Summer Term 2015 Problem Set 02 April 20, 2014

Complexity Theory

Due date: April 27, 2014 before class!

Problem 1 (10 Points)

Define a two-dimensional Turing machine to be a TM where each of its tapes is an infinite grid (and the machine can move not only Left and Right but also Up and Down). Show that for every (time-constructible) $T: \mathbb{N} \to \mathbb{N}$ and every Boolean function f, if f can be computed in time T(n) using a two-dimensional TM then $f \in \mathbf{DTIME}(T(n)^2)$ (on a one-dimensional TM).

Problem 2 (10 Points)

A partial function from $\{0,1\}$ to $\{0,1\}$ is a function that is not necessarily defined on all its inputs. We say that a TM M computes a partial function f if for every x on which f is defined, M(x) = f(x) and for every x on which f is not defined, M gets into an infinite loop when executed on input x. If S is a set of partial functions, we define f_S to be the Boolean function that on input α outputs 1 iff M_{α} computes a partial function in S. Rice's Theorem says that for every nontrivial S (a set that is neither the empty set nor the set of all partial functions computable by some Turing machine), the function f_S is not computable.

- 1. Show that Rice's Theorem yields an alternative proof for the statement that the function HALT is not computable.
- 2. Prove Rice's Theorem.

Problem 3 (10 Points)

Recall that normally we assume that numbers are represented as strings using the binary basis. However, we could use other encoding schemes, for examples a representation of n in base b, denoted by $\lfloor n \rfloor_b$ is obtained as follows: First, represent n as a sequence of digits in $\{0,\ldots,b-1\}$, and then replace each digit $d \in \{0,\ldots,b-1\}$ by its binary representation. You have already seen the unary representation $\lfloor n \rfloor_1$.

- 1. Show that choosing a different base of representation will make no difference to the class \mathcal{P} . That is, show that for every subset S of the natural numbers, if we define $L_S^b = \{ \lfloor n \rfloor_b : n \in S \}$, then for every $b \geq 2$, $L_S^b \in \mathcal{P}$ if and only if $L_S^2 \in \mathcal{P}$.
- 2. Show that choosing the unary representation may make a difference by showing that the following language is in \mathcal{P} :

UNARYFACTORING = $\{(\lfloor n \rfloor_1, \lfloor \ell \rfloor_1, \lfloor k \rfloor_1) : \text{ there is a prime } j \in (\ell, k) \text{ dividing } n\}.$

Problem 4 (10 Points)

Prove or disprove that the following problems are in \mathcal{P} :

- 1. HALT = $\{(\alpha, x) : \text{the TM } M_{\alpha} \text{ halts on input } x\}.$
- 2. Tree = $\{G : G \text{ is a representation of a tree}\}.$
- 3. HALT_{ϵ} = { α : the TM M_{α} that halts on input ϵ }.
- 4. Given $A \in \mathbb{R}^{n \times n}$, $b, y \in \mathbb{R}^n$, define $LP = \{(A, b, y) : y \text{ is a solution to the set of linear equations } Ax = b\}.$
- 5. HALT_{in time} = $\{(\alpha, x, t) : \text{the TM } M_{\alpha} \text{ halts on input } x \text{ in at most } t \text{ time steps} \}$.
- 6. Haltout of time = { (α, x, t) : the TM M_{α} halts on input x in at least t time steps}.