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Abstract. Radio networks are widely used today. People access voice and data
services via mobile phones, Bluetooth technology replaces unhandy cables by wireless
links, and wireless networking is possible via IEEE 802.11 compatible network equip-
ment. Nodes in such networks exchange their data packets usually with fixed base
stations that connect them with a wired backbone. However, in applications such as
search and rescue missions or environmental monitoring, no explicit communication in-
frastructure may be available. In this case, the wireless hosts have to organize in a
so-called wireless ad hoc network. As long as all of the hosts are within transmission
range of each other, the problem of exchanging information in such a network basically
boils down to designing suitable medium access control protocols, but if not all hosts
can directly communicate with each other, we also need suitable routing algorithms.
Designing routing algorithms for wireless ad hoc networks is an extremely challenging
task and still research in progress. In this paper, we mostly focus on the simpler question
of how to maintain an overlay network of wireless links between the hosts so that, as
a minimum requirement, every node is reachable from every other node (i.e. the graph
formed by the links is connected) as long as this is possible. Ideally, for every pair of
nodes (v, w) there should also be a route from v to w with a close to minimum possible
hop distance or energy consumption. The graph formed by the wireless links should also
have a low degree to ensure a low maintenance cost and it should be easy to update
in case of arrivals or departures of nodes or changes in their positions. This paper will
present various strategies for reaching these goals under ideal as well as (more) realistic
models.
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1. Introduction. The problem of designing an overlay network for
wireless ad hoc networks has recently attracted a lot of attention. A basic
requirement for these overlay network designs is that they maintain connec-
tivity among the hosts, as long as this is possible. The most straightforward
approach to achieve connectivity is to maintain a link between every pair
of wireless hosts that are within their transmission range. However, this
may require a high maintenance and update cost since the corresponding
overlay network may have a high degree. Also, some links may have a
high energy cost, and so a natural question would be whether these can be
dropped without endangering connectivity.

An alternative approach would be to maintain connections only to the
k nearest neighbors. However, Figure 1 demonstrates that it is easy to
come up with examples in which the graph formed by the links would not
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be connected. So this approach does not work in general. As was shown
by Xue and Kumar [30], it only works in specific cases. For example, if
n hosts are distributed uniformly at random in a unit square and every
host connects to more than 5.1774 log n of its nearest neighbors, then the
network formed by these links is connected with a probability that tends to
1 as n increases. But connecting to less than 0.074 log n nearest neighbors
results in almost sure disconnectivity.

Fig. 1. A counterexample for the naive approach with k = 2.

Another possible approach is that every host maintains connections to
k hosts chosen uniformly at random among all hosts within its transmission
range. This also does not guarantee connectivity in general but works well
in certain cases. For example, Dubhashi et al. [8] recently showed that if
every node has at least Θ(log n) nodes within its transmission range, then
choosing just 2 random nodes to connect to will establish connectivity
almost surely.

In this paper, we are only focusing on approaches that guarantee con-
nectivity no matter how the hosts are distributed, as long as this is in prin-
ciple possible. Most of these approaches are based on so-called spanners,
which are properly selected subgraphs of the graph of all possible connec-
tions between the wireless hosts so that the hosts are not only connected
but their (hop or Euclidean) distance in that graph is closely related to their
minimum (hop or Euclidean) distance when considering all possible con-
nections. Spanners first appeared in computational geometry [10, 31], were
then discovered as an interesting tool for approximating NP-hard problems
[24], and have recently attracted a lot of attention in the context of routing
and topology control in wireless ad hoc networks [1, 11, 12, 3, 23].

In the following, the wireless hosts are simply called nodes. To simplify
our presentation, we assume that the nodes are distributed in a perfect 2-
dimensional Euclidean space, or formally, the nodes represent a set of points
V ⊂ R2, but all of the approaches presented here can also be extended to
higher dimensions. Given any pair of nodes u = (ux, uy), v = (vx, vy) ∈ R2,

||uv|| =
√

(ux − vx)2 + (uy − vy)2

denotes the Euclidean distance between u and v, and given any sequence
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of nodes s = (u1, u2, . . . , uk) and any δ ≥ 0,

||s||δ =
k−1∑

i=1

||uiui+1||δ

denotes the δ-cost of s. For any graph G = (V, E), a node sequence s =
(u1, u2, . . . , uk) is called a path in G if (ui, ui+1) ∈ E for all 1 ≤ i < k.

