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Abstract

The dynamic maintenance of the convex hull of a set of points in the plane is one of
the most important problems in computational geometry. We present a data structure
supporting point insertions in amortized O(log n · log log log n) time, point deletions in
amortized O(log n · log log n) time, and various queries about the convex hull in optimal
O(log n) worst-case time. The data structure requires O(n) space. Applications of the
new dynamic convex hull data structure are improved deterministic algorithms for the
k-level problem and the red–blue segment intersection problem where all red and all blue
segments are connected.

1 Introduction

The problem of maintaining the convex hull of a set of points in the plane under the insertion
and deletion of points is one of the foremost important problems in computational geometry [6,
10]. A dynamic data structure for maintaining the convex hull of a point set has numerous
applications, e.g. in algorithms solving the k-level problem [7] and the red–blue segment
intersection problem where all red and all blue segments are connected [1]. For further
applications see [4].

Overmars and van Leeuwen in 1981 gave a solution for the fully dynamic convex hull
problem supporting point insertions and deletions in O(log2 n) time, where n is the maximum
number of points in the set [12]. The data structure of Overmars and van Leeuwen stores the
convex hull in a search tree and typical queries on the convex hull are supported in O(log n)
time. Preparata and Vitter gave a simpler approach achieving the same bounds as Overmars
and van Leeuwen in [14]. Until recently there was made no progress on improving the update
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bounds for the general case. First in 1999, Chan presented a data structure that achieves
amortized O(log1+ε n) update time, where ε > 0 is any arbitrary constant, and O(log n) query
time for various types of queries, e.g. membership and tangent-finding [4].

For special cases better update bounds are known. For the semi-dynamic case where
only insertions are allowed, it is easy to achieve O(log n) insertion time [13]. For the other
semi-dynamic case where only deletions are allowed after preprocessing, Hershberger and Suri
achieved O(n log n) preprocessing time and amortized O(log n) deletion time [9]. For the off-
line case where the sequence of updates is given in advance, a data structure using O(n log n)
time for processing a sequence of n updates was given in [10]. The case where the sequence
of updates is random was considered in [11, 15], where it was shown how to achieve expected
O(log n) update time.

In this paper, we first give a new data structure for the semi-dynamic problem where
only deletions are allowed after preprocessing, by extending the construction of Hershberger
and Suri [9]. Provided that the initial point set is given lexicographically sorted, we achieve
amortized O(n) preprocessing time, and amortized O(log n · log log n) deletion time. The data
structure requires O(n) space. Our main result for the fully dynamic case is a transformation
strategy that combines a fully dynamic data structure with a semi-dynamic data structure for
the deletions only case, and generates a new fully dynamic data structure. The construction
is based on the construction of Chan [4] combined with several new ideas. Let U(n) and
D(n) be two nondecreasing positive functions, where U(n) ≥ log n and D(n) ≥ log n. If
there exists a fully dynamic data structure with amortized O(U(n)) update time and worst-
case O(log n) query time, and a semi-dynamic data structure with O(n) preprocessing time
and amortized O(D(n)) deletion time, then the transformation yields a data structure with
amortized O(U(log4 n) · log n/ log log n) insertion time, amortized O(D(n)) deletion time, and
worst-case O(log n) query time. The queries that can be supported are: find the extreme point
on the convex hull in a given direction; report whether a given line intersects the convex hull;
report if a given point is contained in the interior of the convex hull; find the two points
adjacent to a point on the convex hull; and given an exterior point find the two tangent
points on the convex hull from the point.

Combining our semi-dynamic data structure with the fully dynamic data structure of
Overmars and van Leeuwen [12], we immediately get amortized O(log n·log log n) deletion and
insertion time. By bootstrapping, we can use the resulting data structure as the fully dynamic
data structure in the construction and the insertion time reduces to amortized O(log n ·
log log log n) time, while the deletion time remains amortized O(log n · log log n).

