Strong Duality

Theorem 2 (Strong Duality)

Let P and D be a primal dual pair of linear programs, and let z^{*} and w^{*} denote the optimal solution to P and D, respectively. Then

$$
z^{*}=w^{*}
$$

Lemma 3 (Weierstrass)

Let X be a compact set and let $f(x)$ be a continuous function on X. Then $\min \{f(x): x \in X\}$ exists.

Lemma 4 (Projection Lemma)

Let $X \subseteq \mathbb{R}^{m}$ be a non-empty convex set, and let $y \notin X$. Then there exist $x^{*} \in X$ with minimum distance from y. Moreover for all $x \in X$ we have $\left(y-x^{*}\right)^{T}\left(x-x^{*}\right) \leq 0$.

Proof of the Projection Lemma

- Define $f(x)=\|y-x\|$.

Proof of the Projection Lemma

- Define $f(x)=\|y-x\|$.
- We want to apply Weierstrass but X may not be bounded.

Proof of the Projection Lemma

- Define $f(x)=\|y-x\|$.
- We want to apply Weierstrass but X may not be bounded.
- $X \neq \emptyset$. Hence, there exists $x^{\prime} \in X$.

Proof of the Projection Lemma

- Define $f(x)=\|y-x\|$.
- We want to apply Weierstrass but X may not be bounded.
- $X \neq \emptyset$. Hence, there exists $x^{\prime} \in X$.
- Define $X^{\prime}=\left\{x \in X \mid\|y-x\| \leq\left\|y-x^{\prime}\right\|\right\}$. This set is closed and bounded.

y

Proof of the Projection Lemma

- Define $f(x)=\|y-x\|$.
- We want to apply Weierstrass but X may not be bounded.
- $X \neq \emptyset$. Hence, there exists $x^{\prime} \in X$.
- Define $X^{\prime}=\left\{x \in X \mid\|y-x\| \leq\left\|y-x^{\prime}\right\|\right\}$. This set is closed and bounded.
- Applying Weierstrass gives the existence.

Proof of the Projection Lemma (continued)

Proof of the Projection Lemma (continued)

x^{*} is minimum. Hence $\left\|y-x^{*}\right\|^{2} \leq\|y-x\|^{2}$ for all $x \in X$.

Proof of the Projection Lemma (continued)

x^{*} is minimum. Hence $\left\|y-x^{*}\right\|^{2} \leq\|y-x\|^{2}$ for all $x \in X$.
By convexity: $x \in X$ then $x^{*}+\epsilon\left(x-x^{*}\right) \in X$ for all $0 \leq \epsilon \leq 1$.

Proof of the Projection Lemma (continued)

x^{*} is minimum. Hence $\left\|y-x^{*}\right\|^{2} \leq\|y-x\|^{2}$ for all $x \in X$.
By convexity: $x \in X$ then $x^{*}+\epsilon\left(x-x^{*}\right) \in X$ for all $0 \leq \epsilon \leq 1$.

$$
\left\|y-x^{*}\right\|^{2}
$$

Proof of the Projection Lemma (continued)

x^{*} is minimum. Hence $\left\|y-x^{*}\right\|^{2} \leq\|y-x\|^{2}$ for all $x \in X$.
By convexity: $x \in X$ then $x^{*}+\epsilon\left(x-x^{*}\right) \in X$ for all $0 \leq \epsilon \leq 1$.

$$
\left\|y-x^{*}\right\|^{2} \leq\left\|y-x^{*}-\epsilon\left(x-x^{*}\right)\right\|^{2}
$$

Proof of the Projection Lemma (continued)

x^{*} is minimum. Hence $\left\|y-x^{*}\right\|^{2} \leq\|y-x\|^{2}$ for all $x \in X$.
By convexity: $x \in X$ then $x^{*}+\epsilon\left(x-x^{*}\right) \in X$ for all $0 \leq \epsilon \leq 1$.

$$
\begin{aligned}
\left\|y-x^{*}\right\|^{2} & \leq\left\|y-x^{*}-\epsilon\left(x-x^{*}\right)\right\|^{2} \\
& =\left\|y-x^{*}\right\|^{2}+\epsilon^{2}\left\|x-x^{*}\right\|^{2}-2 \epsilon\left(y-x^{*}\right)^{T}\left(x-x^{*}\right)
\end{aligned}
$$

