
T U M
I N S T I T U T F Ü R I N F O R M A T I K

All-Pairs Common-Ancestor Problems

in Weighted Dags

Matthias Baumgart Stefan Eckhardt Jan Griebsch

Sven Kosub Johannes Nowak

TUM-I0606

April 06

T E C H N I S C H E U N I V E R S I T Ä T M Ü N C H E N

TUM-INFO-04-I0606-0/1.-FI

Alle Rechte vorbehalten

Nachdruck auch auszugsweise verboten

c©2006

Druck: Institut für Informatik der

Technischen Universität München

All-Pairs Common-Ancestor Problems in Weighted Dags

Matthias Baumgart Stefan Eckhardt Jan Griebsch
Sven Kosub Johannes Nowak

Fakultät für Informatik, Technische Universität München,

Boltzmannstraße 3, D-85748 Garching, Germany
{baumgart,eckhardt,griebsch,kosub,nowakj}@in.tum.de

Abstract

This work considers the (lowest) common ancestor problem in weighted directed acyclic
graphs. The minimum-weight (lowest) common ancestor of two vertices is the vertex
among the set of (lowest) common ancestors with the smallest ancestral distance. For the
all-pairs minimum-weight common ancestor problem we present an O(nm) algorithm for
arbitrary edge weights which is optimal for sparse graphs and an O(n2.575) algorithm for
dense graphs with moderately bounded edge weights based on matrix multiplication. The
presented solutions to the all-pairs minimum-weight lowest common ancestor problem are
based upon solutions of the all-pairs all lowest common ancestors problem in unweighted
graphs, which represents an upper bound. For the all-pairs all lowest common ancestors
problem we give an O(nmk2) algorithm, with k the bound on the maximum number of
lowest common ancestors for pairs, and an O(nmwidth(G)) algorithm, where width(G)
is the size of the largest antichain (independent set) in the transitive closure of G. The
ideas are applicable for fast matrix multiplication implying an O(n3.616) algorithm.

1 Introduction

Directed acyclic graphs (dags) are powerful tools for modelling causality systems or other kinds
of entity dependencies. If we think of causal relations among a set of events, natural questions
come up, such as: Which events are entailed by two given events? What is the first event
which is entailed by two given events? In dags, these questions can be answered by computing
common ancestors (CAs), i.e., vertices that are reachable via any path from each of the given
vertices, and computing lowest common ancestors (LCAs), i.e., those common ancestors that
are not reachable from any other common ancestor of the two given vertices.

Although LCA algorithms for general dags are indispensable computational primitives, they
have been found an independent subject of studies only recently [5, 16]. There is a lot of
sophisticated work devoted to LCA computations for the special case of trees (see, e.g., [14, 21,
5]), but due to the limited expressive power of trees they are often applicable only in restrictive
or over-simplified settings. In [5], a list of examples can be found where LCA queries on dags
are necessary. We add two more applications.

A first one concerns phylogenetic networks. LCA algorithms have been frequently used in
the context of phylogenetic trees, i.e., trees that depict the ancestor relations of species, genes,

1

or features. Bacteria obtain a large portion of their genetic diversity through the acquisition of
distantly related organisms, via horizontal gene transfer (HGT) or recombination. While views
as to the extent of HGT and cross species recombination in bacteria differ, it is widely accepted
that they are among the main processes driving prokaryotic evolution and are (with random
mutations) mainly responsible for the development of antibiotic resistance. Such evolutionary
developments cannot be modeled by trees, and thus there has been an increasing interest in
phylogenetic dag networks and appropriate analysis methods [18, 17, 19]. Unfortunately, many
of the established approaches from phylogenetic trees cannot trivially be extended to dags.
This is particularly true for the computation of ancestor relationships.

A second application is related to Network protocols. Currently, Internet inter-domain
routing is mainly done using the Border Gateway Protocol (BGP). BGP allows participating
autonomous systems to announce and withdraw routable paths over physical connections with
their neighbors. This process is governed by local routing policies which are rationally based
on commercial relationships between autonomous systems. It has been recognized that, even
if globally well-configurated, these local policies have a critical influence on routing stability
and quality [13, 12]. An orientation of the underlying connectivity graph imposed by customer-
to-provider relations can be viewed as a dag. Routes through the Internet have the typical
structure of uphill and downhill parts to the left and right of a top provider in the middle
of the route (see, e.g., [11]). Computing such top providers, which are just CAs and LCAs,
is needed for reliability or efficiency analyses. In some experimental setting, we have a small
Internet sample (taken from supplementary material for [23]) which constitutes a dag with
11,256 vertices and 13,655 edges. Finding top providers for each of the 63,343,140 pairs makes
fast CA and LCA algorithms an issue.

In this paper, we continue the study of efficient LCA computation by considering the
weighted problem versions, which are not covered by the recent work in [5, 16]. More pre-
cisely, we are interested in computing, on a given weighted dag, for each pair of vertices those
CAs or LCAs that have in total the shortest distance to both vertices of the pair. We call
these problems All-Pairs Min-Weight CA and All-Pairs Min-Weight LCA, respec-
tively. Weights are of importance as most phylogenetic networks do define some type of evo-
lutionary distances between species. In the Internet, weights model communication costs or
traffic loads.

Results. We summarize the technical contributions of this paper.

All-Pairs Min-Weight CA: We use two types of algorithms—one based on dynamic
programming and another based on matrix multiplication. Dynamic programming yields an
O(nm) algorithm for a dag having n vertices, m edges, and arbitrary edge weights. This algo-
rithm has optimal running time on sparse dags. Using fast matrix multiplication for computing
all-pairs shortest distances leads to an algorithm with time complexity of O(n2.575) on dags
with n vertices and small integer weights. To obtain this algorithm, we adapt techniques to
identify witnesses for shortest paths (see [22, 27]).