We note that a semi-dynamic data structure with O(n) preprocessing time and O(log n)
deletion time, would for any constant k imply a fully dynamic data structure with amortized
O(log n·log(k) n) insertion time and amortized O(log n) deletion and worst-case O(log n) query
time, by k − 1 applications of our transformation strategy and using the data structure of
Overmars and van Leeuwen as the initial fully dynamic data structure.1

The paper is organized as follows. Section 2 contains a description of the semi-dynamic
data structure for the deletions only case, and Sect. 3 and 4 contain the results for the fully
dynamic case. Section 5 gives applications of the fully dynamic data structure.

1We let log(1)
n = log n, and log(i+1)

n = log log(i)
n for i ≥ 1.
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Figure 1: The convex hull CH(P ) of a set of points P can be partitioned into an upper hull
UH(P ), a lower hull LH(P ), and possibly two vertical lines.
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Figure 2: Deletion of the point p from the upper hull implies that p is replaced by the sequence
of points p1, p2, p3.

Notation

Given a set of points P in the Euclidean plane, we let CH(P ) ⊆ P denote the set of points
on the convex hull of P , and UH(P ) and LH(P ) denote respectively the upper and lower
hull of CH(P ). Figure 1 shows the upper and lower hulls of a set of points. In the following
we restrict our attention to the upper hulls of the sets of points, and assume for the sake of
simplicity that points are in general position, i.e. all points have distinct x-coordinates and
no three points are on a line. The results for the convex hull problems immediately follow
from the results on the upper hulls.

2 Semi-Dynamic Data Structure

In this section we give a data structure for the semi-dynamic problem with amortized O(n)
preprocessing time, and which supports point deletions in amortized O(log n · log log n) time.
To achieve linear preprocessing time we require points to be given lexicographically sorted.
The data structure supports the operations:

Build Given a lexicographically sorted set P containing n points, builds a data structure for
P and returns the points on UH(P ) from left-to-right.

Delete Deletes a point p from P , and returns the changes to UH(P ), i.e. if p was contained
in UH(P ) before the deletion then the sequence of new points on UH(P ) are returned
from left-to-right (see Fig. 2).
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Our result for the semi-dynamic problem is the following.

Theorem 1 There exists a data structure supporting Build in amortized O(n) time and
Delete in amortized O(log n · log log n) time. The data structure requires O(n) space.

In the following we without loss of generality assume n ≥ 4, such that log log n ≥ 1. Let
P = {p1, p2, . . . , pn} be the initial set of points, where pi < pi+1 for 1 ≤ i < n, and let
B = dlog ne and N = dn/Be. We partition P into a sequence of blocks P1, . . . , PN , each of
size B except for PN , where Pi = {p1+(i−1)B , p2+(i−1)B , . . . , pmin(iB,n)}, for 1 ≤ i ≤ N . After
a sequence of Delete operations we let P̄ ⊆ P denote the set of points which have not been
deleted so far, and similarly we for P1, . . . , PN define P̄1, . . . , P̄N .

For each block Pi, the points P̄i are stored in sorted order in a linked list, UH(P̄i) is stored
as a perfect balanced binary tree, and furthermore the points from left-to-right on UH(P̄i)
are kept in a doubly linked list.

Since |P̄i| ≤ B, the upper hull UH(P̄i) can be constructed by a linear sweep of UH(P̄i) in
O(B) time, see e.g. [2, Sect. 1.1]. The balanced tree and the double linked list storing UH(P̄i)
can therefore be recomputed in O(B) time, when a point is deleted from block Pi.

The blocks P1, . . . , PN are stored from left-to-right at the leaves of a perfect balanced
binary tree T with height dlog Ne. For each node v in T , we let Tv denote the subtree of T
rooted at v, and let P̄v denote the union of the sets P̄i stored at the leaves of Tv. It is easy to
see that UH(P̄v) ∩ UH(P̄i) is either empty or a consecutive subsequence of UH(P̄i). At each
node v of T we store UH(P̄v) as a doubly linked list Lv of block-records, such that for each
block Pi contributing to UH(P̄v), i.e. UH(P̄v) ∩UH(P̄i) 6= ∅, we have a block-record rv,i. For
each block-record rv,i we store pointers to the leftmost and rightmost points in UH(P̄i) which
are also in UH(P̄v). For a block Pi, let v0, v1, . . . , vk be the prefix of the nodes in T on the
path from the leaf v0 storing P̄i to the root, where UH(P̄i) ∩ UH(P̄vj

) 6= ∅, i.e. rvj ,i ∈ Lvj
.