Given any directed graph G = (V, E) and any two nodes u, v ∈ V , the
δ-distance dδ

G(u, v) of u and v in G is the minimum δ-cost ||p||δ over all
paths p from u to v in G. If δ = 0, then dδ

G(u, v) gives the topological (or
hop) distance of u and v in G, and if δ = 1, dδ

G(u, v) gives the Euclidean
distance of u and v in G. Also cases with δ > 1 are interesting for us
because the transmission of a packet over a distance of r usually has an
energy consumption that scales with rδ for some δ > 1. In reality, δ is
usually in the range [2, 5], where it is closer to 2 outdoors and closer to 5
indoors.

We assume that every node has a maximum transmission range of
1, i.e., every node u ∈ V can send messages only to nodes v ∈ V with
||uv|| ≤ 1. From this assumption it follows that every overlay network
connecting these nodes can only be a subgraph of the following graph.

Definition 1.1. For any point set V ⊂ R2, the unit disk graph of
V , called UDG(V ), is a directed graph that contains all edges (u, v) with
||uv|| ≤ 1.

Fig. 2. A connected unit disk graph.

In the following, we will always assume that V is chosen so that its
UDG is connected and non-degenerate, i.e., there is a path in UDG(V )
between every pair of nodes and no two pairs of nodes have exactly the
same Euclidean distance (see also Figure 2). The connectivity assumption
is a prerequisite for our strategies below to establish a connected network
among the nodes and the non-degenerateness property will simplify the
proofs. When G is the UDG of V , we simply use dδ(u, v) instead of dδ

G(u, v).
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1.1. Structure of the paper. The rest of this paper is organized as
follows. First, we define different kinds of geometric spanners and provide
relationships between them (Section 2.1). Afterwards, we study a general
class of graphs called proximity graphs that contain many of the spanner
constructions proposed for ad hoc networks (Section 2.2). Among these
spanner constructions are sector-based spanners and planar spanners. Var-
ious sector-based spanners are reviewed in Section 2.3, and various planar
spanners are reviewed in Section 2.4. All of these constructions are based
on simple space and energy models. Namely, the nodes are distributed
in a perfect 2-dimensional Euclidean space, every node has a transmission
radius of 1 and the energy necessary for transmitting a message over a dis-
tance of d is dδ for some fixed constant δ ≥ 2. In Section 3 we show how
to modify the spanner constructions in Section 2 so that even under more
realistic models the spanner constructions still work. The paper ends with
conclusions.

2. Spanners. First, we define spanners in which arbitrary pairs of
nodes can, in principle, be connected by an edge (i.e., we do not limit the
transmission range of nodes).

Definition 2.1. Consider any finite set of nodes V ⊂ R2, and let
c ≥ 1 be any constant.

• A graph G = (V, E) is called a geometric c-spanner of V if for all
u, v ∈ V there exists a path p from u to v in G with

||p|| ≤ c · ||uv|| .
If G is a geometric c-spanner, c is called its stretch factor.

• G is a (c, δ)-power spanner of V if for all u, v ∈ V there is a path
p from u to v in G with

||p||δ ≤ c · ||uv||δ .

If for all δ ≥ 2 there exists a constant c so that G is a (c, δ)-power
spanner, then we simply call G a power spanner.

• G is a weak c-spanner of V if for all u, v ∈ V there is a path p
from u to v in G that is within a disk of diameter at most

c · ||uv|| .
• A graph G = (V, E) is called a constrained (geometric, power, or

weak) spanner of V if for every pair of nodes u, v ∈ V there is a
path p that, in addition to the specific requirement for the spanner
type, also satisfies the condition that for every edge e in p,

||e|| ≤ ||uv|| .
Since wireless nodes have a limited transmission range, the following

spanner definitions are more relevant for ad hoc networks.
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u v u vu v

Fig. 3. Examples of a spanner, weak spanner, and power spanner.

Definition 2.2. Let V ⊂ R2 be any finite set of nodes with a con-
nected UDG.

