
Bin Packing

Given n items with sizes s1, . . . , sn where

1 > s1 ≥ · · · ≥ sn > 0 .

Pack items into a minimum number of bins where each bin can

hold items of total size at most 1.

Theorem 5

There is no ρ-approximation for Bin Packing with ρ < 3/2 unless

P = NP.

EADS II 17.3 Bin Packing

© Harald Räcke 359



Bin Packing

Proof

ñ In the partition problem we are given positive integers

b1, . . . , bn with B =
∑
i bi even. Can we partition the integers

into two sets S and T s.t.∑
i∈S
bi =

∑
i∈T
bi ?

ñ We can solve this problem by setting si := 2bi/B and asking

whether we can pack the resulting items into 2 bins or not.

ñ A ρ-approximation algorithm with ρ < 3/2 cannot output 3

or more bins when 2 are optimal.

ñ Hence, such an algorithm can solve Partition.

EADS II 17.3 Bin Packing

© Harald Räcke 360



Bin Packing

Definition 6

An asymptotic polynomial-time approximation scheme (APTAS)

is a family of algorithms {Aε} along with a constant c such that

Aε returns a solution of value at most (1+ ε)OPT+ c for

minimization problems.

ñ Note that for Set Cover or for Knapsack it makes no sense

to differentiate between the notion of a PTAS or an APTAS

because of scaling.

ñ However, we will develop an APTAS for Bin Packing.

EADS II 17.3 Bin Packing

© Harald Räcke 361



Bin Packing

Again we can differentiate between small and large items.

Lemma 7

Any packing of items into ` bins can be extended with items of

size at most γ s.t. we use only max{`, 1
1−γ SIZE(I)+ 1} bins,

where SIZE(I) =
∑
i si is the sum of all item sizes.

ñ If after Greedy we use more than ` bins, all bins (apart from

the last) must be full to at least 1− γ.

ñ Hence, r(1− γ) ≤ SIZE(I) where r is the number of

nearly-full bins.

ñ This gives the lemma.

EADS II 17.3 Bin Packing

© Harald Räcke 362



Choose γ = ε/2. Then we either use ` bins or at most

1
1− ε/2 ·OPT+ 1 ≤ (1+ ε) ·OPT+ 1

bins.

It remains to find an algorithm for the large items.

EADS II 17.3 Bin Packing

© Harald Räcke 363



Bin Packing

Linear Grouping:

Generate an instance I′ (for large items) as follows.

ñ Order large items according to size.

ñ Let the first k items belong to group 1; the following k
items belong to group 2; etc.

ñ Delete items in the first group;

ñ Round items in the remaining groups to the size of the

largest item in the group.

EADS II 17.3 Bin Packing

© Harald Räcke 364



Linear Grouping

EADS II 17.3 Bin Packing

© Harald Räcke 365



Lemma 8

OPT(I′) ≤ OPT(I) ≤ OPT(I′)+ k

Proof 1:

ñ Any bin packing for I gives a bin packing for I′ as follows.

ñ Pack the items of group 2, where in the packing for I the

items for group 1 have been packed;

ñ Pack the items of groups 3, where in the packing for I the

items for group 2 have been packed;

ñ . . .

EADS II 17.3 Bin Packing

© Harald Räcke 366



Lemma 9

OPT(I′) ≤ OPT(I) ≤ OPT(I′)+ k

Proof 2:

ñ Any bin packing for I′ gives a bin packing for I as follows.

ñ Pack the items of group 1 into k new bins;

ñ Pack the items of groups 2, where in the packing for I′ the

items for group 2 have been packed;

ñ . . .

EADS II 17.3 Bin Packing

© Harald Räcke 367



Assume that our instance does not contain pieces smaller than

ε/2. Then SIZE(I) ≥ εn/2.

We set k = bεSIZE(I)c.

Then n/k ≤ n/bε2n/2c ≤ 4/ε2 (here we used bαc ≥ α/2 for

α ≥ 1).

Hence, after grouping we have a constant number of piece sizes

(4/ε2) and at most a constant number (2/ε) can fit into any bin.

We can find an optimal packing for such instances by the

previous Dynamic Programming approach.

ñ cost (for large items) at most

OPT(I′)+ k ≤ OPT(I)+ εSIZE(I) ≤ (1+ ε)OPT(I)

ñ running time O((2
εn)

4/ε2).