For 0 ≤ j < k, we with rvj ,i store an up-pointer to rvj+1,i. This representation allows us
to efficiently navigate UH(P̄v) in both directions from point-to-point and block-to-block in
constant time. Note that UH(P̄ ) is stored at the root of T .

Since each block requires O(B) space the total space for the N blocks is O(N ·B). Since
P is partitioned into N blocks, the total space for the lists of block-records at each level of T
is at most O(N). The total space required is O(N ·B + N · log N) = O(n).

We now turn to the implementation of the operations. For Build the input set P is
first partitioned into N blocks, and for each block the upper hull is computed by a sweep line
algorithm in O(B) time and each block structure is initialized in O(B) time. The construction
time for all blocks is O(n + N · B) = O(n). The tree T is then processed bottom-up level
by level. Assume a node v has two children w1 and w2, and Lw1 and Lw2 have already been
computed (for a leaf `, we define L` to only contain one block-record with pointers to the first
and last node of UH(P̄`)). First we let Lv be the concatenation of Lw1 and Lw2 . The resulting
list of block-records represents a sequence of points forming a convex curve except for possible
at one point, namely the last point from CH(P̄w1) or the first point from CH(P̄w2), i.e. there
is a pointer to p in one of the block records in Lv.

To fix this problem we apply the standard method used in convex hull construction al-
gorithms: while we have a non-convex point p in the list of points, i.e. p together with its
predecessor and successor point in the list form a left-turn, we remove p from the list. Re-
moving p is done as follows: if p is in block Pi, and p is the only point from UH(P̄i) in the
list, i.e. both pointers in rv,i point to p, we remove rv,i from Lv. Otherwise we replace the
pointer to p in rv,i by a pointer to the next point in UH(P̄i) in the direction of the point given

4



by the other pointer in rv,i, where we utilize that the points in UH(P̄i) are kept in a double
linked list. We can at most remove a point once in the bottom-up preprocessing of T , and
the time for preprocessing one level of T is O(n) plus the time used to eliminate left turns.
The total time for constructing all Lv lists becomes O(n + N · log N) = O(n). It follows that
Build takes O(n) time.

Before describing the Delete operation, we observe that only upper hulls actually con-
taining p need to be updated (see Fig. 2). To perform Delete first in O(log n) time make a
binary search locating the block Pi containing p, assuming that P was given as an array of
points or that we keep P in a balanced search tree. In O(B) time we check if p ∈ UH(P̄i). If
p /∈ UH(P̄i) then no upper hull needs to be updated and it is sufficient to remove p from the
list of points in P̄i in O(B) time. Otherwise p ∈ UH(P̄i), and let

←
p and

→
p be the predecessor

and successor of p in UH(P̄i) (if present), and rebuild in O(B) time the data structure for
block Pi after p has been deleted from the list of points in P̄i. What remains is to update all
the upper hulls which contained p. If p ∈ UH(P̄v) for a node v then rv,i ∈ Lv. But then rv,i

is reachable from P̄i using the stored up-pointers.
The reconstruction of upper hulls is done bottom-up in T . Consider a node v and the

effect of deleting p from UH(P̄v). Let pL and pR be the two points in P̄i that rv,i has pointers
to, where pL ≤ pR. If p < pL or p > pR then p /∈ UH(P̄v) and we are done. If pL < p < pR

then the changes to UH(P̄v) can only be between pL and pR, i.e. the updates are done locally
in block Pi and no changes are required for Lv. The complicated case is when p = pL or
p = pR. First we need to delete p from the upper hull stored at v. If pL = pR then p was the
only point from block Pi, and we delete rv,i from Lv. Otherwise we have two cases: if p = pL

then we replace the pointer to p in rv,i by a pointer to
→
p , and if p = pR then we replace the

pointer to p in rv,i by a pointer to
←
p .

