Technique 4: The Greedy Algorithm

A tight example:

Technique 5: Randomized Rounding

One round of randomized rounding:
Pick set S_{j} uniformly at random with probability $1-x_{j}$ (for all j).
Version A: Repeat rounds until you have a cover.
Version B: Repeat for s rounds. If you have a cover STOP. Otherwise, repeat the whole algorithm.

Probability that $u \in U$ is not covered (in one round):

$\operatorname{Pr}[u$ not covered in one round]

$$
\begin{aligned}
& =\prod_{j: u \in S_{j}}\left(1-x_{j}\right) \leq \prod_{j: u \in S_{j}} e^{-x_{j}} \\
& =e^{-\sum_{j: u \in S_{j}} x_{j}} \leq e^{-1}
\end{aligned}
$$

Probability that $\boldsymbol{u} \in \boldsymbol{U}$ is not covered (after $\boldsymbol{\ell}$ rounds):
$\operatorname{Pr}[u$ not covered after ℓ round $] \leq \frac{1}{e^{\ell}}$.
$\operatorname{Pr}[\exists u \in U$ not covered after ℓ round $]$
$=\operatorname{Pr}\left[u_{1}\right.$ not covered $\vee u_{2}$ not covered $\vee \ldots \vee u_{n}$ not covered $]$
$\leq \sum_{i} \operatorname{Pr}\left[u_{i}\right.$ not covered after ℓ rounds $] \leq n e^{-\ell}$.

Lemma 5
With high probability $\mathcal{O}(\log n)$ rounds suffice.

With high probability:
For any constant α the number of rounds is at most $\mathcal{O}(\log n)$ with probability at least $1-n^{-\alpha}$.

Proof: We have

$\operatorname{Pr}[\#$ round $s \geq(\alpha+1) \ln n] \leq n e^{-(\alpha+1) \ln n}=n^{-\alpha}$.

Expected Cost

- Version B.

Repeat for $s=(\alpha+1) \ln n$ rounds. If you don't have a cover simply repeat the whole process.

```
E[cost] = Pr[success] }\cdotE[\mathrm{ cost | success]
+ Pr[no success] }E[\mathrm{ [cost | no success]
```

This means

$$
\begin{aligned}
& \begin{array}{l}
E[\text { cost } \mid \text { success }] \\
\quad=\frac{1}{\operatorname{Pr}[\text { succ. }]}(E[\text { cost }]-\operatorname{Pr}[\text { no success }] \cdot E[\text { cost } \mid \text { no success }]) \\
\\
\quad \leq \frac{1}{\operatorname{Pr}[\text { succ. }]} E[\operatorname{cost}] \leq \frac{1}{1-n^{-\alpha}}(\alpha+1) \ln n \cdot \operatorname{cost}(\mathrm{LP}) \\
\quad \leq 2(\alpha+1) \ln n \cdot \mathrm{OPT} \\
\text { for } n \geq 2 \text { and } \alpha \geq 1 .
\end{array} .
\end{aligned}
$$

Expected Cost

- Version A.

Repeat for $s=(\alpha+1) \ln n$ rounds. If you don't have a cover simply take for each element u the cheapest set that contains u.
$E[\operatorname{cost}] \leq(\alpha+1) \ln n \cdot \operatorname{cost}(L P)+(n \cdot$ OPT $) n^{-\alpha}=\mathcal{O}(\ln n) \cdot$ OPT

Randomized rounding gives an $\mathcal{O}(\log n)$ approximation. The running time is polynomial with high probability.

Theorem 6 (without proof)
There is no approximation algorithm for set cover with approximation guarantee better than $\frac{1}{2} \log n$ unless NP has quasi-polynomial time algorithms (algorithms with running time $2^{\text {poly }(\log n)}$).

Integrality Gap

The integrality gap of the SetCover LP is $\Omega(\log n)$.

- $n=2^{k}-1$
- Elements are all vectors \vec{x} over $G F[2]$ of length k (excluding zero vector).
- Every vector \vec{y} defines a set as follows

$$
S_{\vec{y}}:=\left\{\vec{x} \mid \vec{x}^{T} \vec{y}=1\right\}
$$

- each set contains 2^{k-1} vectors; each vector is contained in 2^{k-1} sets
- $x_{i}=\frac{1}{2^{k-1}}=\frac{2}{n+1}$ is fractional solution.
3.5 Randomized Rounding

Integrality Gap

Every collection of $p<k$ sets does not cover all elements.
Hence, we get a gap of $\Omega(\log n)$.

Techniques:

- Deterministic Rounding
- Rounding of the Dual
- Primal Dual
- Greedy
- Randomized Rounding
- Local Search
- Rounding Data + Dynamic Programming

