Complementary Slackness

Lemma 2

Assume a linear program $P = \max\{c^T x \mid Ax \le b; x \ge 0\}$ has solution x^* and its dual $D = \min\{b^T y \mid A^T y \ge c; y \ge 0\}$ has solution y^* .

- **1.** If $x_i^* > 0$ then the *j*-th constraint in *D* is tight.
- **2.** If the *j*-th constraint in D is not tight than $x_i^* = 0$.
- **3.** If $y_i^* > 0$ then the *i*-th constraint in *P* is tight.
- **4.** If the *i*-th constraint in *P* is not tight than $y_i^* = 0$.

If we say that a variable x_j^* (y_i^*) has slack if $x_j^* > 0$ ($y_i^* > 0$), (i.e., the corresponding variable restriction is not tight) and a contraint has slack if it is not tight, then the above says that for a primal-dual solution pair it is not possible that a constraint **and** its corresponding (dual) variable has slack.

```
EADS II
© Harald Räcke
```

100

Interpretation of Dual Variables

Brewer: find mix of ale and beer that maximizes profits

Entrepeneur: buy resources from brewer at minimum cost C, H, M: unit price for corn, hops and malt.

> min 480C + 160H + 1190Ms.t. 5C + 4H + $35M \ge 13$ 15C + 4H + $20M \ge 23$ $C, H, M \ge 0$

Note that brewer won't sell (at least not all) if e.g. 5C + 4H + 35M < 13 as then brewing ale would be advantageous.

Proof: Complementary Slackness

Analogous to the proof of weak duality we obtain

 $c^T x^* \le y^{*T} A x^* \le b^T y^*$

Because of strong duality we then get

$$c^T x^* = y^{*T} A x^* = b^T y^*$$

This gives e.g.

$$\sum_{j} (\mathcal{Y}^T A - c^T)_j x_j^* = 0$$

From the constraint of the dual it follows that $y^T A \ge c^T$. Hence the left hand side is a sum over the product of non-negative numbers. Hence, if e.g. $(y^T A - c^T)_j > 0$ (the *j*-th constraint in the dual is not tight) then $x_j = 0$ (2.). The result for (1./3./4.) follows similarly.

EADS II © Harald Räcke

5.5 Interpretation of Dual Variables

Interpretation of Dual Variables

Marginal Price:

- How much money is the brewer willing to pay for additional amount of Corn, Hops, or Malt?
- We are interested in the marginal price, i.e., what happens if we increase the amount of Corn, Hops, and Malt by ε_C, ε_H, and ε_M, respectively.

The profit increases to $\max\{c^T x \mid Ax \le b + \varepsilon; x \ge 0\}$. Because of strong duality this is equal to

	$\begin{array}{c ccc} \min & (b^T + \epsilon^T)y \\ \text{s.t.} & A^Ty & \geq c \\ & y & \geq 0 \end{array}$
EADS II © Harald Räcke	5.5 Interpretation of Dual Variables

101

Interpretation of Dual Variables

If ϵ is "small" enough then the optimum dual solution γ^* might not change. Therefore the profit increases by $\sum_i \varepsilon_i \gamma_i^*$.

Therefore we can interpret the dual variables as marginal prices.

Note that with this interpretation, complementary slackness becomes obvious.

- ▶ If the brewer has slack of some resource (e.g. corn) then he is not willing to pay anything for it (corresponding dual variable is zero).
- If the dual variable for some resource is non-zero, then an increase of this resource increases the profit of the brewer. Hence, it makes no sense to have left-overs of this resource. Therefore its slack must be zero.

	5.5 Interpretation of Dual Variables	
🛛 🕒 🛛 🖉 @ Harald Räcke		104

Of course, the previous argument about the increase in the primal objective only holds for the non-degenerate case.

If the optimum basis is degenerate then increasing the supply of one resource may not allow the objective value to increase.

Example max 13a + 23bs.t. $5a + 15b + s_c$ = 4804a + 4b= 16035a + 20b $+ s_m = 1190$ a, b, s_c , s_h , $s_m \ge 0$ beer ale The change in profit when increasing hops by one unit is $= c_B^T A_B^{-1} e_h.$

Flows

Definition 3

EADS II

©Harald Räcke

An (s, t)-flow in a (complete) directed graph $G = (V, V \times V, c)$ is a function $f: V \times V \mapsto \mathbb{R}^+_0$ that satisfies

1. For each edge (x, y)

$$0 \leq f_{XY} \leq c_{XY} \ .$$

(capacity constraints)

2. For each $v \in V \setminus \{s, t\}$

$$\sum_{x} f_{vx} = \sum_{x} f_{xv} \ .$$

(flow conservation constraints)

106

Flows

Definition 4 The value of an (s, t)-flow f is defined as

$$\operatorname{val}(f) = \sum_{x} f_{sx} - \sum_{x} f_{xs} \; .$$

Maximum Flow Problem: Find an (s, t)-flow with maximum value.