After having deleted p from UH(P̄v), we must insert new points onto UH(P̄v), as illustrated
by Fig. 2. If p was not an endpoint of the bridge connecting two points on the two upper hulls
stored at the children of v (see Fig. 3), then the changes to UH(P̄v) are exactly the changes
to UH(P̄w), where w is the child of v where p ∈ UH(P̄w) before the deletion. It follows that it
is sufficient to create and update existing block-records in Lv with exactly the same pointers
to points in blocks as done for Lw.

The final case is when p is an endpoint of the bridge connecting the upper hulls stored
at the children of v, ad illustrated in Fig. 3. Assuming the new bridge has been found, then
updating Lv with respect to the new points on UH(P̄v) consists of inserting a subsequence
of the points from each of the upper hulls stored at the children of v, by creating a sequence
of new block-records in Lv with the same information as stored at the two children of v and
changing at most four pointers in the block-records in Lv corresponding to the ends of the
subsequences copied.

To find the new bridge we apply a standard bridge searching algorithm, with minor mod-
ifications. The standard bridge searching procedure keeps for the upper hulls two candidate
intervals for each of endpoints of the bridge, and performs a “simulations binary search” on
both hulls, always halving at least one of the intervals. See e.g. [13, Lemma 3.1] for further
details. We replace the binary search by a linear block search on each of the two upper hulls.
The linear block search at the left child proceeds left-to-right, always trying to advance one
block, whereas the linear block search at the right child proceeds right-to-left. Whenever a
search is advanced to the next block a block-record is added to Lv in O(1) time.

The search process for each upper hull first tries to advance a complete block at a time,
using the information stored at the block-records at the children of v to always pick the
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p

Figure 3: The bridge between two horizontally separated upper hulls. The dashed lines show
the changes to the left upper hull and the new bridge when deleting point p.

last point in the next block Pi contributing to UH(P̄i). After having localized the block Pi

containing one endpoint of the new bridge the search then proceeds in a binary fashion
using the search tree storing UH(P̄i). The total time for finding a bridge becomes linear in
the number of block-records created plus O(log B). The output of Delete can be generated
immediately from the changes to Lroot(T ).

The total time for a deletion becomes O(B+x+log N · log B), where x is the total number
of new block-records created. Since a deletion at most removes one block-record from each
level of T , it follows that D deletions at most delete D · log N block-records. Since there can
at most be O(N · log N) block-records, it follows that the total time for D deletions is at most
O(D · B + N · log N + D · log N + D · log N · log B) = O(n + D · log n · log log n). Since the
O(n) term can be charged to Build, it follows that Build takes amortized O(n) time and each
Delete operation amortized O(log n log log n) time.

3 Fully Dynamic Data Structure

For this part of the paper we change the point of view of the exposition to the dual problem and
consider upper envelopes instead of upper hulls. This duality, as explained e.g. in [2, p. 167],
maps points to lines and vice versa in a way, that preserves above/on/below relations. In
this setting a set of points becomes a collection of lines L, and the upper hull transforms to
the upper envelope of these lines, i.e. the collection of line segments such that points on a
segment are not below any other line. An extreme point query, i.e. given a slope q find the
point of the upper hull that has a tangent of slope q, turns into a vertical line query, i.e. given
a vertical line with x-coordinate q, report the segment of the upper envelope crossing this
line. Note that this is really only a change in point of view. There is no need to perform a
computation to go from the original setting to the dual and back.

We apply a standard dynamization technique that divides the current points into sets
and keeps one deletion only data structure per set. Additionally there is a more explicit
representation of the current upper envelope, namely an interval tree, that allows fast queries
without requiring too much work for updates. Inside the interval tree have at each internal
node a fully dynamic upper envelope data structure, a so called secondary structure. The
running time improvement relies on a polylogarithmic bound on the size of the secondary
structures.
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The description so far fits as well to the data structure proposed in Chan [4]. Compared
to that data structure we apply improved deletion only data structures. We also do some
explicit grouping of the subenvelopes stemming from the dynamization, such that the number
of secondary structure storing segments from one subenvelope is reduced.

The remaining of this section is devoted to proving the following theorem.

