

Technique 2: Rounding the Dual Solution.

Lemma 3

The resulting index set is an f-approximation.

Proof:

Every $u \in U$ is covered.

- Suppose there is a *u* that is not covered.
- This means $\sum_{u:u\in S_i} y_u < w_i$ for all sets S_i that contain u.
- But then y_u could be increased in the dual solution without violating any constraint. This is a contradiction to the fact that the dual solution is optimal.

Technique 2: Rounding the Dual Solution.

Rounding Algorithm:

Let I denote the index set of sets for which the dual constraint is tight. This means for all $i \in I$

EADS II © Harald Räcke	13.2 Rounding the Dual	289

290

Let I denote the solution obtained by the first rounding algorithm and I' be the solution returned by the second algorithm. Then

 $I \subseteq I'$.

This means I' is never better than I.

- Suppose that we take S_i in the first algorithm. I.e., $i \in I$.
- This means $x_i \ge \frac{1}{f}$.

EADS II

|||||| © Harald Räcke

- Because of Complementary Slackness Conditions the corresponding constraint in the dual must be tight.
- Hence, the second algorithm will also choose S_i .

EADS II	13.2 Rounding the Dual	
🛛 🕒 🗋 🕼 © Harald Räcke		292

Techni	ique 3: The Primal Dual Method
A	Igorithm 1 PrimalDual
2	2: $I \leftarrow \emptyset$ 3: while exists $u \notin \bigcup_{i \in I} S_i$ do
2	4: increase dual variable y_u until constraint for some new set S_ℓ becomes tight 5: $I \leftarrow I \cup \{\ell\}$
2	$5: I \leftarrow I \cup \{\ell\}$

13.3 Primal Dual Technique

Technique 3: The Primal Dual Method

The previous two rounding algorithms have the disadvantage that it is necessary to solve the LP. The following method also gives an f-approximation without solving the LP.

For estimating the cost of the solution we only required two properties.

1. The solution is dual feasible and, hence,

 $\sum_{u} y_{u} \le \operatorname{cost}(x^{*}) \le \operatorname{OPT}$

where x^* is an optimum solution to the primal LP.

2. The set *I* contains only sets for which the dual inequality is tight.

Of course, we also need that *I* is a cover.

ם ה	EADS II
	© Harald Räcke

Τ

13.3 Primal Dual Technique

1.1

cnniqu	e 4: The Greedy Algorithm
Algo	ithm 1 Greedy
1: I	- Ø
2: \hat{S}_j	$\leftarrow S_j$ for all j
3: w	hile I not a set cover do
4:	$\ell \leftarrow \arg \min_{j:\hat{S}_j \neq 0} \frac{w_j}{ \hat{S}_i }$
5:	$I \leftarrow I \cup \{\ell\}$
6:	$\hat{S}_j \leftarrow \hat{S}_j - S_\ell$ for all j

In every round the Greedy algorithm takes the set that covers remaining elements in the most cost-effective way.

We choose a set such that the ratio between cost and still uncovered elements in the set is minimized.

294

293