- Suppose we have an instance with polynomially bounded processing times $p_i \le q(n)$
- We set $k := \lceil 2na(n) \rceil \ge 2 \text{ OPT}$
- Then

$$ALG \le \left(1 + \frac{1}{k}\right) OPT \le OPT + \frac{1}{2}$$

- ▶ But this means that the algorithm computes the optimal solution as the optimum is integral.
- ▶ This means we can solve problem instances if processing times are polynomially bounded
- ▶ Running time is $\mathcal{O}(\text{poly}(n,k)) = \mathcal{O}(\text{poly}(n))$
- ▶ For strongly NP-complete problems this is not possible unless P=NP

17.2 Scheduling Revisited

357

Bin Packing

Given n items with sizes s_1, \ldots, s_n where

$$1 > s_1 \ge \cdots \ge s_n > 0$$
.

Pack items into a minimum number of bins where each bin can hold items of total size at most 1.

Theorem 5

There is no ρ -approximation for Bin Packing with $\rho < 3/2$ unless P = NP.

More General

Let $OPT(n_1, ..., n_A)$ be the number of machines that are required to schedule input vector (n_1, \ldots, n_A) with Makespan at most T (A: number of different sizes).

If $OPT(n_1, ..., n_A) \leq m$ we can schedule the input.

 $OPT(n_1,\ldots,n_A)$

$$= \begin{cases} 0 & (n_1, \dots, n_A) = 0 \\ 1 + \min_{(s_1, \dots, s_A) \in C} \mathrm{OPT}(n_1 - s_1, \dots, n_A - s_A) & (n_1, \dots, n_A) \geq 0 \\ \infty & \mathrm{otw.} \end{cases}$$

where C is the set of all configurations.

 $|C| \leq (B+1)^A$, where B is the number of jobs that possibly can fit on the same machine.

The running time is then $O((B+1)^A n^A)$ because the dynamic programming table has just n^A entries.

Bin Packing

Proof

In the partition problem we are given positive integers b_1, \dots, b_n with $B = \sum_i b_i$ even. Can we partition the integers into two sets S and T s.t.

$$\sum_{i \in S} b_i = \sum_{i \in T} b_i ?$$

- We can solve this problem by setting $s_i := 2b_i/B$ and asking whether we can pack the resulting items into 2 bins or not.
- A ρ -approximation algorithm with $\rho < 3/2$ cannot output 3 or more bins when 2 are optimal.
- ▶ Hence, such an algorithm can solve Partition.

EADS II

359

Bin Packing

Definition 6

An asymptotic polynomial-time approximation scheme (APTAS) is a family of algorithms $\{A_{\epsilon}\}$ along with a constant c such that A_{ϵ} returns a solution of value at most $(1+\epsilon)OPT + c$ for minimization problems.

- ▶ Note that for Set Cover or for Knapsack it makes no sense to differentiate between the notion of a PTAS or an APTAS because of scaling.
- ▶ However, we will develop an APTAS for Bin Packing.

EADS II |||||||| © Harald Räcke 17.3 Bin Packing

EADS II © Harald Räcke

361

Choose $\gamma = \epsilon/2$. Then we either use ℓ bins or at most

$$\frac{1}{1 - \epsilon/2} \cdot \text{OPT} + 1 \le (1 + \epsilon) \cdot \text{OPT} + 1$$

bins.

It remains to find an algorithm for the large items.

Bin Packing

Again we can differentiate between small and large items.

Lemma 7

Any packing of items into ℓ bins can be extended with items of size at most y s.t. we use only $\max\{\ell, \frac{1}{1-\gamma} SIZE(I) + 1\}$ bins, where $SIZE(I) = \sum_{i} s_{i}$ is the sum of all item sizes.

- If after Greedy we use more than ℓ bins, all bins (apart from the last) must be full to at least $1 - \gamma$.
- ▶ Hence, $r(1 \gamma) \leq SIZE(I)$ where γ is the number of nearly-full bins.
- ► This gives the lemma.

17.3 Bin Packing

362

Bin Packing

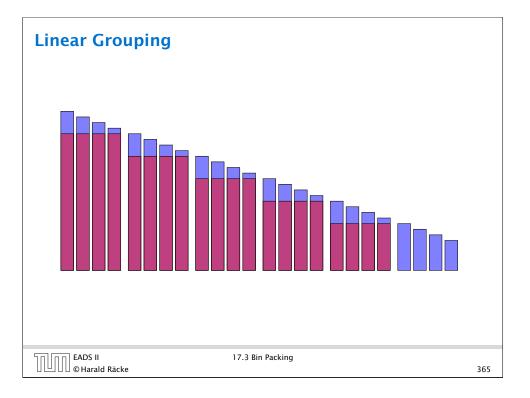
пп EADS II

© Harald Räcke

Linear Grouping:

Generate an instance I' (for large items) as follows.

- Order large items according to size.
- Let the first k items belong to group 1; the following k items belong to group 2; etc.
- Delete items in the first group;
- ▶ Round items in the remaining groups to the size of the largest item in the group.



Lemma 9

 $OPT(I') \le OPT(I) \le OPT(I') + k$

Proof 2:

- ightharpoonup Any bin packing for I' gives a bin packing for I as follows.
- ▶ Pack the items of group 1 into *k* new bins;
- ▶ Pack the items of groups 2, where in the packing for *I'* the items for group 2 have been packed;
- ▶ ...

Lemma 8

 $OPT(I') \le OPT(I) \le OPT(I') + k$

Proof 1:

- ightharpoonup Any bin packing for I gives a bin packing for I' as follows.
- ▶ Pack the items of group 2, where in the packing for *I* the items for group 1 have been packed;
- ▶ Pack the items of groups 3, where in the packing for *I* the items for group 2 have been packed;
- ...

EADS II © Harald Räcke

17.3 Bin Packing

366

Assume that our instance does not contain pieces smaller than $\epsilon/2$. Then ${\rm SIZE}(I) \ge \epsilon n/2$.

We set $k = \lfloor \epsilon \text{SIZE}(I) \rfloor$.

Then $n/k \le n/\lfloor \epsilon^2 n/2 \rfloor \le 4/\epsilon^2$ (here we used $\lfloor \alpha \rfloor \ge \alpha/2$ for $\alpha \ge 1$).

Hence, after grouping we have a constant number of piece sizes $(4/\epsilon^2)$ and at most a constant number $(2/\epsilon)$ can fit into any bin.

We can find an optimal packing for such instances by the previous Dynamic Programming approach.

cost (for large items) at most

$$OPT(I') + k \le OPT(I) + \epsilon SIZE(I) \le (1 + \epsilon)OPT(I)$$

running time $\mathcal{O}((\frac{2}{\epsilon}n)^{4/\epsilon^2})$.