All-Pairs Min-Weight LCA: We approach this problem by designing algorithms for
the All-Pairs All LCA problem, i.e., the problem of computing for all pairs of vertices
of a dag, the set of all LCAs. This problem is a computational upper bound. We describe
a dynamic-programming-based algorithm for All-Pairs All LCA, generally achieving only
the trivial upper bound O(n2m) but which allows modification to an O(nmk2) algorithm,

2

where k is a bound on the maximum size of LCA sets. We further use Dilworth’s theo-
rem to devise a well-scaling algorithm with running time O(nm width(G)), where width(G)
is the size of the largest antichain (independent set) in the transitive closure of G. This ap-
proach is also applicable for fast matrix multiplication implying an O(n3.616) algorithm. Al-
though there is an information-theoretic gap of factor n between the matrix representations
for All-Pairs Min-Weight LCA and All-Pairs All LCA (a Θ(n2)-space matrix versus
a worst-case Θ(n3)-space matrix), we do not know how to avoid using All-Pairs All LCA.

Note that after computing the LCA matrices query times are all O(1).

Related work. LCA algorithms have been extensively studied in the context of trees with
most of the research rooted in [1, 24]. The first optimal algorithm for the all-pairs LCA problem
in trees, with linear preprocessing time and constant query time, was given in [14]. The same
asymptotics was reached using a simpler and parallelizable algorithm in [21]. Recently, a
reduction to range minimum queries has been used to obtain a further simplification with
optimal bounds on running time [5]. More algorithmic variants can be found in, e.g., [6, 26,
25, 7].

In the more general case of dags, a pair of nodes may have more than one LCA, which leads
to the distinction of representative versus all LCA solutions. In early research both versions
still coincide by considering dags with each pair having at most one LCA. Extending the work
on LCAs in trees, in [20], an algorithm was described with linear preprocessing and constant
query time for the LCA problem on arbitrarily directed trees (or, causal polytrees). Another
solution was given in [2], where the representative problem in the context of object inheritance
lattices was studied. The approach in [2], which is based on poset embeddings into boolean
lattices yielded O(n3) preprocessing and O(logn) query time on lower semilattices.

The representative LCA problem on general dags has been recently studied in [5, 16]. Both
works rely on fast matrix multiplications (currently the fastest known algorithm needs Õ(nω),

with ω < 2.376 [8]) to achieve Õ(n
ω+3

2) [5] and Õ(n2+ 1

4−ω) [16] preprocessing time on dags with
n nodes and m edges. For sparse dags, in [16], an O(nm) algorithm has been presented as well.

2 Preliminaries

Let G = (V, E) be a directed graph with a weight function w : E → �
. Throughout this work

we denote by n the number of vertices and by m the number of edges. G is a directed acyclic
graph (dag) if and only if G contains no cycles. We say G is unweighted if w : E → c for some
constant c ∈ �

and weighted otherwise. Let TC(G) denote the transitive closure of G, i.e., the
graph having an edge (u, v) if v is reachable from u over some directed path in G.

A dag G = (V, E) imposes a partial ordering on the vertex set. Let N be a bijection from V
into {1, . . . , n}. N is said to be a topological ordering if N(u) < N(v) whenever v is reachable
from u in G. Such an ordering is consistent with the partial ordering of the vertex set imposed
by the dag. A value N(v) is said to be the topological number of v with respect to N . Observe
that a graph G is a dag if and only if it allows some topological ordering (folklore result).
Moreover, a topological ordering can be found in time O(n + m) [9]: perform a depth-first-
search on G and insert each finished vertex at the front of a linked list. Then, the order of the
vertices in the list from left to right is a topological ordering. For technical reasons, we assume

3

N(nil) = 0 throughout this work. We usually consider dags equipped with some topological
ordering. In such cases we often omit the ordering.

Let G = (V, E) be a dag and x, y, z ∈ V . The vertex z is a common ancestor (CA) of x
and y if both x and y are reachable from z, i.e., (z, x) and (z, y) are in the transitive closure
of G. By CA(x, y), we denote the set of all CAs of x and y. A vertex z is a lowest common
ancestor (LCA) of x and y if and only if z ∈ CA(x, y) and for each z ′ ∈ V with (z, z′) ∈ E we
have z′ 6∈ CA(x, y). LCA(x, y) denotes the set of all LCAs of x and y.

3 The All-Pairs Minimum-Weight CA Problem

In this section we consider the problem of finding minimum-weight common ancestors for each
pair of vertices. More specifically, we define the following problem:

Problem: All-Pairs Min-Weight CA

Input: A dag G = (V, E) with weight function w : E → �

Output: An array M of size n×n such that for all pairs of vertices x, y ∈ V , M [x, y] =
argminz∈CA(x,y) dG(z, x)+dG(z, y); if CA(x, y) = ∅ for some vertex pair (x, y),
then M [x, y] = nil. (Ties are arbitrarily broken.)

Note that we want to compute vertices and not only ancestral distances. By computing all-pairs
shortest distances of G, this information is easily deduced from the matrix M .

3.1 Applying Dynamic Programming

The first approach is based on a simple dynamic-programming technique for the closely related
All-Pairs Representative LCA problem [5]: on a given unweighted dag G = (V, E),
compute an array R of size n×n where R[x, y] = z is an LCA of x and y, if one exists. Like the
algorithms in [5, 16], our algorithm outputs the vertex z with the highest topological number
N(z) among all CAs as a representative. We will refer to a vertex z which has the maximal
topological number N(z) among all vertices in a set as the rightmost vertex.

Proposition 1. [5, 16] Let G = (V, E) be a dag and let N be a topological ordering. Further-
more, let x, y ∈ V be vertices with a non-empty set of CAs. If z ∈ V is the rightmost vertex in
CA(x, y), then z is an LCA of x and y.

Lemma 2 is more specific to dynamic programming solutions of ancestor problems.

Lemma 2. Let G = (V, E) be a dag and let x, y ∈ V be any pair of vertices. Furthermore, let
z be the rightmost LCA of x and y.

1. If (x, y) ∈ TC(G) then z = x.

2. If (x, y) /∈ TC(G) then the following holds: Let x1, . . . , xk be the parents of x. Let
z1, . . . , zk be the rightmost LCAs of the pairs (x1, y), . . . , (xk, y). Then z is the rightmost
vertex in {z1, . . . , zk}.