• A graph G = (V,E) is called a geometric c-spanner of UDG(V ) if
for all u, v ∈ V there exists a path p from u to v in G with

||p|| ≤ c · d(u, v) .

• G is a (c, δ)-power spanner of UDG(V ) if for all u, v ∈ V there is
a path p from u to v in G with

||p||δ ≤ c · dδ(u, v) .

• G is a weak c-spanner of UDG(V ) if for all u, v ∈ V there is a
path p from u to v in G that is within a disk of diameter at most

c · d(u, v) .

Interestingly, any constrained spanner of V in which all edges of length
more than 1 are removed is also a spanner of the UDG of V , as shown in
the next theorem.

Theorem 2.1. Any constrained geometric c-spanner / (c, δ)-power
spanner / weak c-spanner G of V restricted to edges of length at most 1 is
also a geometric c-spanner / (c, δ)-power spanner / weak c-spanner of the
UDG of V .

Proof. Let U be the UDG of V . Suppose that G is a (c, δ)-power
spanner of V for some δ ≥ 0. Then it holds for every pair of nodes u, v ∈ V
with ||uv|| ≤ 1 that there is a path p in G ∩ U with ||p||δ ≤ c||uv||δ. Now,
consider an arbitrary pair u,w ∈ V , and let p = (v0, v1, v2, . . . , vk) be any
path in U with v0 = u and vk = w that has a δ-cost of dδ(u,w). Since
||vivi+1|| ≤ 1 for all i, there is a path pi from vi to vi+1 in G ∩ U with
||pi||δ ≤ c||vivi+1||δ. Concatenating these paths, we end up with a path p′

with

||p′||δ =
k−1∑

i=0

||pi||δ ≤
k−1∑

i=0

c||vivi+1||δ = c · dδ(u,w) .
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Hence, G ∩ U is also a (c, δ)-power spanner of U . Since a geometric c-
spanner is just a (c, 1)-power spanner, this also proves the theorem for
constrained geometric spanners.

Finally, consider the case that G is a constrained weak c-spanner. Then
it holds for every pair of nodes u, v ∈ V with ||uv|| ≤ 1 that there is a path
p in G ∩ U that is within a disk of diameter at most c||uv||. Consider now
an arbitrary pair u,w ∈ V , and let p = (v0, v1, v2, . . . , vk) be any path in
U with v0 = u and vk = w that has a Euclidean length of d(u,w). Since
||vivi+1|| ≤ 1 for all i, there is a path pi from vi to vi+1 in G ∩ U that is
within a disk of diameter at most c · ||vivi+1||. Concatenating these paths,
we end up with a path p′ that is within a disk of diameter at most c·d(u, w).
To prove this, we need the following straightforward fact.

Fact 2.2. Any two disks of diameter d1 and d2 with a non-empty
intersection are contained in a disk of diameter at most d1 + d2.

Using this fact in an inductive manner on the length of p, it follows
that when replacing the paths pi in p′ by their disks, p′ is contained in a
disk of radius at most

k−1∑

i=0

c · ||vivi+1|| ≤ c · d(u,w) .

Hence, it suffices to present and analyze algorithms for constrained
spanners in order to obtain overlay networks that are also spanners of
UDGs.

2.1. Relationships between spanners. Next, we study general re-
lationships between the different kinds of spanners. All of these relation-
ships hold for general spanners as well as constrained spanners. To keep
the paper at a reasonable size, most of the proofs are left out. For detailed
proofs, see [26, 28]. We start with a straight-forward theorem.

Theorem 2.3. Every graph G = (V,E) that is a (constrained) geo-
metric c-spanner is also a (constrained) weak c-spanner.

However, the theorem does not hold any more when considering power
spanners.

Theorem 2.4 ([28]). For any δ > 1 there is a family of (constrained)
(c, δ)-power spanners which are not a (constrained) weak C-spanner for any
constant C.

Also, the reverse direction of Theorem 2.3 is not true, i.e., the fact
that a graph is a weak spanner does not imply in general that it is also a
geometric spanner.