Proof of the Projection Lemma (continued)

x^{*} is minimum. Hence $\left\|y-x^{*}\right\|^{2} \leq\|y-x\|^{2}$ for all $x \in X$.
By convexity: $x \in X$ then $x^{*}+\epsilon\left(x-x^{*}\right) \in X$ for all $0 \leq \epsilon \leq 1$.

$$
\begin{aligned}
\left\|y-x^{*}\right\|^{2} & \leq\left\|y-x^{*}-\epsilon\left(x-x^{*}\right)\right\|^{2} \\
& =\left\|y-x^{*}\right\|^{2}+\epsilon^{2}\left\|x-x^{*}\right\|^{2}-2 \epsilon\left(y-x^{*}\right)^{T}\left(x-x^{*}\right)
\end{aligned}
$$

Hence, $\left(y-x^{*}\right)^{T}\left(x-x^{*}\right) \leq \frac{1}{2} \epsilon\left\|x-x^{*}\right\|^{2}$.

Proof of the Projection Lemma (continued)

x^{*} is minimum. Hence $\left\|y-x^{*}\right\|^{2} \leq\|y-x\|^{2}$ for all $x \in X$.
By convexity: $x \in X$ then $x^{*}+\epsilon\left(x-x^{*}\right) \in X$ for all $0 \leq \epsilon \leq 1$.

$$
\begin{aligned}
\left\|y-x^{*}\right\|^{2} & \leq\left\|y-x^{*}-\epsilon\left(x-x^{*}\right)\right\|^{2} \\
& =\left\|y-x^{*}\right\|^{2}+\epsilon^{2}\left\|x-x^{*}\right\|^{2}-2 \epsilon\left(y-x^{*}\right)^{T}\left(x-x^{*}\right)
\end{aligned}
$$

Hence, $\left(y-x^{*}\right)^{T}\left(x-x^{*}\right) \leq \frac{1}{2} \epsilon\left\|x-x^{*}\right\|^{2}$.
Letting $\epsilon \rightarrow 0$ gives the result.

Theorem 5 (Separating Hyperplane)

Let $X \subseteq \mathbb{R}^{m}$ be a non-empty closed convex set, and let $y \notin X$. Then there exists a separating hyperplane $\left\{x \in \mathbb{R}: a^{T} x=\alpha\right\}$ where $a \in \mathbb{R}^{m}, \alpha \in \mathbb{R}$ that separates y from X. ($a^{T} y<\alpha$; $a^{T} x \geq \alpha$ for all $x \in X$)

Proof of the Hyperplane Lemma

- Let $x^{*} \in X$ be closest point to y in X.

Proof of the Hyperplane Lemma

- Let $x^{*} \in X$ be closest point to y in X.
- By previous lemma $\left(y-x^{*}\right)^{T}\left(x-x^{*}\right) \leq 0$ for all $x \in X$.

Proof of the Hyperplane Lemma

- Let $x^{*} \in X$ be closest point to y in X.
- By previous lemma $\left(y-x^{*}\right)^{T}\left(x-x^{*}\right) \leq 0$ for all $x \in X$.
- Choose $a=\left(x^{*}-y\right)$ and $\alpha=a^{T} x^{*}$.

Proof of the Hyperplane Lemma

- Let $x^{*} \in X$ be closest point to y in X.
- By previous lemma $\left(y-x^{*}\right)^{T}\left(x-x^{*}\right) \leq 0$ for all $x \in X$.
- Choose $a=\left(x^{*}-y\right)$ and $\alpha=a^{T} x^{*}$.
- For $x \in X: a^{T}\left(x-x^{*}\right) \geq 0$, and, hence, $a^{T} x \geq \alpha$.

Proof of the Hyperplane Lemma

- Let $x^{*} \in X$ be closest point to y in X.
- By previous lemma $\left(y-x^{*}\right)^{T}\left(x-x^{*}\right) \leq 0$ for all $x \in X$.
- Choose $a=\left(x^{*}-y\right)$ and $\alpha=a^{T} x^{*}$.
- For $x \in X: a^{T}\left(x-x^{*}\right) \geq 0$, and, hence, $a^{T} x \geq \alpha$.
- Also, $a^{T} y=a^{T}\left(x^{*}-a\right)=\alpha-\|a\|^{2}<\alpha$

Lemma 6 (Farkas Lemma)

Let A be an $m \times n$ matrix, $b \in \mathbb{R}^{m}$. Then exactly one of the following statements holds.