EADS II ©Harald Räcke 5.5 Interpretation of Dual Variables

108

LP-Formulatio	on of Maxflow		
min		$\sum_{(xy)} c_{xy} \ell_{xy}$	
s.t.	$f_{xy} (x, y \neq s, t):$ $f_{sy} (y \neq s, t):$	$1\ell_{xy} - 1p_x + 1p_y \ge 0$ $1\ell_{sy} - 1 + 1p_y \ge 0$	
	f_{xs} ($x \neq s, t$):	$1\ell_{xs} - 1p_x + 1 \ge 0$	
	$f_{ty} (y \neq s, t) :$ $f_{xt} (x \neq s, t) :$	$1\ell_{ty} - 0 + 1p_{y} \ge 0$ $1\ell_{xt} - 1p_{x} + 0 \ge 0$	
	f_{st} :	$1\ell_{st} - 1 + 0 \ge 0$	
	f_{ts} :	$1\ell_{ts} - 0 + 1 \ge 0$ $\ell_{xy} \ge 0$	
		A y	
	5.5 Interpretation	of Dual Variables	
UUU GHarald Räcke		· · · · · · · · · · · · · · · · · · ·	110

LP-Formulation of Maxflow

1	max 2	$\sum_{z} f_{sz} - \sum_{z} f_{zs}$		
	s.t. $\forall (z, w) \in V \times V$	$f_{zw} \leq c_{zw}$	lzw	
	$\forall w \neq s, t \sum$	$z f_{zw} - \sum_{z} f_{wz} = 0$	p_w	
		$f_{zw} \ge 0$		
	min	$\Sigma = c - \theta$		
		$\sum_{(xy)} c_{xy} t_{xy}$		
	s.t. $f_{xy}(x, y \neq s, t)$:	$1\ell_{xy} - 1p_x + 1p_y \ge 0$		
	$f_{sy} (y \neq s, t)$:	$1\ell_{sy} + 1p_{y} \ge 1$		
	f_{xs} $(x \neq s, t)$:	$1\ell_{xs}-1p_x \geq -1$		
	$f_{ty} (y \neq s, t)$:	$1\ell_{ty} + 1p_y \ge 0$		
	f_{xt} $(x \neq s, t)$:	$1\ell_{xt}-1p_x \ge 0$		
	f_{st} :	$1\ell_{st} \geq 1$		
	f_{ts} :	$1\ell_{ts} \geq -1$		
		$\ell_{XY} \geq 0$		
			_	
EADS II 5.5 Interpretation of Dual Variables				

LP-Formulation of Maxflow					
	min		$\sum_{(xy)} c_{xy} \ell_{xy}$		
	s.t.	$f_{xy}(x, y \neq s, t)$:	$1\ell_{xy} - 1p_x + 1p_y \ge$	0	
		$f_{sy}(y \neq s,t)$:	$1\ell_{sy} - p_s + 1p_y \ge$	0	
		f_{xs} $(x \neq s, t)$:	$1\ell_{xs}-1p_x+p_s \geq$	0	
		$f_{ty}(y \neq s,t)$:	$1\ell_{ty} - p_t + 1p_y \ge$	0	
		f_{xt} $(x \neq s, t)$:	$1\ell_{xt}-1p_x+p_t \geq$	0	
		f_{st} :	$1\ell_{st}$ - p_s + $p_t \ge$	0	
		f_{ts} :	$1\ell_{ts}-p_t+p_s \geq$	0	
			$\ell_{XY} \geq$	0	
with $p_t =$	with $p_t = 0$ and $p_s = 1$.				
	cko	5.5 Interpretation	of Dual Variables		111
	ске				111

LP-Formulation of Maxflow

min		$\sum_{(xy)} c_{xy} \ell_{xy}$		
s.t.	f_{xy} :	$1\ell_{xy}-1p_x+1p_y$	\geq	0
		ℓ_{xy}	\geq	0
		p_s	=	1
		p_t	=	0

We can interpret the ℓ_{xy} value as assigning a length to every edge.

The value p_x for a variable, then can be seen as the distance of x to t (where the distance from s to t is required to be 1 since $p_s = 1$).

The constraint $p_x \leq \ell_{xy} + p_y$ then simply follows from triangle inequality $(d(x,t) \leq d(x,y) + d(y,t) \Rightarrow d(x,t) \leq \ell_{xy} + d(y,t))$.

	5.5 Interpretation of Dual Variables	
🛛 🕒 🗋 🕼 🛛 Harald Räcke		112

One can show that there is an optimum LP-solution for the dual problem that gives an integral assignment of variables.

This means $p_x = 1$ or $p_x = 0$ for our case. This gives rise to a cut in the graph with vertices having value 1 on one side and the other vertices on the other side. The objective function then evaluates the capacity of this cut.

This shows that the Maxflow/Mincut theorem follows from linear programming duality.

EADS II © Harald Räcke

5.5 Interpretation of Dual Variables

113