4

Algorithm 1: All-Pairs Representative LCA

Input: A dag G = (V,E)
Output: An array R of size n× n where R[x, y] is an LCA of x and y

begin1

Initialize R[x, y]← nil2

Compute the transitive closure TC(G) of G3

Compute a topological ordering N4

foreach v ∈ V in ascending order of N(v) do5

foreach (v, x) ∈ E do6

foreach y ∈ V with N(y) ≥ N(v) do7

if (x, y) ∈ TC(G) then R[x, y]← x8

else if N(R[v, y]) > N(R[x, y]) then R[x, y]← R[v, y]9

end10

end11

end12

end13

Proof. If (x, y) ∈ TC(G), x is the only LCA of x and y and hence the rightmost. This proves
the first statement.

For the second statement, set Z = {z1, . . . , zk} where the zi’s are vertices as described, under
the assumption that (x, y) /∈ TC(G). We only have to show that z ∈ Z since Z ⊆ CA(x, y).
Suppose for the sake of contradiction that z /∈ Z. Since z 6= x, there is a path from z to x
which includes some parent x`, 1 ≤ ` ≤ k, of x. Observe that z is a CA of x` and y and z` is a
CA of x and y. Recall that the rightmost CA is an LCA. Since z 6= z`, we have N(z) 6= N(z`).
Assume first that N(z) > N(z`). This contradicts the assumption that z` is the rightmost LCA
of x` and y. On the other hand, if N(z) < N(z`), z cannot be the rightmost LCA of x and y.
It follows that z ∈ Z.

Algorithm 1 is directly based on Proposition 1 and Lemma 2.

Theorem 3. Algorithm 1 solves All-Pairs Representative LCA in time O(nm).

Proof. The correctness follows from Lemma 2. Observe that in Line 6 the rightmost LCA of
(v, y) is already determined since the vertices are visited in topological order, i.e., all parents
of v are already processed. The running time of the above algorithm is clearly O(nm). The
preprocessing steps can be implemented in time O(nm). Then, every edge is considered exactly
once and for each edge (v, x) the entry R[x, y] is updated in constant time. This amounts also
to O(nm) total expense.

We turn our attention to All-Pairs Min-Weight CA. The problem is related to com-
puting the shortest ancestral distance of two vertices. Let dG(u, v) be the shortest distance of
two vertices u, v in G. For two vertices x, y and their CA z, the ancestral distance of x and
y with respect to z is dG(z, x) + dG(z, y). The minimum-weight CA minimizes the ancestral
distance. A naive solution is as follows:

1. Compute the all-pairs shortest distance matrix D of G.

5

Algorithm 2: All-Pairs Min-Weight CA

Input: A dag G = (V,E) with a weight function w : E → �
Output: An array M of size n× n where M [x, y] is a minimum-weight CA of x and y

begin1

Compute the all-pairs shortest-distance matrix D of G2

Compute a topological ordering N3

foreach (x, y) with D[x, y] <∞ do4

M [x, y]← x5

end6

foreach v ∈ V in ascending order of N(v) do7

foreach (v, x) ∈ E do8

foreach y ∈ V with N(y) ≥ N(v) do9

if D[M [v, y], x] + D[M [v, y], y] < D[M [x, y], y] + D[M [x, y], y] then10

M [x, y]←M [v, y]11

end12

end13

end14

end15

end16

2. For each pair x, y choose z such that D[z, x] + D[z, y] is minimized.

As the all-pairs shortest-distance matrix of a dag can be computed for arbitrary edge weights
in time O(nm) (see [9] for more details) and the second step takes time O(n) for each pair once
the shortest distances are known, the naive solution takes time O(n3).

We give an O(nm) dynamic programming solution to All-Pairs Min-Weight CA which
is similar to Algorithm 1. The following proposition describes the structure of the dynamic-
programming matrix.

Proposition 4. Let G = (V, E) be a weighted dag and let x, y be two vertices that have at least
one CA. Furthermore, let x1, . . . , xk be the parents of x and let Z = {z1, . . . , zk} be the set of the
corresponding minimum-weight CAs of (xi, y) for 1 ≤ i ≤ k. Then, for the minimum-weight
CA z of x and y it holds that z = argminz′∈Z∪{x} dG(z′, x) + dG(z′, y) .

Theorem 5. Algorithm 2 solves All-Pairs Min-Weight CA in time O(nm).

Proof. The analysis is similar to the proof of Theorem 3. The correctness follows from Propo-
sition 4: since vertices are visited in ascending topological order, the minimum weight CA of
(v, y) has already been determined at the first visit of edge (v, y) in Line 8. Finally, the running
time is clearly O(nm), because Line 2 can be achieved in time O(nm), as mentioned before.

3.2 Applying Fast Matrix-Multiplication

As mentioned above, there is a close relationship between minimum-weight CAs and shortest
ancestral distances. Moreover, it is possible to reduce the problem of computing shortest
ancestral distances to the All-Pairs Shortest-Distance problem in dags. The reduction is

6

inspired by ideas from [5]. There are classes of dags on which All-Pairs Shortest-Distance

can be solved in time o(nm). As an example of such a class, consider dags with small integer
weights and m = ω(n1+µ), where µ satisfies ω(1, µ, 1) = 1 + 2µ and ω(1, µ, 1) is the exponent
of the algebraic multiplication of an n× nµ matrix with an nµ × n matrix. Currently, the best
available bounds [8] imply µ < 0.575 (see [27] for more details). However, it is not obvious how
to derive the minimum-weight CAs from shortest ancestral distances. Our approach is based
on ideas in [22, 27] used for computing witnesses for shortest paths. A detailed description of
the reduction and the identification of minimum-weight CAs is given in the proof of Theorem
6

Theorem 6. Let A be any All-Pairs Shortest-Distance algorithm with running time
tA(n, m) on weighted dags with n vertices and m edges. Then, there is an algorithm for
All-Pairs Min-Weight CA with running time Õ(tA(n, m) + n2). Here, tA is required to
satisfy tA(O(n), O(m)) = O(tA(n, m)).

