Let I denote the solution obtained by the first rounding algorithm and I' be the solution returned by the second algorithm. Then

 $I \subseteq I'$.

This means I' is never better than I.

- Suppose that we take S_i in the first algorithm. I.e., $i \in I$.
- This means $x_i \ge \frac{1}{f}$.

EADS II

|||||| © Harald Räcke

- Because of Complementary Slackness Conditions the corresponding constraint in the dual must be tight.
- Hence, the second algorithm will also choose S_i .

EADS II	13.2 Rounding the Dual	
UUU © Harald Räcke		292

Techn	ique 3: The Primal Dual Method
A	Igorithm 1 PrimalDual
	$1: y \leftarrow 0$ $2: I \leftarrow \emptyset$
	 a: while exists u ∉ ∪_{i∈I} S_i do a: increase dual variable y_u until constraint for some new set S_ℓ becomes tight
	5: $I \leftarrow I \cup \{\ell\}$

13.3 Primal Dual Technique

Technique 3: The Primal Dual Method

The previous two rounding algorithms have the disadvantage that it is necessary to solve the LP. The following method also gives an f-approximation without solving the LP.

For estimating the cost of the solution we only required two properties.

1. The solution is dual feasible and, hence,

 $\sum_{u} y_{u} \le \operatorname{cost}(x^{*}) \le \operatorname{OPT}$

where x^* is an optimum solution to the primal LP.

2. The set *I* contains only sets for which the dual inequality is tight.

Of course, we also need that *I* is a cover.

50) (nn	EADS II © Harald Räcke
	© Harald Räcke

13.3 Primal Dual Technique

1.1

Fech r	chnique 4: The Greedy Algorithm		
c			
	Algorithm 1 Greedy		
	$1: I \leftarrow \emptyset$		
	2: $\hat{S}_j \leftarrow S_j$ for all j 3: while I not a set cover do		
	3: while I not a set cover do		
	4: $\ell \leftarrow \arg \min_{j:\hat{S}_j \neq 0} \frac{w_j}{ \hat{S}_j }$ 5: $I \leftarrow I \cup \{\ell\}$ 6: $\hat{S}_j \leftarrow \hat{S}_j - S_\ell$ for all j		
	5: $I \leftarrow I \cup \{\ell\}$		
	6: $\hat{S}_j \leftarrow \hat{S}_j - S_\ell$ for all j		

In every round the Greedy algorithm takes the set that covers remaining elements in the most cost-effective way.

We choose a set such that the ratio between cost and still uncovered elements in the set is minimized.

294

293

Technique 4: The Greedy Algorithm

Lemma 4

Ш

Given positive numbers a_1, \ldots, a_k and b_1, \ldots, b_k , and $S \subseteq \{1, \ldots, k\}$ then

	$\min_{i} \frac{a_i}{b_i} \leq$	$\frac{\sum_{i \in S} a_i}{\sum_{i \in S} b_i} \le \max_i$	$\frac{a_i}{b_i}$	
EADS II © Harald Räcke		13.4 Greedy		

296

Technique 4: The Greedy Algorithm

 Adding this set to our solution means
$$n_{\ell+1} = n_{\ell} - |\hat{S}_j|$$
.

 $w_j \leq \frac{|\hat{S}_j| \text{OPT}}{n_{\ell}} = \frac{n_{\ell} - n_{\ell+1}}{n_{\ell}} \cdot \text{OPT}$

 EADS II

 13.4 Greedy

 OPT

Technique 4: The Greedy Algorithm

Let n_{ℓ} denote the number of elements that remain at the beginning of iteration ℓ . $n_1 = n = |U|$ and $n_{s+1} = 0$ if we need s iterations.

In the ℓ -th iteration

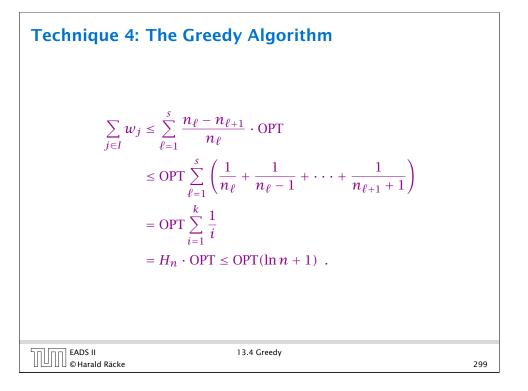
$$\min_{j} \frac{w_{j}}{|\hat{S}_{j}|} \le \frac{\sum_{j \in \text{OPT}} w_{j}}{\sum_{j \in \text{OPT}} |\hat{S}_{j}|} = \frac{\text{OPT}}{\sum_{j \in \text{OPT}} |\hat{S}_{j}|} \le \frac{\text{OPT}}{n_{\ell}}$$

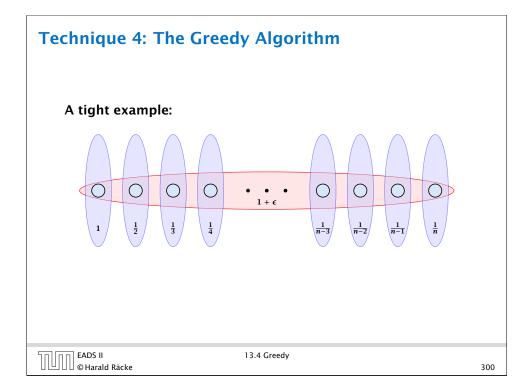
since an optimal algorithm can cover the remaining n_ℓ elements with cost OPT.

297

Let \hat{S}_j be a subset that minimizes this ratio. Hence, $w_j/|\hat{S}_j| \leq \frac{\text{OPT}}{n_\ell}$.

EADS II © Harald Räcke	13.4 Greedy
🛛 💾 🛛 🖉 🕼 🖉 Harald Räcke	





Technique 5: Randomized Rounding

One round of randomized rounding: Pick set S_j uniformly at random with probability $1 - x_j$ (for all *j*).

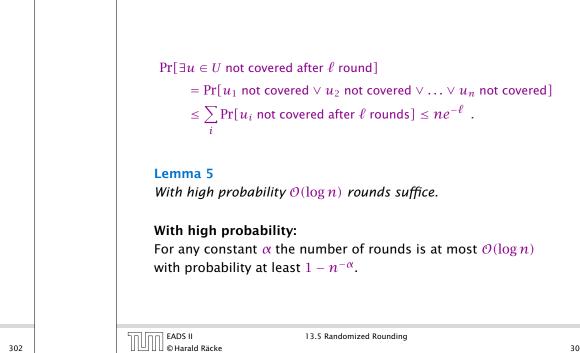
Version A: Repeat rounds until you have a cover.

Version B: Repeat for *s* rounds. If you have a cover STOP. Otherwise, repeat the whole algorithm.

EADS II © Harald Räcke

13.5 Randomized Rounding

301



Probability that $u \in U$ is not covered (in one round):

Pr[*u* not covered in one round]

$$= \prod_{j:u\in S_j} (1-x_j) \le \prod_{j:u\in S_j} e^{-x_j}$$
$$= e^{-\sum_{j:u\in S_j} x_j} \le e^{-1} .$$

Probability that $u \in U$ is not covered (after ℓ rounds):

$$\Pr[u \text{ not covered after } \ell \text{ round}] \leq \frac{1}{a\ell}$$

EADS II ||||||| © Harald Räcke