Theorem 2 Let U(n) and D(n) be two nondecreasing positive functions, where U(n) ≥ log n
and D(n) ≥ log n. Assume there exists a data structure for the dynamic upper envelope
problem supporting Insert and Delete in amortized O(U(s)) time, and Vertical Line Query in
worst-case O(log s) time, where s is the total number of lines inserted. Assume further that
there exists a data structure for semi-dynamic upper envelope problem supporting Build on
a lexicographically sorted list of n points in amortized O(n) time and Delete in amortized
O(D(n)) time, where n is the number of lines in the structure.

Then there exists a data structure for the dynamic upper envelope problem supporting
Insert in amortized O(log n · U(log4 n)/ log log n) time and Delete in amortized O(D(n) +
log n · U(log4 n)/ log log n) time, and Vertical Line Query in worst-case O(log n) time, where
n is the total number of lines inserted.

Applying this theorem to the data structure of Overmars and van Leeuwen with U(s) =
log2 s and the result from Sect. 2 with D(n) = log n · log log n, we get Insert in O(log n ·
log2(log4 n)/ log log n) = O(log n · log log n), and Delete in O(log n · log log n). Applying the
theorem again on this new data structure improves Insert to O(log n·log log log n). The perfor-
mance of the deletion only data structure is the bottleneck, that renders further applications
of the theorem useless.

For the purpose of describing our data structure, we separate it into several layers. We
first describe the layers in a top down fashion, we start with a data structure that solves the
fully dynamic upper envelope problem using some auxiliary data structures. For the analysis
we proceed in a bottom up fashion, i.e. we always analyze the auxiliary data structure first.
This avoids any forward references.

3.1 The interfaces

3.1.1 Fully dynamic upper envelopes.

Insert Insert a line, given by the parameters a and b in the representation y = ax+b. Return
a pointer to a new line data structure.

Delete Given a pointer to a line data structure, delete that structure and the line it represents.

Query Given a value v, report the highest intersection of a line with the vertical line given
by x = v.

3.1.2 Query structure Q.

This data structure combines several independent upper envelopes. It is asserted (and could
be easily checked), that the list of line segments in fact form envelopes. It is also asserted,
that a line is present in at most one set and has therefore at most one segment.

There is an active set of segments that is considered for queries. For all lists of segments
it is asserted, that the segments from this list form an upper envelope. A segment is given by
a line and an interval on the x-axis.
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Init set with active envelope Given a lexicographically sorted list L of lines and a list K ⊆ L
of segments. Initialize a set data structure that can hold upper envelopes stemming from
lines in L and insert K into the active set. It is asserted that K forms a complete upper
envelope. Return a pointer to a new data structure representing the set.

Delete set Delete a set given by a pointer, removing all segments from the active set.

Replace inside an envelope Given a pointer to a set, pointers to (up to) three segments
`α, `, `ω, and a lexicographically sorted list of segments K with K = `′α, . . . , `′ω. Here `ω

and `′ω are the same segment with a changed left boundary, and `α and l′α differ only in
the right boundary. It is explicitly allowed that `α and `ω are void, with the meaning
that ` is unbounded to the left and respectively to the right. Replace the three segments
by K in the active set. It is asserted that the active set forms an upper envelope after
the replacement.

Query Given a value v, report the highest intersection of an active segment with the vertical
line given by x = v.

3.1.3 Subenvelope structure T .

This structure allows queries on a generalization of segments, namely subenvelopes. A suben-
velope is an lexicographically sorted list of line segments where neighbors have precisely one
point in common. We will maintain a small upper bound on the size of an subenvelope. Again
it is asserted that the segments in fact are segments from upper envelopes.

Insert Given a list L of segments, insert the subenvelope formed by L. Return a pointer to
the newly created data structure of the subenvelope.

Delete Given a pointer to a subenvelope, delete that subenvelope. Return the segments of
the subenvelope.

Query Given a value v, report the highest intersection of an inserted subenvelope with the
vertical line given by x = v.

3.2 Dynamization

Throughout the following we assume that we know the value of n, the total number of insert
operations, in advance. Standard doubling techniques justify this assumption.