Proof. Let G = (V, E) be a dag with weight function w : E → � . Let G = (V , E) be the
reflected graph of G with weight function w : E → � , where for each x ∈ V there is a vertex
x ∈ V , (x, y) ∈ E ⇔ (y, x) ∈ E, and w(x, y) = w(y, x). Further, let G′ = (V ′, E ′) be the
following graph with weight function w′: set V = {1, . . . , n} and set V = {2n + 1, . . . , 3n},
i.e., 2n + k ∈ V is the corresponding vertex of k ∈ V for 1 ≤ k ≤ n. Let additionally
VC = {n + 1, . . . , 2n} be a set of vertices representing edges between V and V . Define EC =
{ (i, n + i) | 1 ≤ i ≤ n } ∪ { (n + i, 2n + i) | 1 ≤ i ≤ n }. Then,

V ′ =def V ∪ VC ∪ V ,

E ′ =def E ∪ E ∪ EC ,

and

w′(x, y) =def

w(x, y) if (x, y) ∈ E,
w(x, y) if (x, y) ∈ E,
0 if (x, y) ∈ EC .

The graph G′ (see Figure 1) is structurally similar to the graph used in [5] for computing
representative LCAs. However, we represent edges between vertex pairs (u, u) by additional
vertices and use original edge weights. It is easy to see that

dG′(i, 2n + j) = min
z∈CA(i,j)

dG(z, i) + dG(z, j),

i.e., the distance between i and 2n + j in G′ equals the ancestral distance between i and j in
G for all vertices i, j ∈ V . Obviously, the graph G′ can be constructed in time O(n + m).

Now let A be an All-Pairs Shortest-Distance algorithm for weighted dags. Given a
dag G = (V, E) we can construct the graph G′, solve All-Pairs Shortest-Distance on G′

using Algorithm A and then construct the n× n ancestral-distance matrix D of G with

D[i, j] = dG′(i, 2n + j)

for all i, j ∈ V . The overall process takes time O(tA(3n, 2m + 2n)). However, we cannot
directly read off the minimum weight ancestors themselves. Instead, we make use of techniques

7

G Ḡ

j 2n + j

i

k
n + k

n + i
2n + i

n + k

Figure 1: Solving All-Pairs Min-Weight CA with All-Pairs Shortest-Distance.
Dashed lines have weight zero.

described in [27] to compute witnesses for distance products. This only adds a polylogarithmic
factor to the overall running time.

The main idea behind the witnesses construction is the following: Suppose, G′′ is a graph
in which one of the vertices from VC , say the vertex n + k, 1 ≤ k ≤ n, is contained, but all
other vertices from VC and all their adjacent edges are deleted. Further, let D′ and D′′ be the
distance matrices of G′ and G′′, respectively. Apparently, for all pairs i, j with 1 ≤ i, j ≤ n,
dG′′(i, 2n + j) = dG′(i, 2n + j) implies that k lies on some shortest path from i to 2n + j
in G′ and, by construction of G′, that k lies on some shortest ancestral path in G. Thus,
we could find all pairs i, j ∈ V such that k is minimum-weight CA of i and j by solving
the All-Pairs Shortest-Distance probem on G′′ and comparing D′′ with D′, element by
element. Alas, trying all vertices from VC = {n + 1, . . . , 2n} one by one would yield O(n)
All-Pairs Shortest-Distance computations on a graph on Ω(n) vertices with Ω(m) edges.

In the following we outline a randomized approach. Assume that a pair i, j ∈ V has exactly
c minimum weight CAs. We first describe how to sample a subset V ′

C ⊆ VC (which represents
the candidates for minimum weight CAs in G) such that there is only one candidate in V ′

C for
the pair i, j with constant positive probability. Let d ∈ � satisfy n

2
≤ c ·d ≤ n and suppose that

we draw V ′
C as a multiset of size d uniformly at random from {n + 1, . . . , 2n} with repetition.

The probability of choosing exactly one of the c ancestors into V ′
C is greater than 1

2e
. This holds

for each pair which has c minimum weight CAs such that n
2
≤ c · d ≤ n, independently. By

amplification, we increase the probability for each pair to 1− 1
n
. Construct d(log 2e

2e−1
)−1 log ne

such candidate multisets V ′
C of size d each. Then, the probability that in none of these sets

there is exactly one of the c minimum weight CAs is less than (1 − 1
2e

)d(log
2e

2e−1
)−1 log ne ≤ 1

n
,

for each pair independently. Finally, letting d range from 1 to dlog ne makes sure that the
condition n

2
≤ c · d ≤ n is satisfied for each pair with c minimum weight CAs at least once with

the desired probability.

Next we show how to find all unique minimum weight CAs in a candidate set V ′
C . For all

pairs i, j ∈ V such that there is exactly one minimum weight CA k in V ′
C , we can construct k

deterministically as follows: for all 1 ≤ ` ≤ dlog ne, let I` be the set of all indices n + k in V ′
C

such that the `-th bit in the binary representation of k is one. Further, let G(`) be the graph
G′, containing all vertices v ∈ V ′

C ∩ I`, but with all other vertices from VC and all their adjacent
edges removed. Let D(`) denote the distance matrix of G(`). Again, D(`)[i, j] = D′[i, j] if and
only if the `-th bit of k is one. Also, the (unique) minimum weight CA of i and j in G must

8

have its `-th bit equal to one, too. Hence all unique minimum-weight CAs in V ′
C can be found

by computing dlog ne distance matrices D(`) and comparing them to D.

Thus, by choosing d(log 2e
2e−1

)−1(log n)2e candidate sets each of size at most n and carrying
out O(log n) All-Pairs Shortest-Distance computations for each set, it follows that the
probability that the number of pairs for which no candidate is found is greater than d(log n)3e
is less than γn for some positive γ < 1 by applying a Chernoff bound. For the remaining
such pairs, we simply test all possible ancestors. This postprocessing takes time O((log n)3 ·
n2) in expectation. The above can be derandomized by the method of c-wise ε-independent
random variables (see [3] for more details). The derandomized approach takes O((log n)6)
All-Pairs Shortest-Distance computations and the theorem follows.

