- Suppose we have an instance with polynomially bounded processing times $p_{i} \leq q(n)$
- We set $k:=\lceil 2 n q(n)\rceil \geq 2$ OPT
- Then

$$
\mathrm{ALG} \leq\left(1+\frac{1}{k}\right) \mathrm{OPT} \leq \mathrm{OPT}+\frac{1}{2}
$$

- But this means that the algorithm computes the optimal solution as the optimum is integral.
- This means we can solve problem instances if processing times are polynomially bounded
- Running time is $\mathcal{O}(\operatorname{poly}(n, k))=\mathcal{O}(\operatorname{poly}(n))$
- For strongly NP-complete problems this is not possible unless $\mathrm{P}=\mathrm{NP}$

Bin Packing

Given n items with sizes s_{1}, \ldots, s_{n} where

$$
1>s_{1} \geq \cdots \geq s_{n}>0
$$

Pack items into a minimum number of bins where each bin can hold items of total size at most 1 .

Theorem 5

There is no ρ-approximation for Bin Packing with $\rho<3 / 2$ unless $\mathrm{P}=\mathrm{NP}$.

More General

Let $\operatorname{OPT}\left(n_{1}, \ldots, n_{A}\right)$ be the number of machines that are required to schedule input vector (n_{1}, \ldots, n_{A}) with Makespan at most T (A : number of different sizes).

If $\operatorname{OPT}\left(n_{1}, \ldots, n_{A}\right) \leq m$ we can schedule the input.
$\operatorname{OPT}\left(n_{1}, \ldots, n_{A}\right)$

$$
= \begin{cases}0 & \left(n_{1}, \ldots, n_{A}\right)=0 \\ 1+\min _{\left(s_{1}, \ldots, s_{A}\right) \in C} \operatorname{OPT}\left(n_{1}-s_{1}, \ldots, n_{A}-s_{A}\right) & \left(n_{1}, \ldots, n_{A}\right) \ngtr 0 \\ \infty & \text { otw. }\end{cases}
$$

where C is the set of all configurations.
$|C| \leq(B+1)^{A}$, where B is the number of jobs that possibly can fit on the same machine.

The running time is then $O\left((B+1)^{A} n^{A}\right)$ because the dynamic programming table has just n^{A} entries.

Bin Packing

Proof

- In the partition problem we are given positive integers b_{1}, \ldots, b_{n} with $B=\sum_{i} b_{i}$ even. Can we partition the integers into two sets S and T s.t.

$$
\sum_{i \in S} b_{i}=\sum_{i \in T} b_{i} ?
$$

- We can solve this problem by setting $s_{i}:=2 b_{i} / B$ and asking whether we can pack the resulting items into 2 bins or not.
- A ρ-approximation algorithm with $\rho<3 / 2$ cannot output 3 or more bins when 2 are optimal.
- Hence, such an algorithm can solve Partition.

Bin Packing

Definition 6

An asymptotic polynomial-time approximation scheme (APTAS)
is a family of algorithms $\left\{A_{\epsilon}\right\}$ along with a constant c such that A_{ϵ} returns a solution of value at most $(1+\epsilon) \mathrm{OPT}+c$ for minimization problems.

- Note that for Set Cover or for Knapsack it makes no sense to differentiate between the notion of a PTAS or an APTAS because of scaling.
- However, we will develop an APTAS for Bin Packing.

Bin Packing

Again we can differentiate between small and large items.
Lemma 7
Any packing of items into ℓ bins can be extended with items of size at most γ s.t. we use only $\max \left\{\ell, \frac{1}{1-\gamma} \operatorname{SIZE}(I)+1\right\}$ bins, where $\operatorname{SIZE}(I)=\sum_{i} s_{i}$ is the sum of all item sizes.

- If after Greedy we use more than ℓ bins, all bins (apart from the last) must be full to at least $1-\gamma$.
- Hence, $r(1-\gamma) \leq \operatorname{SIZE}(I)$ where r is the number of nearly-full bins.
- This gives the lemma.

Bin Packing

Linear Grouping:

Generate an instance I^{\prime} (for large items) as follows.

- Order large items according to size.
- Let the first k items belong to group 1 ; the following k items belong to group 2; etc.
- Delete items in the first group;
- Round items in the remaining groups to the size of the largest item in the group.

Linear Grouping

Lemma 9
$\mathrm{OPT}\left(I^{\prime}\right) \leq \mathrm{OPT}(I) \leq \operatorname{OPT}\left(I^{\prime}\right)+k$

Proof 2:

- Any bin packing for I^{\prime} gives a bin packing for I as follows.
- Pack the items of group 1 into k new bins;
- Pack the items of groups 2 , where in the packing for I^{\prime} the items for group 2 have been packed;
- ...

Lemma 8
$\mathrm{OPT}\left(I^{\prime}\right) \leq \mathrm{OPT}(I) \leq \mathrm{OPT}\left(I^{\prime}\right)+k$

Proof 1:

- Any bin packing for I gives a bin packing for I^{\prime} as follows.
- Pack the items of group 2, where in the packing for I the items for group 1 have been packed;
- Pack the items of groups 3 , where in the packing for I the items for group 2 have been packed;
- ...

Assume that our instance does not contain pieces smaller than
$\epsilon / 2$. Then $\operatorname{SIZE}(I) \geq \epsilon n / 2$.
We set $k=\lfloor\epsilon \operatorname{SIZE}(I)\rfloor$.

Then $n / k \leq n /\left\lfloor\epsilon^{2} n / 2\right\rfloor \leq 4 / \epsilon^{2}$ (here we used $\lfloor\alpha\rfloor \geq \alpha / 2$ for $\alpha \geq 1$).

Hence, after grouping we have a constant number of piece sizes $\left(4 / \epsilon^{2}\right)$ and at most a constant number $(2 / \epsilon)$ can fit into any bin.

We can find an optimal packing for such instances by the previous Dynamic Programming approach.

- cost (for large items) at most

$$
\mathrm{OPT}\left(I^{\prime}\right)+k \leq \operatorname{OPT}(I)+\epsilon \operatorname{SIZE}(I) \leq(1+\epsilon) \mathrm{OPT}(I)
$$

- running time $\mathcal{O}\left(\left(\frac{2}{\epsilon} n\right)^{4 / \epsilon^{2}}\right)$.

