
Let I denote the solution obtained by the first rounding

algorithm and I′ be the solution returned by the second

algorithm. Then

I ⊆ I′ .

This means I′ is never better than I.

ñ Suppose that we take Si in the first algorithm. I.e., i ∈ I.
ñ This means xi ≥ 1

f .

ñ Because of Complementary Slackness Conditions the

corresponding constraint in the dual must be tight.

ñ Hence, the second algorithm will also choose Si.
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Technique 3: The Primal Dual Method

The previous two rounding algorithms have the disadvantage

that it is necessary to solve the LP. The following method also

gives an f -approximation without solving the LP.

For estimating the cost of the solution we only required two

properties.

1. The solution is dual feasible and, hence,∑
u
yu ≤ cost(x∗) ≤ OPT

where x∗ is an optimum solution to the primal LP.

2. The set I contains only sets for which the dual inequality is

tight.

Of course, we also need that I is a cover.
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Technique 3: The Primal Dual Method

Algorithm 1 PrimalDual
1: y ← 0

2: I ← �
3: while exists u ∉

⋃
i∈I Si do

4: increase dual variable yu until constraint for some

new set S` becomes tight

5: I ← I ∪ {`}
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Technique 4: The Greedy Algorithm

Algorithm 1 Greedy

1: I ← �
2: Ŝj ← Sj for all j
3: while I not a set cover do

4: ` ← arg minj:Ŝj≠0
wj
|Ŝj|

5: I ← I ∪ {`}
6: Ŝj ← Ŝj − S` for all j

In every round the Greedy algorithm takes the set that covers

remaining elements in the most cost-effective way.

We choose a set such that the ratio between cost and still

uncovered elements in the set is minimized.
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Technique 4: The Greedy Algorithm

Lemma 4

Given positive numbers a1, . . . , ak and b1, . . . , bk, and

S ⊆ {1, . . . , k} then

min
i

ai
bi
≤
∑
i∈S ai∑
i∈S bi

≤max
i

ai
bi
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Technique 4: The Greedy Algorithm

Let n` denote the number of elements that remain at the

beginning of iteration `. n1 = n = |U| and ns+1 = 0 if we need s
iterations.

In the `-th iteration

min
j

wj
|Ŝj|

≤
∑
j∈OPTwj∑
j∈OPT |Ŝj|

= OPT∑
j∈OPT |Ŝj|

≤ OPT
n`

since an optimal algorithm can cover the remaining n` elements

with cost OPT.

Let Ŝj be a subset that minimizes this ratio. Hence,

wj/|Ŝj| ≤ OPT
n`

.
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Technique 4: The Greedy Algorithm

Adding this set to our solution means n`+1 = n` − |Ŝj|.

wj ≤
|Ŝj|OPT

n`
= n` −n`+1

n`
·OPT
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Technique 4: The Greedy Algorithm

∑
j∈I
wj ≤

s∑
`=1

n` −n`+1

n`
·OPT

≤ OPT
s∑
`=1

(
1
n`
+ 1
n` − 1

+ · · · + 1
n`+1 + 1

)

= OPT
k∑
i=1

1
i

= Hn ·OPT ≤ OPT(lnn+ 1) .
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Technique 4: The Greedy Algorithm

A tight example:

1 1
2

1
3

1
4

1 + ε

1
n−1

1
n−2

1
n−3

1
n
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Technique 5: Randomized Rounding

One round of randomized rounding:

Pick set Sj uniformly at random with probability 1−xj (for all j).

Version A: Repeat rounds until you have a cover.

Version B: Repeat for s rounds. If you have a cover STOP.

Otherwise, repeat the whole algorithm.
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Probability that u ∈ U is not covered (in one round):

Pr[u not covered in one round]

=
∏

j:u∈Sj
(1− xj) ≤

∏
j:u∈Sj

e−xj

= e−
∑
j:u∈Sj xj ≤ e−1 .

Probability that u ∈ U is not covered (after ` rounds):

Pr[u not covered after ` round] ≤ 1

e`
.
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Pr[∃u ∈ U not covered after ` round]

= Pr[u1 not covered∨ u2 not covered∨ . . .∨ un not covered]

≤
∑
i

Pr[ui not covered after ` rounds] ≤ ne−` .

Lemma 5

With high probability O(logn) rounds suffice.

With high probability:

For any constant α the number of rounds is at most O(logn)
with probability at least 1−n−α.
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