Corollary 7. All-Pairs Min-Weight CA can be solved in time Õ(n2+µ), restricted to dags
with integer weights from the integer interval (−n3−ω, n3−ω), where µ satisfies ω(1, µ, 1) = 1+2µ
and ω = ω(1, µ, 1) is the exponent of the algebraic multiplication of an n × nµ matrix with an
nµ × n matrix.

From the above-mentioned, currently best bound for µ, we obtain an O(n2.575) algorithm
for All-Pairs Min-Weight CA for moderate integral edge weights.

4 The All-Pairs Min-Weight LCA Problem

In this section we consider the minimum-weight lowest common ancestor problem.

Problem: All-Pairs Min-Weight LCA

Input: A dag G = (V, E) with weight function w : E → �

Output: An array L of size n×n such that for all pairs of vertices x, y ∈ V , L[x, y] =
argminz∈LCA(x,y) dG(z, x) + dG(z, y); if LCA(x, y) = ∅ for some vertex pair
(x, y), then L[x, y] = nil. (Ties are arbitrarily broken.)

4.1 Solving the All-Pairs All LCA Problem

A generic solution for finding minimum-weight lowest common ancestors uses a solution of the
All-Pairs All LCA problem which is defined as follows: on a given dag G = (V, E), compute
an array A of size n×n such that A[x, y] = LCA(x, y). We suppose that LCA sets are stored as
lists in the matrix A. We give the following generic solution for All-Pairs Min-Weight LCA:

1. Solve All-Pairs Shortest-Distance on dag G (understood as a weighted dag).

2. Solve All-Pairs All LCA on dag G (understood as an unweighted dag).

3. For each pair (x, y) choose in time O
(

‖LCA(x, y)‖
)

the vertex z ∈ LCA(x, y) which
minimizes the ancestral distance dG(z, x) + dG(z, y) and set L[x, y] = z.

The main part of the forthcoming is dedicated to the problem of finding all LCAs of all vertex
pairs. From a solution to this problem, the minimum-weight LCA can be readily derived in
time O

(
∑

x,y∈V ‖LCA(x, y)‖
)

. A trivial lower bound for All-Pairs All LCA is Ω(n3), even
for dags with m = O(n), as can be seen in Figure 2.

9

Ω(n) vertices Ω(n) vertices

Ω(n) vertices

Figure 2: Sparse dags with an Ω(n3) total number of LCAs

Theorem 8. Let A be an algorithm that solves All-Pairs All LCA in time tA(n, m). Then,
All-Pairs Min-Weight LCA can be solved in time O(tA(n, m)).

Since all upper bounds for algorithms for All-Pairs All LCA apply to algorithms for
All-Pairs Min-Weight LCA, we concern ourselves with All-Pairs All LCA solely. Note
that in contrast, it is not clear whether it is possible to compute minimum-weight LCAs without
implicitly solving All-Pairs All LCA.

The definition of LCAs immediately yields several O(n2m) algorithms. A rather trivial one,
first, computes the transitive closure of G in O(nm). Then, it determines for every vertex z
and every pair (x, y) in time O(out-deg(z)) if z is an LCA of (x, y). Amazingly, this trivial
algorithm is optimal on sparse dags.

We proceed by giving an O(n2m) dynamic programming approach which is more suitable
for later use. This algorithm adopts ideas from Algorithm 1. Recall that z ∈ CA(x, y) is an
LCA of x and y if there is no other vertex z′ ∈ CA(x, y) such that (z, z′) ∈ TC(G). The
following is a generalization of Lemma 2.

Lemma 9. Let G = (V, E) be any dag. Let x and y be vertices of G. Let x1, . . . , xk be the
parents of x and S the union of the sets LCA(x`, y) for all 1 ≤ ` ≤ k.

1. If (x, y) ∈ TC(G) then LCA(x, y) = {x}.
2. If (x, y) /∈ TC(G) then LCA(x, y) ⊆ S. More specifically, for all v ∈ V it holds that

v ∈ LCA(x, y) if and only if v ∈ S and for all v ′ ∈ S, (v, v′) /∈ TC(G).

Proof. Case 1 is trivial. For Case 2 let z be an arbitrary LCA of x and y. Observe that all
vertices in S are CAs of x and y. Hence, we only have to show that z ∈ S. Suppose for the
sake of contradiction that z /∈ S. Then, there is a path from z to x through some parent x` of
x. Thus, z is a CA of x` and y. By assumption, z is not an LCA of x` and y. This implies,
that there is a witness z` which is an LCA of x` and y and which is reachable from z. Yet as
stated above, every CA of x` and y is also a CA of x and y. Hence, z` is also a witness to the
fact that z is not an LCA of x and y contradicting our assumption.

Lemma 9 is implemented by Algorithm 3 in the following way. The set LCA(x, y) is itera-
tively constructed by merging the sets LCA(x`, y). In the merging steps, all those vertices are
discarded that are predecessors of some other vertices in the set.

Since the vertices are visited in increasing order with respect to a topological ordering N ,
the sets A[v, y] are finally determined by the time that v is visited. All parents of v are visited
before x. This establishes the correctness of Algorithm 3.

Proposition 10. Let tmerge(n1, n2) be an upper bound for the time needed by one merge oper-
ation on sets of sizes n1 and n2. Then, Algorithm 3 takes time O(nm tmerge(n, n)).