Starting from the monotonic data structure presented in Sect. 2, we apply a general
dynamization technique for decomposable search problems attributed to Bentley and Saxe [3].
The idea is that we divide the set of lines L into a partition C based on the order the lines are
inserted. More precisely every set C ∈ C has a rank. If there are d sets of the same rank i, we
merge them into one new set of rank i+1. Sets of rank 0 have size 1. We choose the parameter
d = dlog ne, leading to at most r = O(logd n) = O(log n/ log log n) different ranks. This is
also an upper bound on the number of times a specific line can participate in the merge of d
sets. Furthermore the number e = |C| of sets is bounded by e = O(rd) = O(log2 n/ log log n).
Every set has a deletion only structure and a set in the query structure attached.

The merge operation first deletes all the involved sets from the Query structure Q. Then
it orders the lines (dual) according to their slopes, which corresponds to sorting the corre-
sponding (primal) points according to their x coordinates. Here we exploit that the sets we
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are merging are already sorted in that order. We use a heap of size d to iteratively find the
remaining line with smallest slope. Then we invoke the Build operation of the deletion only
data structure, and use the reported upper envelope in an Init set operation of the query
structure Q. We attach the returned pointer to the new set.

For an Insert(`) we create a new record for ` that keeps the coordinates (slope and offset)
and also a pointer p` to the set of C that currently contains `. Then we create a new set of
size 1 and rank 0 and perform necessary merge operations. During the merge operations we
update the pointers p` for all lines we move.

If we want to delete a line ` we look up the set C ∈ C that contains `, and then we invoke
the Delete(`) operation of the deletion only data structure from Sect. 2. This returns a list of
new segments, which implicitly gives also the two neighbors of `. With this information we
call the Replace inside set operation of Q.

3.3 Grouping

Now we implement the query structure using only a Subenvelope structure. We choose a
block size parameter b = dlog n/ log log ne.

The Init set with active envelope operation first deletes all pointers to blocks on the lines
of the set. Then it groups the segments of K equally into as few as possible blocks of size at
most b. It inserts the resulting subenvelopes and stores the subenvelope pointer at every line.

The Delete set operation walks along the set, deleting blocks pointed to by the lines and
deleting the pointers as well.

The Replace inside an envelope operation looks up the blocks where the three lines are
stored. Then it deletes the pointed to subenvelopes, building a list L of segments that got
deleted. In this list we replace `α, `, `ω by K. Then we group L optimally into blocks of size b.
We insert the blocks and update the block pointers.

The query gets directly handed over. This is correct, as all active segments are in some
block.

3.4 The interval tree T for subenvelopes

We implement the subenvelope structure as an interval tree. The interval tree T is a rooted
tree. We assume to know the number M of leaves of T . We choose the degree parameter
B = dlog ne. We keep T balanced by maintaining the invariants that the degree of a node
is at most 2B − 1 and at least 2 at the root and at least B for all the other internal nodes.
All leaves have the same distance to the root. A leaf ` of T stores a (possibly unbounded)
interval I`, its range. Every internal node v of T stores its range Iv, the interval that is the
(disjoint) union of the ranges of its children. To deal with a non constant degree of a node we
maintain a dictionary (balanced tree) of the endpoints of the ranges of its children. For an
arbitrary interval I we say that the node u of T corresponds to I if the range of u contains
the interval, i.e. I ⊆ Iu, and for none of the children v of u it is the case that I is contained in
the range Iv of v. Note that there is always a unique node of T corresponding to an interval.
We can find all the intervals containing a certain point p on the path from the root node to
the leaf that contains p. We assert that the range of every leaf node contains at most one
endpoint of the stored intervals.

We store subenvelopes at the node in T that corresponds to their interval, i.e. the extent
along the x-axis. We store the segments of the subenvelope in the secondary structure at that
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node, i.e. as lines in a fully dynamic upper envelope structure.
The Insert operation creates a record that has a list of the lines forming the subenvelope,

the interval, and a pointer to the node of T . A pointer to this record is returned. It inserts
the interval into T and finds the node u in T corresponding to the interval and inserts all the
lines into the secondary structure Su. It stores the returned identifiers in a list in the newly
created record.

