## Complexity Theory

## Due date: April 27, 2014 before class!

## Problem 1 (10 Points)

Define a two-dimensional Turing machine to be a TM where each of its tapes is an infinite grid (and the machine can move not only Left and Right but also Up and Down). Show that for every (time-constructible) $T: \mathbb{N} \rightarrow \mathbb{N}$ and every Boolean function $f$, if $f$ can be computed in time $T(n)$ using a two-dimensional TM then $f \in \operatorname{DTIME}\left(T(n)^{2}\right)$ (on a one-dimensional TM).

## Problem 2 (10 Points)

A partial function from $\{0,1\}$ to $\{0,1\}$ is a function that is not necessarily defined on all its inputs. We say that a TM $M$ computes a partial function $f$ if for every $x$ on which $f$ is defined, $M(x)=f(x)$ and for every $x$ on which $f$ is not defined, $M$ gets into an infinite loop when executed on input $x$. If $S$ is a set of partial functions, we define $f_{S}$ to be the Boolean function that on input $\alpha$ outputs 1 iff $M_{\alpha}$ computes a partial function in $S$. Rice's Theorem says that for every nontrivial $S$ (a set that is neither the empty set nor the set of all partial functions computable by some Turing machine), the function $f_{S}$ is not computable.

1. Show that Rice's Theorem yields an alternative proof for the statement that the function HALT is not computable.
2. Prove Rice's Theorem.

## Problem 3 (10 Points)

Recall that normally we assume that numbers are represented as strings using the binary basis. However, we could use other encoding schemes, for examples a representation of $n$ in base $b$, denoted by $\llcorner n\lrcorner_{b}$ is obtained as follows: First, represent $n$ as a sequence of digits in $\{0, \ldots, b-1\}$, and then replace each digit $d \in\{0, \ldots, b-1\}$ by its binary representation. You have already seen the unary representation $\llcorner n\lrcorner_{1}$.

1. Show that choosing a different base of representation will make no difference to the class $\mathcal{P}$. That is, show that for every subset $S$ of the natural numbers, if we define $L_{S}^{b}=\left\{\llcorner n\lrcorner_{b}: n \in S\right\}$, then for every $b \geq 2, L_{S}^{b} \in \mathcal{P}$ if and only if $L_{S}^{2} \in \mathcal{P}$.
2. Show that choosing the unary representation may make a difference by showing that the following language is in $\mathcal{P}$ :

UnaryFactoring $=\left\{\left(\llcorner n\lrcorner_{1},\llcorner\ell\lrcorner_{1},\llcorner \lrcorner_{\perp}\right):\right.$ there is a prime $j \in(\ell, k)$ dividing $\left.n\right\}$.

## Problem 4 (10 Points)

Prove or disprove that the following problems are in $\mathcal{P}$ :

1. Halt $=\left\{(\alpha, x):\right.$ the TM $M_{\alpha}$ halts on input $\left.x\right\}$.
2. $\operatorname{Tree}=\{G: G$ is a representation of a tree $\}$.
3. $\operatorname{HaLt}_{\epsilon}=\left\{\alpha\right.$ : the TM $M_{\alpha}$ that halts on input $\left.\epsilon\right\}$.
4. Given $A \in \mathbb{R}^{n \times n}, b, y \in \mathbb{R}^{n}$, define $\mathrm{LP}=\{(A, b, y): y$ is a solution to the set of linear equations $A x=b\}$.
5. $\operatorname{HALT}_{\text {in time }}=\left\{(\alpha, x, t)\right.$ : the TM $M_{\alpha}$ halts on input $x$ in at most $t$ time steps $\}$.
6. $\operatorname{HALT}_{\text {out of time }}=\left\{(\alpha, x, t):\right.$ the TM $M_{\alpha}$ halts on input $x$ in at least $t$ time steps $\}$.
