Duality

How do we get an upper bound to a maximization LP?

Note that a lower bound is easy to derive. Every choice of $a,b \ge 0$ gives us a lower bound (e.g. a=12,b=28 gives us a lower bound of 800).

If you take a conic combination of the rows (multiply the i-th row with $y_i \ge 0$) such that $\sum_i y_i a_{ij} \ge c_j$ then $\sum_i y_i b_i$ will be an upper bound.

74

76

Duality

Lemma 3

The dual of the dual problem is the primal problem.

Proof:

- $w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$
- $w = -\max\{-b^T y \mid -A^T y \le -c, y \ge 0\}$

The dual problem is

- $z = -\min\{-c^T x \mid -Ax \ge -b, x \ge 0\}$
- $\triangleright z = \max\{c^T x \mid Ax \le b, x \ge 0\}$

Duality

Definition 2

Let $z = \max\{c^T x \mid Ax \le b, x \ge 0\}$ be a linear program P (called the primal linear program).

The linear program D defined by

$$w = \min\{b^T \gamma \mid A^T \gamma \ge c, \gamma \ge 0\}$$

is called the dual problem.

5.1 Weak Duality

75

Weak Duality

Let $z = \max\{c^T x \mid Ax \le b, x \ge 0\}$ and $w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$ be a primal dual pair.

x is primal feasible iff $x \in \{x \mid Ax \le b, x \ge 0\}$

y is dual feasible, iff $y \in \{y \mid A^T y \ge c, y \ge 0\}$.

Theorem 4 (Weak Duality)

Let \hat{x} be primal feasible and let \hat{y} be dual feasible. Then

$$c^T \hat{x} \leq z \leq w \leq b^T \hat{v}$$
.

Weak Duality

$$A^T \hat{y} \ge c \Rightarrow \hat{x}^T A^T \hat{y} \ge \hat{x}^T c \ (\hat{x} \ge 0)$$

$$A\hat{x} \le b \Rightarrow y^T A\hat{x} \le \hat{y}^T b \ (\hat{y} \ge 0)$$

This gives

$$c^T \hat{x} \leq \hat{y}^T A \hat{x} \leq b^T \hat{y}$$
.

Since, there exists primal feasible \hat{x} with $c^T\hat{x}=z$, and dual feasible \hat{y} with $b^Ty=w$ we get $z\leq w$.

If P is unbounded then D is infeasible.

5.1 Weak Duality

78

The following linear programs form a primal dual pair:

$$z = \max\{c^T x \mid Ax = b, x \ge 0\}$$
$$w = \min\{b^T y \mid A^T y \ge c\}$$

This means for computing the dual of a standard form LP, we do not have non-negativity constraints for the dual variables.

m	ПП	EADS II © Harald	
	╝╙┖	© Harald	Räcke

5.1 Weak Duality

79