Complexity Theory

Due date: May 18, 2015 before class!

Problem 1 (10 Points)

In the Exactly One 3Sat problem, we are given a 3CNF formula φ and need to decide if there exists a satisfying assignment u for φ such that every clause of φ has exactly one true literal. Prove that Exactly One 3Sat is $\mathcal{N} \mathcal{P}$-complete.

Problem 2 (10 Points)

Define the following two covering problems:

- A vertex cover of a graph $G=(V, E)$ is a set of vertices $V^{\prime} \subseteq V$, where every edge in E is incident to at least one vertex in V^{\prime}.
Let Vertex Cover $=\{(G, k): G$ has a vertex cover of size at most $k\}$.
- Given a set U, and a family S of subsets of U, a set cover of U is a subfamily of sets $C \subseteq S$ whose union is U.
Let Set Cover $=\{(U, S, k): U$ has a set cover of size at most $k\}$.
Show the following two claims.

1. Vertex Cover is $\mathcal{N} \mathcal{P}$-complete.
2. Set Cover is $\mathcal{N} \mathcal{P}$-complete.

Problem 3 (10 Points)

Define a regular expression r over $\{0,1\}$ as

$$
r::=0|1| r r \mid(r \mid r),
$$

or, equivalently,

$$
\begin{aligned}
& r \rightarrow 0 \\
& r \rightarrow 1 \\
& r \rightarrow r r \\
& r \rightarrow(r \mid r) .
\end{aligned}
$$

The problem RegExpEq is about the question whether two languages defined by two different regular expressions are identical. A special case of this is the language REGExPEQ ${ }_{*}$, which is defined as

$$
\operatorname{REGExPEQ}_{*}=\left\{r: \text { there exists an } n \in \mathbb{N} \text { s.t. } L(r)=\Sigma^{n}\right\}
$$

where $L(r)$ denotes the language generated by r, i.e., the set of all words that can be generated by using the rules of r.
Given $\Sigma=\{0,1\}$, show that $\operatorname{REGExpE}_{*}$ is $\operatorname{coN} \mathcal{P} \mathcal{P}$-complete.

Problem 4 (10 Points)

Define the class $\mathbf{D P}=\left\{L=L_{1} \cap L_{2}: L_{1} \in \mathcal{N} \mathcal{P}, L_{2} \in \operatorname{coN} \mathcal{P}\right\}$. (Note that we do not know if $\mathbf{D P}=\mathcal{N P} \cap \operatorname{coN} \mathcal{P}$.) Consider the following languages:

ExactIndset $=\{(G, k):$ the largest independent set of G has size exactly $k\}$,
Critical Sat $=\{\varphi: \varphi$ in 3CNF is unsatisfiable, but deleting any clause makes it satisfiable $\}$.
Show the following:

1. ExactIndset $\in \mathbf{D P}$.
2. Critical Sat is DP-complete.

Hint: Use a DP-complete problem and reduce it to Critical Sat. What would be the obvious choice for a DP-complete problem?