1. $\exists x \in \mathbb{R}^{n}$ with $A x=b, x \geq 0$
2. $\exists y \in \mathbb{R}^{m}$ with $A^{T} y \geq 0, b^{T} y<0$

Lemma 6 (Farkas Lemma)

Let A be an $m \times n$ matrix, $b \in \mathbb{R}^{m}$. Then exactly one of the following statements holds.

1. $\exists x \in \mathbb{R}^{n}$ with $A x=b, x \geq 0$
2. $\exists y \in \mathbb{R}^{m}$ with $A^{T} y \geq 0, b^{T} y<0$

Assume \hat{x} satisfies 1. and \hat{y} satisfies 2 . Then

$$
0>y^{T} b=y^{T} A x \geq 0
$$

Lemma 6 (Farkas Lemma)

Let A be an $m \times n$ matrix, $b \in \mathbb{R}^{m}$. Then exactly one of the following statements holds.

1. $\exists x \in \mathbb{R}^{n}$ with $A x=b, x \geq 0$
2. $\exists y \in \mathbb{R}^{m}$ with $A^{T} y \geq 0, b^{T} y<0$

Assume \hat{x} satisfies 1. and \hat{y} satisfies 2 . Then

$$
0>y^{T} b=y^{T} A x \geq 0
$$

Hence, at most one of the statements can hold.

Proof of Farkas Lemma

Proof of Farkas Lemma

Now, assume that 1 . does not hold.

Proof of Farkas Lemma

Now, assume that 1 . does not hold.
Consider $S=\{A x: x \geq 0\}$ so that S closed, convex, $b \notin S$.

Proof of Farkas Lemma

Now, assume that 1 . does not hold.
Consider $S=\{A x: x \geq 0\}$ so that S closed, convex, $b \notin S$.
We want to show that there is y with $A^{T} y \geq 0, b^{T} y<0$.

Proof of Farkas Lemma

Now, assume that 1 . does not hold.
Consider $S=\{A x: x \geq 0\}$ so that S closed, convex, $b \notin S$.
We want to show that there is y with $A^{T} y \geq 0, b^{T} y<0$.
Let y be a hyperplane that separates b from S. Hence, $y^{T} b<\alpha$ and $y^{T} s \geq \alpha$ for all $s \in S$.

Proof of Farkas Lemma

Now, assume that 1 . does not hold.
Consider $S=\{A x: x \geq 0\}$ so that S closed, convex, $b \notin S$.
We want to show that there is y with $A^{T} y \geq 0, b^{T} y<0$.
Let y be a hyperplane that separates b from S. Hence, $y^{T} b<\alpha$ and $y^{T} s \geq \alpha$ for all $s \in S$.
$0 \in S \Rightarrow \alpha \leq 0 \Rightarrow y^{T} b<0$

Proof of Farkas Lemma

Now, assume that 1 . does not hold.
Consider $S=\{A x: x \geq 0\}$ so that S closed, convex, $b \notin S$.
We want to show that there is y with $A^{T} y \geq 0, b^{T} y<0$.
Let y be a hyperplane that separates b from S. Hence, $y^{T} b<\alpha$ and $y^{T} s \geq \alpha$ for all $s \in S$.
$0 \in S \Rightarrow \alpha \leq 0 \Rightarrow y^{T} b<0$
$y^{T} A x \geq \alpha$ for all $x \geq 0$.

Proof of Farkas Lemma

Now, assume that 1 . does not hold.
Consider $S=\{A x: x \geq 0\}$ so that S closed, convex, $b \notin S$.
We want to show that there is y with $A^{T} y \geq 0, b^{T} y<0$.
Let y be a hyperplane that separates b from S. Hence, $y^{T} b<\alpha$ and $y^{T} s \geq \alpha$ for all $s \in S$.
$0 \in S \Rightarrow \alpha \leq 0 \Rightarrow y^{T} b<0$
$y^{T} A x \geq \alpha$ for all $x \geq 0$. Hence, $y^{T} A \geq 0$ as we can choose x arbitrarily large.

Lemma 7 (Farkas Lemma; different version)

Let A be an $m \times n$ matrix, $b \in \mathbb{R}^{m}$. Then exactly one of the following statements holds.

