Technische Universität München Fakultät für Informatik Lehrstuhl für Effiziente Algorithmen Prof. Dr. Ernst W. Mayr Chris Pinkau

Complexity Theory

Due date: July 13, 2015 before class!

Problem 1 (10 Points)

Show the following two claims:

- 1. *Perfect soundness* collapses the class IP to \mathcal{NP} , where perfect soundness means soundness with error probability 0.
- 2. Perfect completeness does not change the power of \mathbf{IP} , where perfect completeness means completeness with error probability 0.

Problem 2 (10 Points)

Give an interactive protocol to show that GRAPH ISOMORPHISM \in **IP**.

Problem 3 (10 Points)

Let p be a prime number. An integer a is a quadratic residue modulo p if there is some integer b s.t. $a \equiv b^2 \mod p$.

- 1. Show that $QR := \{(a, p) \in \mathbb{Z}^2 : a \text{ is a quadratic residue modulo } p\}$ is in \mathcal{NP} .
- 2. Let $QNR := \{(a, p) \in \mathbb{Z}^2 : a \text{ is not a quadratic residue modulo } p\}$. Complete the following sketch of an interactive proof protocol for QNR and show its completeness and soundness:
 - i.) Input: integer a and prime p.
 - ii.) V chooses $r \in \{0, \dots, p-1\}$ and $b \in \{0, 1\}$ uniformly at random, keeping both secret.

If b = 0, V sends $r^2 \mod p$ to P.

If b = 1, V sends $ar^2 \mod p$ to P.

iii.) ...

Problem 4 (10 Points)

A *zero-knowledge* proof system is an interactive proof system where the prover can convince the verifier that a given statement is true, without revealing any additional information about the statement apart from whether it is true or not. (For example, the protocol for GRAPH NONISOMORPHISM is zero-knowledge.)

Zero-knowledge proofs are highly important in Cryptography: for an authentication process one wants to convince the machine that indeed the password is correct, but without ever revealing it.

Describe a zero-knowledge interactive proof system for HAMCYCLE, which contains all graphs which have a Hamiltonian cycle.