As we have the strong restriction that the range of a leaf should contain at most one
endpoint of an interval stored in the tree, we might be forced to split nodes of T in a bottom
up fashion. Assume that node u of T has too many children. Then we create a new right
sibling v of u (creating a new root if u was the root) and move the right half of the children
of u to v. We walk through the list of blocks being stored at u. For a block w we take Iw

to decide if they should stay at u, get moved to v or moved up to the parent p of u and v.
If necessary we delete all the lines of w from the secondary structure Su of u. If the block
moves to v we insert the lines into Sv. If it moves up to p, we keep the block w “on hold”, in
case that p also gets split. During this we update the pointers between the nodes of T and
the records of blocks.

If a subenvelope has the interval ] −∞,∞[, it gets stored at the root of T , and it can-
not cause any splits. We call such a subenvelope trivial. M accounts only for non-trivial
subenvelopes.

For the Delete operation we remove all the lines from the secondary structure.
For a Query operation with value x, we determine the path p in T from the root to the

leaf v of T whose range contains x. For all nodes u on p we perform an upper envelope query
for x on the secondary structure Su. We report the topmost of the answers.

This answer is correct, because the block of the topmost segment at x is stored in one of
the parents of the leaf v that contains x.

3.5 Analysis

3.5.1 Bound on the number M of nontrivial subenvelope inserts.

We have to bound the number of operations on blocks performed within the query structure Q.
At the init operation we give every line a fractional coin that allows it to participate as a

fraction 2/b in a non-trivial insert operation, i.e. we need b/2 such coins to pay for a non-trivial
insert. Then the init operation on a set of size m costs us d2m/be non-trivial subenvelope
insert operations. If the init operation gives rise to a nontrivial insert, it is paid for.

A replace operation is going to pay for 3 subenvelope deletions and 4 subenvelope inser-
tions. If there are more blocks to be inserted, the blocks are definitely half full, and only 2
blocks on each end contain any lines that have already used their coins. The remaining block
insertions can therefore be paid with coins.

Knowing that one line can only cause one replace operation and participate in r init
operations, we get a total account of M = O(n + n · r/b) = O(n + n · log n/ log log n ·
log log n/ log n) = O(n).

3.5.2 Bound s on the size of secondary structures in T .

For every set in C we have at most B subenvelopes stored at a node v. With the bounds on
the size of subenvelope and on |C| we get s = O(B · b · e) = O(log4 n).

A query takes O(log M + Q(s) · h) = O(log n + log log n · log n/ log log n) = O(log n) time.
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3.5.3 Work in the split operations.

Every split operation creates at least one new node. We will account on that node for all the
insertions and deletions that happened during this single split.

We charge the work of moving a block during a split operation entirely to the newly
created node of T . For this we define the level of a node u of T by stating that leaves have
level 0, and that the parent of nodes on level i has level i+1. Now we observe that an interval
stored at u has both endpoints at some leaf below u. Hence the condition of having at most
one endpoint of an interval per leaf implies that we have at most Ni = (2B)i intervals stored
at a node of level i. Now let u be a node on level i. Then u was created by a split operation
performed on one of its siblings v. So we know that v is also on level i and the split operation
involved at most Ni intervals. Additionally we know e = O(rd) = O(log2 n/ log log n) which
means for large n we have e < B2 and that any node in T stores at most e ·B < B3 intervals.

Adding these costs level by level in the tree, we get that the total number of intervals
moved because of split operations is bounded by O((M/B)2B + (M/B2)4B2 + (M/B3)B3 +
(M/B4)B3+(M/B5)B3+· · ·) = O(M) = O(n). We conclude that every subenvelope insertion
causes in average constantly many moves of a subenvelope during split operations.

3.5.4 Running time of the update operations in T .

Given the previous paragraph, we conclude that an update operation of a nontrivial block in
T takes amortized O(log M + b · U(s)) time for finding the correct node in T and to pay for
the insertions and deletions of the segments, including during split operations.

Since U(s) ≥ log s, we have b · U(s) = Ω(log n/ log log n · log log n) = Ω(log n), so the
amortized time of a non-trivial block insert operation becomes O(b · U(s)).