1. $\exists x \in \mathbb{R}^{n}$ with $A x \leq b, x \geq 0$
2. $\exists y \in \mathbb{R}^{m}$ with $A^{T} y \geq 0, b^{T} y<0, y \geq 0$

Lemma 7 (Farkas Lemma; different version)

Let A be an $m \times n$ matrix, $b \in \mathbb{R}^{m}$. Then exactly one of the following statements holds.

1. $\exists x \in \mathbb{R}^{n}$ with $A x \leq b, x \geq 0$
2. $\exists y \in \mathbb{R}^{m}$ with $A^{T} y \geq 0, b^{T} y<0, y \geq 0$

Rewrite the conditions:

1. $\exists x \in \mathbb{R}^{n}$ with $[A I] \cdot\left[\begin{array}{c}x \\ s\end{array}\right]=b, x \geq 0, s \geq 0$
2. $\exists y \in \mathbb{R}^{m}$ with $\left[\begin{array}{c}A^{T} \\ I\end{array}\right] y \geq 0, b^{T} y<0$

Proof of Strong Duality

$$
\begin{aligned}
& P: z=\max \left\{c^{T} x \mid A x \leq b, x \geq 0\right\} \\
& D: w=\min \left\{b^{T} y \mid A^{T} y \geq c, y \geq 0\right\}
\end{aligned}
$$

Theorem 8 (Strong Duality)

Let P and D be a primal dual pair of linear programs, and let z and w denote the optimal solution to P and D, respectively (i.e., P and D are non-empty). Then

$$
z=w
$$

Proof of Strong Duality

Proof of Strong Duality

$z \leq \boldsymbol{w}$: follows from weak duality

Proof of Strong Duality

$z \leq \boldsymbol{w}$: follows from weak duality
$z \geq \boldsymbol{w}:$

Proof of Strong Duality

$z \leq \boldsymbol{w}$: follows from weak duality
$z \geq \boldsymbol{w}$:
We show $z<\alpha$ implies $w<\alpha$.

Proof of Strong Duality

$z \leq \boldsymbol{w}$: follows from weak duality
$z \geq \boldsymbol{w}$:
We show $z<\alpha$ implies $w<\alpha$.

$$
\begin{aligned}
& \exists x \in \mathbb{R}^{n} \\
& \text { s.t. } A x \leq b \\
& -c^{T} x \leq-\alpha \\
& x \geq 0
\end{aligned}
$$

Proof of Strong Duality

$z \leq \boldsymbol{w}$: follows from weak duality
$z \geq \boldsymbol{w}$:
We show $z<\alpha$ implies $w<\alpha$.

$$
\exists y \in \mathbb{R}^{m} ; v \in \mathbb{R}
$$

$$
\begin{aligned}
& \text { set. } A^{T} y-c v \geq 0 \\
& b^{T} y-\alpha v<0 \\
& y, v \geq 0
\end{aligned}
$$

$$
\begin{aligned}
& \exists x \in \mathbb{R}^{n} \\
& \text { set. } A x \leq b \\
& -c^{T} x \leq-\alpha \\
& x \geq 0
\end{aligned}
$$

Proof of Strong Duality

$\boldsymbol{z} \leq \boldsymbol{w}$: follows from weak duality
$z \geq \boldsymbol{w}$:
We show $z<\alpha$ implies $w<\alpha$.

$$
\begin{array}{rrl}
\exists x \in \mathbb{R}^{n} & & \\
\text { s.t. } & A x & \leq b \\
& -c^{T} x & \leq-\alpha \\
& x & \geq 0
\end{array}
$$

$$
\begin{array}{rr}
\exists y \in \mathbb{R}^{m} ; v \in \mathbb{R} & \\
\text { s.t. } & A^{T} y-c v \geq 0 \\
& b^{T} y-\alpha v<0 \\
& y, v \geq 0
\end{array}
$$

From the definition of α we know that the first system is infeasible; hence the second must be feasible.