10

Algorithm 3: All-Pairs All LCA

Input: A dag G = (V,E)
Output: An array A of size n× n where A[x, y] is the set of all LCAs of x and y

begin1

Compute the transitive closure TC(G) of G2

Compute a topological ordering N3

foreach v ∈ V in ascending order of N(v) do4

foreach y ∈ V with N(v) < N(y) do5

if (v, y) ∈ TC(G) then A[v, y]← {v}6

end7

foreach (v, x) ∈ E do8

foreach y ∈ V with N(x) < N(y) do9

if (x, y) ∈ TC(G) then A[x, y]← {x}10

else A[x, y]← Merge(A[v, y], A[x, y])11

end12

end13

end14

end15

Next we show how to implement the merge operation in Line 15. Let S1 and S2 be the
two sets that are to be merged into one set S. Recall that a vertex s1 ∈ S1 is retained in S if
there is no vertex s2 ∈ S2 that is reachable from s1 and vice versa. Hence, naively, we could
simply check this by a transitive closure look-up. To this end, a merge operation takes time
O

(

‖S1‖ · ‖S2‖
)

. For large sets, this can be improved to O(n) as follows. Along with each set

S keep a forbidden set S̃, where v ∈ S̃ if and only if there exists a vertex s ∈ S such that s
is reachable from v. Then, a vertex s1 ∈ S1 is retained if s1 /∈ S̃2. If the forbidden sets are
maintained as bitvectors, this can be checked in constant time and two sets S1 and S2 can be
merged in time O

(

‖S1‖ + ‖S2‖
)

to a new set S. The bottleneck of this merge operation is

updating the forbidden set S̃ which is done by a bitwise-or combination of S̃1 and S̃2, thus, the
merge operation takes time Θ(n).

Corollary 11. Algorithm 3 using refined merging solves All-Pairs All LCA in time O(n2m).

The advantage of this dynamic-programming-based algorithm over the trivial one is that if
we can upper bound the size k of the sets LCA(x, y) for each pair of two vertices x, y ∈ V then
we have a better upper bound on the running time whenever k = o(

√
n). In such cases we use

naive merging.

Corollary 12. Algorithm 3 can be modified such that it solves the All-Pairs All LCA prob-
lem in time O (nmk2) where k is the maximum cardinality of LCA sets.

Note that if we do not know k in advance, we can decide online which merging strategy to
use, without changing the asymptotical run-time: start Algorithm 3 with naive merging until
a vertex is reached in Line 4 having more LCAs with some neighbor vertex (Line 10) than
prescribed by some threshold. If this happens start the algorithm anew with refined merging.

As an immediate consequence we obtain fast algorithms for testing lattice-theoretic prop-
erties of posets represented by dags.

11

y

Ω(n) vertices

v

Ω(
√

m) vertices

V ′

Figure 3: Bad graph for naive merging

Corollary 13. Testing whether a given dag is a lower semilattice, an upper semilattice, or a
lattice can be done in time O(nm).

Naturally, in this context, the question arises if it is advantageous to use naive merging if
the average cardinality k of the LCA sets is bounded. That is, is the running time of Algorithm
3 in o(n2m) in this case? However, even for k ≤ c for a constant c, the answer is “no”, as the
graph in Figure 3 shows. After processing the vertex v the sets LCA(w, y) are of size Ω(n) for
all w ∈ V ′. Next, we consider only merging steps between two vertices of V ′. Observe that we
merge along edges. Since there are Ω(m) edges among vertices of V ′, these merge operations
alone amount to Ω(n2m) if implemented naively. On the other hand, it is easy to see that the
average size of the LCA sets is bounded by a constant in this example.

To summarize, we conclude with algorithmic bounds for the minimum-weight LCA problem.
Note that no restrictions on edge weights are made.

Corollary 14. All-Pairs Min-Weight LCA can be solved in time O(min{n2m, nmk2})
where k is the maximum cardinality of all LCA sets.

4.2 Scaling with Maximum Antichains

Let G = (V, E) be a dag. Let V ′ be a subset of V . We call V ′ an antichain if no vertex in V ′ is
reachable from another vertex in V ′. That means that no two vertices of V ′ are comparable with
respect to the partial order imposed by a dag. A maximum antichain of G is a set V ′ ⊆ V such
that V ′ is an antichain of maximal cardinality. The width of a dag G, denoted by width(G), is
the size of a maximum antichain in dag G. Observe that a maximum antichain is a maximum
independent set of the transitive closure. Moreover, the sets LCA(x, y) naturally are antichains
by definition. In particular, their sizes are bounded from above by width(G).

In contrast to Algorithm 3, which scales quadratically with the size of LCA sets, we give
an algorithm for All-Pairs All LCA that scales linearly with the width of dags. It is based
on solutions for All-Pairs Representative LCA. We outline our approach.

Suppose we are given a vertex z and want to determine all pairs x, y for which z is an
LCA. To this end, we employ an All-Pairs Representative LCA algorithm on G. Ob-
viously, if z is a representative LCA of x, y then z ∈ LCA(x, y). Thus, if we could force the
All-Pairs Representative LCA algorithm to return z as a representative LCA for x, y
whenever z is an LCA of x and y, we could answer the above question by solving the represen-
tative LCA problem. This can be done as follows.

For a dag G = (V, E) and a vertex z ∈ V , let N ∗(z) denote the maximal number of z in any
topological ordering of G. It is easily seen that a topological ordering N satisfies N(z) = N ∗(z)

12

if and only if for all x ∈ V such that N(x) ≥ N(z), x is reachable from z. This immediately
implies a linear-time algorithm to find a corresponding ordering.

Proposition 15. A topological ordering realizing N ∗(z) for any vertex z in a dag can be com-
puted in time O(n + m).

Proof. Given a dag G = (V, E), remove vertex set {z}∪{ x | x is reachable from z in G } from
V , topologically sort the dag (via DFS) induced by the remaining vertices arbitrarily, topologi-
cally sort the dag induced by the removed vertices arbitrarily (via DFS), and concatenate both
vertex lists each of which is ordered ascendingly with respect to the topological numbers.

If we fix a vertex z’s number maximizing topological ordering, then z is the rightmost CA
of all vertex pairs (x, y) such that z ∈ LCA(x, y). Now clearly, our strategy is to iterate for
each x ∈ V over the orderings that maximize N ∗(x). Note that the o(n3) algorithms in [5, 16]
as well as Algorithm 1 naturally return the vertex z with the highest number N(z) (for a
fixed topological ordering) among all LCAs of any pair (x, y). This leads to Algorithm 4 and
Theorem 16.

