
Technique 2: Rounding the Dual Solution.

Relaxation for Set Cover

Primal:

min
∑
i∈Iwixi

s.t. ∀u
∑
i:u∈Si xi ≥ 1

xi ≥ 0

Dual:

max
∑
u∈U yu

s.t. ∀i
∑
u:u∈Si yu ≤ wi

yu ≥ 0
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Technique 2: Rounding the Dual Solution.

Rounding Algorithm:

Let I denote the index set of sets for which the dual constraint is

tight. This means for all i ∈ I∑
u:u∈Si

yu = wi
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Technique 2: Rounding the Dual Solution.

Lemma 3

The resulting index set is an f -approximation.

Proof:

Every u ∈ U is covered.

ñ Suppose there is a u that is not covered.

ñ This means
∑
u:u∈Si yu < wi for all sets Si that contain u.

ñ But then yu could be increased in the dual solution without

violating any constraint. This is a contradiction to the fact

that the dual solution is optimal.
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Technique 2: Rounding the Dual Solution.

Proof:

∑
i∈I
wi

=
∑
i∈I

∑
u:u∈Si

yu

=
∑
u
|{i ∈ I : u ∈ Si}| ·yu

≤
∑
u
fuyu

≤ f
∑
u
yu

≤ fcost(x∗)

≤ f ·OPT
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Let I denote the solution obtained by the first rounding

algorithm and I′ be the solution returned by the second

algorithm. Then

I ⊆ I′ .

This means I′ is never better than I.

ñ Suppose that we take Si in the first algorithm. I.e., i ∈ I.
ñ This means xi ≥ 1

f .

ñ Because of Complementary Slackness Conditions the

corresponding constraint in the dual must be tight.

ñ Hence, the second algorithm will also choose Si.
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