theta$.
- ► Choosing θ = min{480/15, 160/4, 1190/20} ensures that in the new solution one current basic variable becomes 0, and no variable goes negative.
- The basic variable in the row that gives min{480/15, 160/4, 1190/20} becomes the leaving variable.



4 Simplex Algorithm

Pivoting stops when all coefficients in the objective function are non-positive.

Solution is optimal:

EADS II © Harald Räcke

• any feasible solution satisfies all equations in the tableaux

4 Simplex Algorithm

- in particular: $Z = 800 s_c 2s_h$, $s_c \ge 0$, $s_h \ge 0$
- hence optimum solution value is at most 800
- ▶ the current solution has value 800

$\frac{-3}{3}a$	$-\frac{25}{15}S_c$	-Z = -736	$a = s_c = 0$
$\frac{1}{3}a$	$+ b + \frac{1}{15}s_c$	= 32	$a = s_c = 0$ $Z = 736$
$\frac{8}{3}a$	$-\frac{4}{15}s_{c}+s_{h}$	= 32	$b = 32$ $s_h = 32$
$\frac{85}{3}a$	$-\frac{4}{3}s_c + s_m$	= 550	$s_h = 32$ $s_m = 550$
а	$, b$, s_c , s_h , s_m	≥ 0	

basis = { b, s_h, s_m }

max Z	_		basis = $\{a, b, s_m\}$
	$- s_c - 2s_h -$	Z = -800	$s_c = s_h = 0$
	$b + \frac{1}{10}s_c - \frac{1}{8}s_h$	= 28	Z = 800
а	$-\frac{1}{10}s_{c} + \frac{3}{8}s_{h}$	= 12	b = 28 a = 12
	$\frac{3}{2}s_c - \frac{85}{8}s_h + s_m$	= 210	$a = 12$ $s_m = 210$
а,	b , s_c , s_h , s_m	≥ 0	

et our imea	r progran	ו be				
	C	$T_{R} \chi_{B}$	+	$c_N^T x_N$	=	Ζ
				$A_N x_N$		
		χ_B	,	x_N	\geq	0
Ivr	1 4	<i>D</i>	<i>D</i>			$Z - c_B^T A_B^{-1} b$ $A_{\pm}^{-1} b$
$I \chi_{R}$	+		A_{I}	·		D
D				χ_N	>	0

If $(c_N^T - c_B^T A_B^{-1} A_N) \le 0$ we know that we have an optimum solution.

EADS II ©Harald Räcke

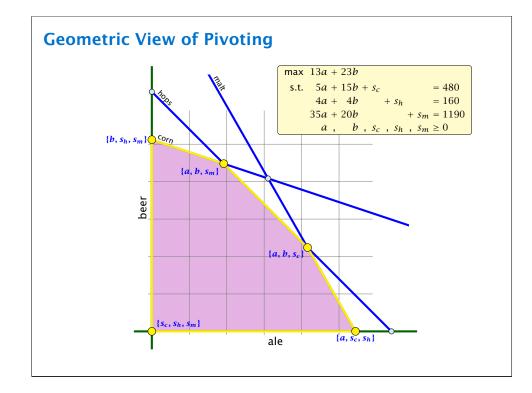
56

max Z

16

23

4 Simplex Algorithm



Algebraic Definition of Pivoting

Definition 2 (*j*-th basis direction)

Let *B* be a basis, and let $j \notin B$. The vector *d* with $d_i = 1$ and $d_{\ell} = 0, \ell \notin B, \ell \neq j$ and $d_B = -A_B^{-1}A_{*i}$ is called the *j*-th basis direction for *B*.

