Technische Universität München Fakultät für Informatik Lehrstuhl für Effiziente Algorithmen Prof. Dr. Ernst W. Mayr Chris Pinkau Summer Term 2015 Problem Set 04 May 4, 2015

Complexity Theory

Due date: May 11, 2015 before class!

Problem 1 (10 Points)

Prove the following two claims.

- 1. $\mathcal{P} \subseteq \mathcal{NP} \cap \mathrm{co}\mathcal{NP}$.
- 2. If $\mathcal{P} = \mathcal{N}\mathcal{P}$ then $\mathcal{N}\mathcal{P} = \operatorname{co}\mathcal{N}\mathcal{P}$.

Problem 2 (10 Points)

Recall a *Cook reduction* (i.e., the kind of reduction Stephen Cook used in his original paper to prove that SAT is \mathcal{NP} -complete): A language A is Cook reducible to a language B if there is a polynomial-time algorithm that can decide membership in A by using an oracle for B. An oracle is a subroutine that can decide membership in B in $\mathcal{O}(1)$ time. Show that the language

 $SAT = \{\varphi : \varphi \text{ is a satisfiable boolean formula}\}$

is Cook reducible to the language

TAUTOLOGY = { $\varphi : \varphi$ is a tautology, i.e., every truth assignment satisfies it}.

Problem 3 (10 Points)

Consider a graph G = (V, E). Recall the following definitions from the lecture:

- A *clique* is defined as a subset $V' \subseteq V$ of vertices such that the induced subgraph of V' is complete, i.e. all vertices in V' are pairwise connected with edges. Let $CLIQUE = \{(G, k) : \text{the graph } G \text{ has a clique of } k \text{ vertices}\}.$
- An *independent set* is defined as a subset $V' \subseteq V$ of vertices such that no two vertices of V' are connected by an edge.

Let INDSET = {(G, k) : the graph G has an independent set of k vertices}.

Show the following:

- 1. Indset \leq_m^p Clique,
- 2. CLIQUE \leq_m^p INDSET,
- 3. 3SAT \leq_m^p CLIQUE, and give the reduction,
- 4. CLIQUE is \mathcal{NP} -complete.

Problem 4 (10 Points)

Consider the problem of *map coloring*: Can you color a map with k different colors, such that no pair of adjacent countries has the same color?

- 1. Describe the map coloring problem as a proper graph problem and redefine the language k-COLORABILITY = {Maps that are colorable with at most k colors}.
- 2. Show that 2-COLORABILITY is in \mathcal{P} .
- 3. Show that 3-COLORABILITY is \mathcal{NP} -complete.