Theorem 16. Algorithm 4 solves All-Pairs All LCA in time Õ(min{n3+ 1

4−ω , n2m}), where
ω is the exponent of the algebraic multiplication of two n× n Boolean matrices.

Proof. The first bound is from [16]. The second bound is from the dynamic programming
approach in Corollary 11.

As it is currently known that ω < 2.376, we have an O(n3.616) algorithm on dense dags.
A key observation is that an algorithm for All-Pairs Representative LCA that out-

puts, with respect to a fixed topological ordering N , the vertex with the highest number as a
representative LCA, does it for all z with N(z) = N ∗(z) in parallel. We aim at maximizing
topological numbers simultaneously for as many vertices as possible. This can easily be reached
for vertices in paths.

Proposition 17. A topological ordering maximizing N ∗(z) for all vertices z in any path p of
a dag G simultaneously, can be computed in time O(n+ m). Moreover, this can be done for all
vertex subsets of the given path p.

Proof. Iteratively use the algorithm described in the proof of Proposition 15 starting at the tail
of the path and going to the head. In case of a vertex subset, iterate only over vertices from
the given set.

This proposition implies that given such an ordering, it is possible to process a path p in
only one iteration of the algorithm, i.e., only one call of an algorithm for All-Pairs Repre-

sentative LCA is needed for the vertices in p. Thus, we can reduce the running time if we
minimize the number of paths to be processed.

For a dag G = (V, E), a path cover P of G is a set of paths in G such for every v ∈ V there
exists at least one path p ∈ P such that v lies on p. A minimal path cover is a path cover P such
that ‖P‖ is minimized. We briefly sketch how to find a minimal path cover in a dag G = (V, E).
First, we compute the transitive closure of G in time O(n2.376) and construct a bipartite graph
G′ = (V1] V2, E) with V1 = V2 = V and E = {{v, w} | v ∈ V1, w ∈ V2 and (v, w) ∈ TC(G)} .

13

Algorithm 4: All-Pairs All LCA using LCA representatives

Input: A dag G = (V,E)
Output: An array A of size n× n where A[x, y] is the set of all LCAs of x and y

begin1

foreach z ∈ V do2

Compute a topological ordering N such that N(z) is maximal3

Solve All-Pairs Representative LCA using any algorithm that returns the LCA4

with highest topological number as representative and get array R

foreach (x, y) with R[x, y] = z do A[x, y]← A[x, y] ∪ {z} (by multiset-union)5

end6

Remove elements of multiplicity greater than one from A[x, y] for all x, y ∈ V7

end8

A maximum bipartite matching M in G′ can be found in time O(n2.5) applying the Hopcroft-
Karp algorithm [15]. We use M to construct a path cover by repeatedly exploring along the
matching edges starting at the unmatched vertices of V2. For more details see [4] where another
algorithm for minimal path covers with running time O(nm) using dynamic trees is described.
Thus, minimal path covers of dags can be computed in time O(min{nm, n2.5}). This suggests
Algorithm 5. Note that we do not compute an exact path cover of G but rather of TC(G),
which is enough for our purposes by Proposition 17.

Actually, Algorithm 5 is an improvement over Algorithm 4 if we know that, on the one
hand, the size of a minimal path cover is an upper bound on LCA set-sizes, and at most n on
the other hand. Fortunately, the famous Dilworth’s Theorem [10] does exactly this.

Lemma 18. [10] Let G be any dag. Then, width(G) equals the size of a minimal path cover of
G.

Indeed, we need both directions of Dilworth’s theorem to obtain the following theorem.

Theorem 19. Algorithm 5 solves All-Pairs All LCA in Õ
(

min{n2+ 1

4−ω · width(G), nm ·
width(G)}) time where ω is the exponent of the algebraic multiplication of two n × n Boolean
matrices.

Algorithm 5 elegantly scales with dag widths automatically without saying which algorith-
mic branch should be used as it is necessary for scaling with maximum LCA set-sizes. However,
Theorem 19 does not yield as many benefits as may be expected. For instance, rooted binary
trees can be viewed as dags. The width of a tree is the number of its leaves which is in fully
binary trees Ω(n). In contrast to this, each pair has exactly one LCA. As another example, in
the experimental setting of Internet dags mentioned in the introductory section, we obtained a
width of 9,604 (i.e., there is an antichain containing around 85% of all vertices), a maximum
LCA set-size of 27, and an average LCA set-size of 9.66. All this shows that improving our
algorithms towards a linear-scaling behavior with respect to LCA set-sizes is essential.

To sum up we conclude with algorithmic bounds for the minimum-weight LCA problem.
Note that the weight restrictions in the second part of the statement are caused by computing
all-pairs shortest distances using fast matrix multiplication.

14

Algorithm 5: All-Pairs All LCA using LCA representatives (improved)

Input: A dag G = (V,E)
Output: An array A of size n× n where A[x, y] is the set of all LCAs of x and y

begin1

Compute a transitive closure TC(G) of G2

Compute a minimal path cover P of TC(G)3

foreach p ∈ P do4

Compute a topological ordering N such that N(z) is maximal for all vertices of p5

Solve All-Pairs Representative LCA with respect to N and get array R6

foreach (x, y) with R[x, y] = z and z ∈ P do7

A[x, y]← A[x, y] ∪ {z} (by multiset-union)8

end9

end10

Remove elements of multiplicity greater than one from A[x, y] for all x, y ∈ V11

end12

Corollary 20. All-Pairs Min-Weight LCA can be solved in time Õ
(

min{n2+ 1

4−ω ·width(G),
nm · width(G)}) where ω is the exponent of the algebraic matrix multiplication of two n × n
Boolean matrices. For the first bound, i.e., on dense dags, edge weights are limited to the in-
teger interval (−n3−ω′

, n3−ω′

), where ω′ = ω(1, µ, 1) is the exponent of the multiplication of an
n× nµ matrix with an nµ × n matrix and µ satisfies ω(1, µ, 1) = 1 + 2µ.