Proof of Strong Duality

$\exists y \in \mathbb{R}^{m} ; v \in \mathbb{R}$

$$
\begin{aligned}
\text { s.t. } \quad A^{T} y-v & \geq 0 \\
b^{T} y-\alpha v & <0 \\
y, v & \geq 0
\end{aligned}
$$

Proof of Strong Duality

$$
\begin{array}{rr}
\exists y \in \mathbb{R}^{m} ; v \in \mathbb{R} & \\
\text { s.t. } \begin{aligned}
A^{T} y-v & \geq 0 \\
& b^{T} y-\alpha v
\end{aligned}<0 \\
& y, v
\end{array}
$$

If the solution y, v has $v=0$ we have that

$$
\begin{array}{rr}
\exists y \in \mathbb{R}^{m} & \\
\text { s.t. } & A^{T} y \\
& \geq 0 \\
& b^{T} y
\end{array}<0
$$

is feasible.

Proof of Strong Duality

$$
\begin{aligned}
& \exists y \in \mathbb{R}^{m} ; v \in \mathbb{R} \\
& \text { s.t. } \begin{aligned}
A^{T} y-v & \geq 0 \\
b^{T} y-\alpha v & <0 \\
y, v & \geq 0
\end{aligned}
\end{aligned}
$$

If the solution y, v has $v=0$ we have that

$$
\begin{array}{rr}
\exists y \in \mathbb{R}^{m} & \\
\text { s.t. } & A^{T} y \\
& \geq 0 \\
& b^{T} y
\end{array}<0
$$

is feasible. By Farkas lemma this gives that LP P is infeasible.
Contradiction to the assumption of the lemma.

Proof of Strong Duality

Proof of Strong Duality

Hence, there exists a solution y, v with $v>0$.

Proof of Strong Duality

Hence, there exists a solution y, v with $v>0$.
We can rescale this solution (scaling both y and v) s.t. $v=1$.

Proof of Strong Duality

Hence, there exists a solution y, v with $v>0$.
We can rescale this solution (scaling both y and v) s.t. $v=1$.
Then y is feasible for the dual but $b^{T} y<\alpha$. This means that $w<\alpha$.

Fundamental Questions

Definition 9 (Linear Programming Problem (LP))
Let $A \in \mathbb{Q}^{m \times n}, b \in \mathbb{Q}^{m}, c \in \mathbb{Q}^{n}, \alpha \in \mathbb{Q}$. Does there exist
$x \in \mathbb{Q}^{n}$ s.t. $A x=b, x \geq 0, c^{T} x \geq \alpha$?

Questions:

- Is LP in NP?
- Is LP in co-NP? yes!
- Is LP in P?

Fundamental Questions

Definition 9 (Linear Programming Problem (LP))
Let $A \in \mathbb{Q}^{m \times n}, b \in \mathbb{Q}^{m}, c \in \mathbb{Q}^{n}, \alpha \in \mathbb{Q}$. Does there exist
$x \in \mathbb{Q}^{n}$ s.t. $A x=b, x \geq 0, c^{T} x \geq \alpha$?

Questions:

- Is LP in NP?
- Is LP in co-NP? yes!
- Is LP in P?

Proof:

- Given a primal maximization problem P and a parameter α. Suppose that $\alpha>\operatorname{opt}(P)$.

Fundamental Questions

Definition 9 (Linear Programming Problem (LP))
Let $A \in \mathbb{Q}^{m \times n}, b \in \mathbb{Q}^{m}, c \in \mathbb{Q}^{n}, \alpha \in \mathbb{Q}$. Does there exist
$x \in \mathbb{Q}^{n}$ s.t. $A x=b, x \geq 0, c^{T} x \geq \alpha$?

Questions:

- Is LP in NP?
- Is LP in co-NP? yes!
- Is LP in P?

Proof:

- Given a primal maximization problem P and a parameter α. Suppose that $\alpha>\operatorname{opt}(P)$.
- We can prove this by providing an optimal basis for the dual.

Fundamental Questions

Definition 9 (Linear Programming Problem (LP))
Let $A \in \mathbb{Q}^{m \times n}, b \in \mathbb{Q}^{m}, c \in \mathbb{Q}^{n}, \alpha \in \mathbb{Q}$. Does there exist
$x \in \mathbb{Q}^{n}$ s.t. $A x=b, x \geq 0, c^{T} x \geq \alpha$?

Questions:

- Is LP in NP?
- Is LP in co-NP? yes!
- Is LP in P?

Proof:

- Given a primal maximization problem P and a parameter α. Suppose that $\alpha>\operatorname{opt}(P)$.
- We can prove this by providing an optimal basis for the dual.
- A verifier can check that the associated dual solution fulfills all dual constraints and that it has dual cost $<\alpha$.