For trivial blocks it takes amortized O(U(s)) time per segment. Note that even so the
root node of T is special, the upper bound s on the number of segments stored there applies
as well.

3.5.5 Running time of the Query structure / Fully dynamic structure.

In the init operation of the query structure we account for 2/b nontrivial block insert opera-
tions for every line in the set. We already argued that this is sufficient to pay for the initial
insert operation of that line (i.e. when the line appears on the upper envelope of the set we
just initialized). Accounting also for the possibility of being inserted as part of a trivial block,
we get a per line amortized time of O(U(s) + b · U(s)/b) = O(U(s)).

Knowing that every line gets initialized at the worst r times, we get an amortized insert
time for the fully dynamic data structure of O(r ·U(s)) = O(log n/ log log n ·U(s)) as claimed
in Theorem 2.

For the delete operation of the fully dynamic data structure we have to account for the
delete operation in the deletion only structure, and for the replace operation in the query
structure. As already argued, the replace operation has to account for a constant number of
block update operations, yielding an amortized time of O(D(n)+ b ·U(s)) = O(D(n)+ log n ·
U(s)/ log log n), the bound claimed in Theorem 2.
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4 Other Queries

With the so far explained data structure for vertical line queries we can efficiently answer a
whole class of other queries on the upper envelopes. Assume the query satisfies a so called
locality property, that is for a vertical line q we can determine on which side of q the answer
lies by solely examine the highest line intersecting q. Then we can use binary search to give
an answer with O(log n) vertical line queries, that is in O(log2 n) time. But this overhead
is not always necessary. In the next section we will give an important example where the
already explained data structure can be used to achieve a O(log n) query time for a more
involved query.

4.1 Arbitrary line queries

The query we address is in the primal setting: given a point p in the plane report the two
tangent lines through p touching the convex hull or state that the point is inside the convex
hull. This corresponds in the dual to: given an arbitrary line, give the two intersection points
of the line with the upper envelope, or “no” if no such intersection exists. The exposition
here adopts the dual point of view. The important observation is, that our data structure
has the same properties as the data structure in [4], the argument given there applies here as
well. We only sketch the query algorithm in our setting.

We use the following fact about arbitrary line queries to navigate in the interval tree of
our data structure.

Lemma 1 Let a and b be to walls and E ′ ⊆ E a subset of lines s.t. the upper envelope of E ′

at a and b coincides with the upper envelope of E. Assume that an arbitrary line query for
a line ` on E ′ results in the right intersection point t. If t lies between a and b then also the
right intersection T of ` with E lies between a and b.

Let ` be the line query. The query algorithm starts at the root node of the interval tree. It
performs the right intersection query on the secondary structure of the current node, updating
the current answer. Then it descends to the child corresponding to the interval the current
answer lies in. When it reaches a leaf, the current answer reflects the right intersection of `
with the upper envelope of all lines.

Given that our secondary structures support line queries in O(log s) time, we have an
overall query time of O((log B + log s)h) = O(log B log n/ log B) = O(log n).

5 Applications

As a prominent example we consider the k-level of n lines, which is dually related to the
k-set question on n points. For this problem Edelsbrunner and Welzl [7] gave an algorithm
using the data structure of Overmars and van Leeuwen that constructs the k-level in O(n ·
log n + m · log2 n) time, where m is the size of the k-level. Applying Chan’s data structure
this improves to O(n · log n + m · log1+ε n) time, and using our data structure this yields
an improved O(n · log n + m · log n · log log n) time bound. A randomized algorithm using
expected O(λt+2(n + m) · log n) time has been given by Har-Peled [8], where λt+2(n + m) is
the maximum length of a Davenport-Schinzel sequence of order t + 2 having n + m symbols.

Basch, Guibas and Ramkumar [1] considered a version of the segment intersection prob-
lem: given a connected family R of n red line segments and a connected family B of n blue
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line segments in the plane, report all intersecting pairs from R × B. Chan [4] reported an
improvement from O((n + m) · log3 n) time using Overmars and van Leeuwen’s data struc-
ture to O((n + m) · log2+ε n) using Chan’s data structure. We get a further improvement to
O((n + m) · log2 n · log log n).
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