5 Conclusion and Open Problems

We have described and efficiently solved all-pairs ancestor problems on weighted dags both for
sparse and dense instances. All-Pairs Min-Weight CA is widely understood. On sparse
graphs our solution is optimal, and on dense graphs the gap between All-Pairs Shortest

Distance and All-Pairs Min-Weight CA is shown to be at most polylogarithmic. On the
other hand, our algorithms for All-Pairs Min-Weight LCA exhibit nice scaling properties.
Moreover, upper bounds for the scaling factors beautifully coincide by Dilworth’s theorem.
However, we are left with intriguing open questions:

1. Is it possible to solve the All-Pairs Min-Weight LCA problem without solving the
All-Pairs All LCA problem?

2. Can we devise an algorithm that scales linearly in the size k of the maximal LCA set?

Acknowledgements. We thank Benjamin Hummel for providing us with experimental data on
Internet graphs.

References

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. On finding lowest common ancestors in
trees. SIAM Journal on Computing, 5(1):115–132, 1976.

15

[2] H. Äıt-Kaci, R. S. Boyer, P. Lincoln, and R. Nasr. Efficient implementation of lattice
operations. ACM Transactions on Programming Languages and Systems, 11(1):115–146,
1989.

[3] N. Alon and M. Naor. Derandomization, witnesses for boolean matrix multiplication and
construction of perfect hash functions. Algorithmica, 16(4–5):434–449, 1996.

[4] A. A. Benczúr, J. Förster, and Z. Király. Dilworth’s theorem and its application for
path systems of a cycle - implementation and analysis. In Proceedings of the 7th Annual
European Symposium on Algorithms (ESA’99), volume 1643 of Lecture Notes in Computer
Science, pages 498–509. Springer-Verlag, Berlin, 1999.

[5] M. A. Bender, M. Farach-Colton, G. Pemmasani, S. Skiena, and P. Sumazin. Lowest
common ancestors in trees and directed acyclic graphs. Journal of Algorithms, 57(2):75–
94, 2005.

[6] O. Berkman and U. Vishkin. Finding level-ancestors in trees. Journal of Computer and
System Sciences, 48(2):214–230, 1994.

[7] R. Cole and R. Hariharan. Dynamic LCA queries on trees. SIAM Journal on Computing,
34(4):894–923, 2005.

[8] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions.
Journal of Symbolic Computation, 9(3):251–280, 1990.

[9] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms.
The MIT Press, Cambridge, MA, 2nd edition, 2001.

[10] R. P. Dilworth. A decomposition theorem for partially ordered sets. Annals of Mathematics,
51(1):161–166, 1950.

[11] L. Gao. On inferring autonomous system relationships in the Internet. IEEE/ACM Trans-
actions on Networking, 9(6):733–745, 2001.

[12] L. Gao and J. Rexford. Stable Internet routing without global coordination. IEEE/ACM
Transactions on Networking, 9(6):681–692, 2001.

[13] T. G. Griffin and G. T. Wilfong. An analysis of BGP convergence properties. ACM
SIGCOMM Computer Communication Review, 29(4):277–288, 1999.

[14] D. Harel and R. E. Tarjan. Fast algorithms for finding nearest common ancestors. SIAM
Journal on Computing, 13(2):338–355, 1984.

[15] J. E. Hopcroft and R. M. Karp. An n5/2 algorithm for maximum matchings in bipartite
graphs. SIAM Journal on Computing, 2(4):225–231, 1973.

[16] M. Kowaluk and A. Lingas. LCA queries in directed acyclic graphs. In Proceedings of 32nd
International Colloquium on Automata, Languages and Programming (ICALP’05), volume
3580 of Lecture Notes in Computer Science, pages 241–248. Springer-Verlag, Berlin, 2005.

16

[17] B. M. E. Moret, L. Nakhleh, T. Warnow, C. R. Linder, A. Tholse, A. Padolina, J. Sun,
and R. E. Timme. Phylogenetic networks: Modeling, reconstructibility, and accuracy.
IEEE/ACM Transactions on Computational Biology and Bioinformatics, 1(1):13–23, 2004.

[18] L. Nakhleh, J. Sun, T. Warnow, C. R. Linder, B. M. E. Moret, and A. Tholse. Towards
the development of computational tools for evaluating phylogenetic network reconstruction
methods. In Proceedings of the 8th Pacific Symposium on Biocomputing (PSB 2003), pages
315–326. World Scientific Publishing, Singapore, 2003.

[19] L. Nakhleh and L.-S. Wang. Phylogenetic networks: Properties and relationship to trees
and clusters. In Transactions on Computational Systems Biology II, volume 3680 of Lecture
Notes in Computer Science, pages 82–99. Springer-Verlag, Berlin, 2005.

[20] M. Nykänen and E. Ukkonen. Finding lowest common ancestors in arbitrarily directed
trees. Information Processing Letters, 50(1):307–310, 1994.

[21] B. Schieber and U. Vishkin. On finding lowest common ancestors: Simplification and
parallelization. SIAM Journal on Computing, 17(6):1253–1262, 1988.

[22] R. Seidel. On the all-pairs-shortest-path problem in unweighted undirected graphs. Journal
of Computer and System Sciences, 51(3):400–403, 1995.

[23] L. Subramanian, S. Agarwal, J. Rexford, and R. H. Katz. Characterizing the Internet
hierarchy from multiple vantage points. In Proceedings of the 21st Annual Joint Conference
of the IEEE Computer and Communications Societies (INFOCOM’02), pages 618–627.
IEEE Computer Society Press, Washington, D.C., 2002.

[24] R. E. Tarjan. Applications of path compression on balanced trees. Journal of the ACM,
26(4):690–715, 1979.

[25] B.-F. Wang, J.-N. Tsai, and Y.-C. Chuang. The lowest common ancestor problem on a
tree with an unfixed root. Information Sciences, 119(1–2):125–130, 1999.

[26] Z. Wen. New algorithms for the LCA problem and the binary tree reconstruction problem.
Information Processing Letters, 51(1):11–16, 1994.

[27] U. Zwick. All pairs shortest paths using bridging sets and rectangular matrix multiplica-
tion. Journal of the ACM, 49(3):289–317, 2002.

17