Going from x^* to $x^* + \theta \cdot d$ the objective function changes by

 $\theta \cdot c^T d = \theta (c_i - c_R^T A_R^{-1} A_{*i})$

Algebraic Definition of Pivoting

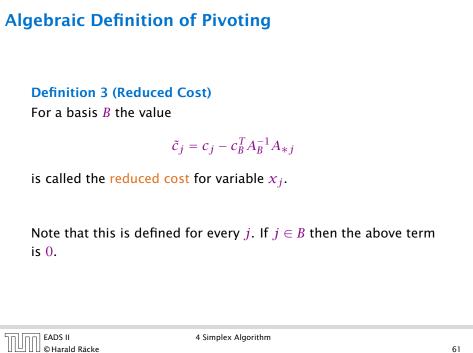
- Given basis B with BFS x^* .
- Choose index $j \notin B$ in order to increase x_i^* from 0 to $\theta > 0$.
 - Other non-basis variables should stay at 0.
 - Basis variables change to maintain feasibility.
- Go from x^* to $x^* + \theta \cdot d$.

Requirements for *d*:

- $d_i = 1$ (normalization)
- ► $d_{\ell} = 0, \ \ell \notin B, \ \ell \neq j$
- $A(x^* + \theta d) = b$ must hold. Hence Ad = 0.
- Altogether: $A_B d_B + A_{*i} = Ad = 0$, which gives $d_B = -A_B^{-1}A_{*i}$.

```
EADS II
© Harald Räcke
```

4 Simplex Algorithm



4 Simplex Algorithm

59

Algebraic Definition of Pivoting

Let our linear program be

$$c_B^T x_B + c_N^T x_N = Z$$

$$A_B x_B + A_N x_N = b$$

$$x_B , \quad x_N \ge 0$$

The simplex tableaux for basis B is

$$\begin{array}{rcl} (c_{N}^{T}-c_{B}^{T}A_{B}^{-1}A_{N})x_{N} &=& Z-c_{B}^{T}A_{B}^{-1}b\\ Ix_{B} &+& A_{B}^{-1}A_{N}x_{N} &=& A_{B}^{-1}b\\ x_{B} &, & x_{N} &\geq& 0 \end{array}$$

The BFS is given by $x_N = 0, x_B = A_B^{-1}b$.

If $(c_N^T - c_R^T A_R^{-1} A_N) \le 0$ we know that we have an optimum solution.

רח] EADS II	4 Simplex Algorithm	
UUU © Harald Räcke		62

Min Ratio Test

The min ratio test computes a value $\theta \ge 0$ such that after setting the entering variable to θ the leaving variable becomes 0 and all other variables stay non-negative.

For this, one computes b_i/A_{ie} for all constraints *i* and calculates the minimum positive value.

What does it mean that the ratio b_i/A_{ie} (and hence A_{ie}) is negative for a constraint?

This means that the corresponding basic variable will increase if we increase b. Hence, there is no danger of this basic variable becoming negative

What happens if **all** b_i/A_{ie} are negative? Then we do not have a leaving variable. Then the LP is unbounded!

4 Simplex Algorithm

Ouestions:

- What happens if the min ratio test fails to give us a value θ by which we can safely increase the entering variable?
- How do we find the initial basic feasible solution?
- Is there always a basis B such that

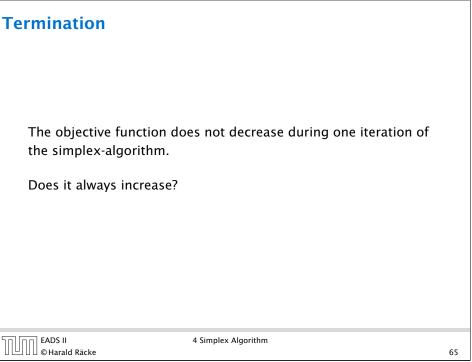
$(c_N^T - c_R^T A_R^{-1} A_N) \le 0$?

Then we can terminate because we know that the solution is optimal.

If yes how do we make sure that we reach such a basis?

EADS II © Harald Räcke

4 Simplex Algorithm



63

Termination

The objective function may not increase!

Because a variable x_{ℓ} with $\ell \in B$ is already 0.

