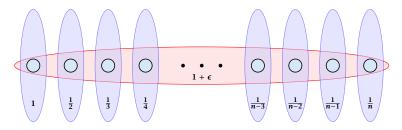
Technique 4: The Greedy Algorithm

A tight example:



EADS II © Harald Räcke 13.4 Greedy

300

302

Probability that $u \in U$ is not covered (in one round):

Pr[u not covered in one round]

$$= \prod_{j:u \in S_j} (1 - x_j) \le \prod_{j:u \in S_j} e^{-x_j}$$
$$= e^{-\sum_{j:u \in S_j} x_j} \le e^{-1}.$$

Probability that $u \in U$ is not covered (after ℓ rounds):

$$\Pr[\,u \text{ not covered after } \ell \text{ round}\,] \leq \frac{1}{e^{\,\ell}} \ .$$

Technique 5: Randomized Rounding

One round of randomized rounding:

Pick set S_i uniformly at random with probability $1 - x_i$ (for all j).

Version A: Repeat rounds until you have a cover.

Version B: Repeat for s rounds. If you have a cover STOP. Otherwise, repeat the whole algorithm.

EADS II © Harald Räcke

13.5 Randomized Rounding

301

 $\Pr[\exists u \in U \text{ not covered after } \ell \text{ round}]$

=
$$Pr[u_1 \text{ not covered} \lor u_2 \text{ not covered} \lor ... \lor u_n \text{ not covered}]$$

$$\leq \sum_{i} \Pr[u_i \text{ not covered after } \ell \text{ rounds}] \leq ne^{-\ell}$$
.

Lemma 5

With high probability $O(\log n)$ rounds suffice.

With high probability:

For any constant α the number of rounds is at most $\mathcal{O}(\log n)$ with probability at least $1 - n^{-\alpha}$.

Proof: We have

$$\Pr[\#\text{rounds} \ge (\alpha + 1) \ln n] \le ne^{-(\alpha + 1) \ln n} = n^{-\alpha}$$
.

EADS II © Harald Räcke

13.5 Randomized Rounding

304

306

Expected Cost

Version B.

Repeat for $s = (\alpha + 1) \ln n$ rounds. If you don't have a cover simply repeat the whole process.

$$E[\cos t] = \Pr[success] \cdot E[\cos t \mid success] \\ + \Pr[no \ success] \cdot E[\cos t \mid no \ success]$$

This means

$$\begin{split} &E[\cos t \mid \mathsf{success}] \\ &= \frac{1}{\Pr[\mathsf{succ.}]} \Big(E[\cos t] - \Pr[\mathsf{no} \ \mathsf{success}] \cdot E[\cos t \mid \mathsf{no} \ \mathsf{success}] \Big) \\ &\leq \frac{1}{\Pr[\mathsf{succ.}]} E[\cos t] \leq \frac{1}{1 - n^{-\alpha}} (\alpha + 1) \ln n \cdot \mathsf{cost}(\mathsf{LP}) \\ &\leq 2(\alpha + 1) \ln n \cdot \mathsf{OPT} \end{split}$$

for $n \ge 2$ and $\alpha \ge 1$.

EADS II © Harald Räcke

Expected Cost

Version A. Repeat for $s=(\alpha+1)\ln n$ rounds. If you don't have a cover simply take for each element u the cheapest set that contains u.

$$E[\cos t] \le (\alpha + 1) \ln n \cdot \cos t(LP) + (n \cdot OPT) n^{-\alpha} = \mathcal{O}(\ln n) \cdot OPT$$

EADS II © Harald Räcke

13.5 Randomized Rounding

305

Randomized rounding gives an $\mathcal{O}(\log n)$ approximation. The running time is polynomial with high probability.

Theorem 6 (without proof)

There is no approximation algorithm for set cover with approximation guarantee better than $\frac{1}{2}\log n$ unless NP has quasi-polynomial time algorithms (algorithms with running time $2^{\text{poly}(\log n)}$).

Integrality Gap

The integrality gap of the SetCover LP is $\Omega(\log n)$.

- $n = 2^k 1$
- ▶ Elements are all vectors \vec{x} over GF[2] of length k (excluding zero vector).
- ightharpoonup Every vector \vec{y} defines a set as follows

$$S_{\vec{\mathcal{V}}} := \{ \vec{x} \mid \vec{x}^T \vec{\mathcal{V}} = 1 \}$$

- \blacktriangleright each set contains 2^{k-1} vectors; each vector is contained in 2^{k-1} sets
- $x_i = \frac{1}{2^{k-1}} = \frac{2}{n+1}$ is fractional solution.

13.5 Randomized Rounding

308

Techniques:

- ▶ Deterministic Rounding
- Rounding of the Dual
- Primal Dual
- Greedy
- Randomized Rounding
- Local Search
- ► Rounding Data + Dynamic Programming

Integrality Gap

Every collection of p < k sets does not cover all elements.

Hence, we get a gap of $\Omega(\log n)$.

EADS II © Harald Räcke

13.5 Randomized Rounding

309