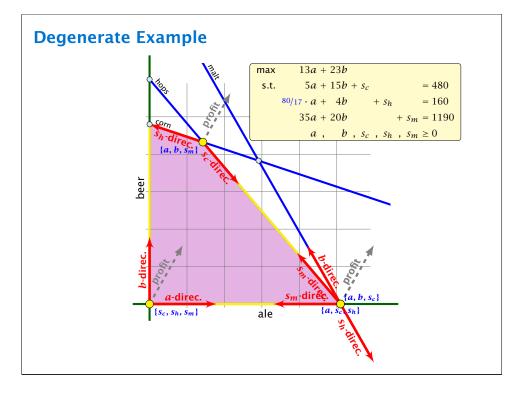
The set of inequalities is degenerate (also the basis is degenerate).

Definition 4 (Degeneracy)

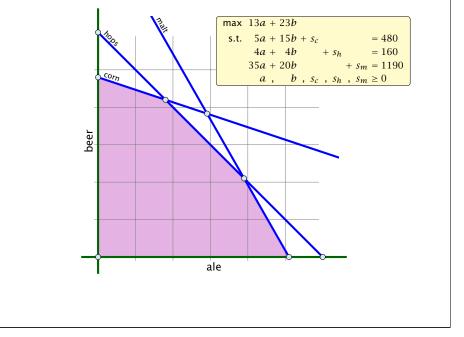
A BFS x^* is called degenerate if the set $J = \{j \mid x_j^* > 0\}$ fulfills |J| < m.

It is possible that the algorithm cycles, i.e., it cycles through a sequence of different bases without ever terminating. Happens, very rarely in practise.

EADS II	4 Simplex Algorithm	
UUU CHarald Räcke		66



Non Degenerate Example



Summary: How to choose pivot-elements

- ► We can choose a column *e* as an entering variable if *c̃_e* > 0 (*c̃_e* is reduced cost for *x_e*).
- The standard choice is the column that maximizes \tilde{c}_e .
- If A_{ie} ≤ 0 for all i ∈ {1,...,m} then the maximum is not bounded.
- ► Otw. choose a leaving variable ℓ such that b_ℓ/A_{ℓe} is minimal among all variables *i* with A_{ie} > 0.
- If several variables have minimum $b_{\ell}/A_{\ell e}$ you reach a degenerate basis.
- ► Depending on the choice of *l* it may happen that the algorithm runs into a cycle where it does not escape from a degenerate vertex.

Termination

What do we have so far?

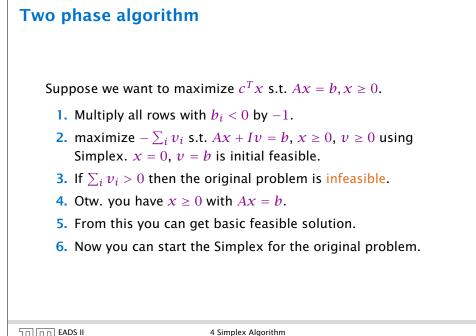
Suppose we are given an initial feasible solution to an LP. If the LP is non-degenerate then Simplex will terminate.

Note that we either terminate because the min-ratio test fails and we can conclude that the LP is unbounded, or we terminate because the vector of reduced cost is non-positive. In the latter case we have an optimum solution.

EADS II © Harald Räcke EADS II

4 Simplex Algorithm

70



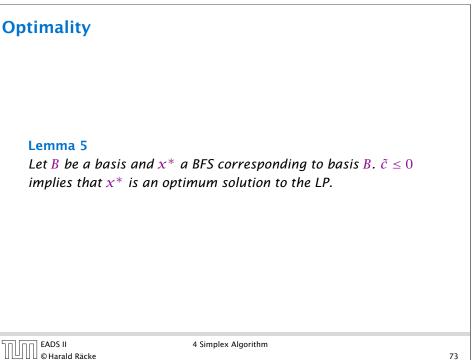
How do we come up with an initial solution?

- $Ax \leq b, x \geq 0$, and $b \geq 0$.
- The standard slack from for this problem is $Ax + Is = b, x \ge 0, s \ge 0$, where s denotes the vector of slack variables.
- Then s = b, x = 0 is a basic feasible solution (how?).
- We directly can start the simplex algorithm.

How do we find an initial basic feasible solution for an arbitrary problem?

EADS II © Harald Räcke

4 Simplex Algorithm



71