Theorem 2.5 ([28]). There exists a family of graphs G = (V,E) with
V ⊂ R2 all of which are (constrained) weak 2(

√
2 + 1)-spanners but not a

(constrained) geometric c-spanner for any constant c.
The next theorem studies the relationship between geometric spanners

and power spanners, which is easy to show.
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Theorem 2.6. Every (constrained) geometric c-spanner is a (con-
strained) (cδ, δ)-power spanner for every δ ≥ 1.

Hence, in order to prove that a graph is a power spanner, it suffices
to prove that it is a geometric spanner. Interestingly, for δ ≥ 2, it even
suffices to show that a graph is a weak spanner in order to prove that it is
a power spanner.

Theorem 2.7 ([28]). Let G = (V, E) be a (constrained) weak c-
spanner. Then G is also a (constrained) (C, δ)-power spanner for δ > 2
where C = (4c + 1)2 · cδ

1−22−δ . It is even a weak spanner for δ = 2.
However, a weak c-spanner may not be a (C, δ)-power spanner for any

constant C if δ < 2.
Theorem 2.8 ([28]). For any δ < 2 there exists a family of graphs

G = (V, E) with V ⊂ R2 which are (constrained) weak c-spanners for a
constant c but not a (constrained) (C, δ)-power spanner for any constant
C.

Summing up Theorems 2.3, 2.4, 2.5, 2.6, and 2.7, we obtain the fol-
lowing interesting relationship between the class of all geometric spanners,
weak spanners, and power spanners with δ ≥ 2:

Geometric spanners ⊂ Weak spanners ⊂ Power spanners

2.2. Proximity graphs. From our insights on spanners above it fol-
lows that it would often be sufficient to design protocols that guarantee a
constrained weak c-spanner as long as this is possible because weak span-
ners are guaranteed to have energy-efficient paths. But how can such span-
ners be designed? Consider the following definition:

Definition 2.3. For any node set V ⊂ R2, the graph G = (V, E) is
called a proximity graph of V if and only if for all u,w ∈ V it holds that

• (u,w) ∈ E or
• there is a v ∈ V with (u, v) ∈ E and ||vw|| < ||uw||.

For an example of a node v satisfying the proximity conditions, see
Figure 4. It is known that there are proximity graphs with a stretch factor
as bad as |V | − 1 [4] but proximity graphs are always good weak spanners.

Theorem 2.9. For any finite V ⊂ R2, every proximity graph of V is
a weak 2-spanner.

Proof. Let G = (V, E) be any proximity graph of V . First we prove
that G is connected. Certainly, a graph G is connected if and only if for
every pair of nodes in G there is a path connecting these two nodes. So
consider any pair of nodes u,w ∈ V . We distinguish between two cases:

1. (u,w) ∈ E: Then u and w are connected, and we are done.
2. There is a v ∈ V with (u, v) ∈ E and ||vw|| < ||uw||: Then we use

the edge (u, v) and get closer to w then we were before.
Since V is finite, we only have to apply case 2 a finite number of times until
case 1 holds. Hence, G is connected.
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Besides G being connected, it follows from the observation above that
for any pair of nodes u,w ∈ V there is a path p that monotonically con-
verges against w. Hence, p is contained in a disk of diameter at most
2||uw||, which proves the theorem.

Hence, every proximity graph is also a power spanner of V for every
δ ≥ 2. To make proximity graphs useful for ad hoc networks, we consider
a constrained form of proximity graphs which are also known as relative
neighborhood graphs [4].

Definition 2.4. For any node set V ⊂ R2, the graph G = (V, E)
is called a relative neighborhood graph (RNG) of V if and only if for all
u,w ∈ V it holds that

• (u,w) ∈ E or
• there is a v ∈ V with (u, v) ∈ E, ||uv|| < ||uw||, and ||vw|| < ||uw||.

v

Fig. 4. Connections satisfying the RNG condition for v. (Removing the dashed
connections gives a minimum set of connections satisfying the RNG condition.)

It is easy to verify that relative neighborhood graphs satisfy the con-
dition on constrained graphs we formulated for spanners in Definition 2.2.
Hence, Theorems 2.1, 2.7, and 2.9 imply that relative neighborhood graphs
are weak and power spanners of the UDG of V for every δ ≥ 2.

Though relative neighborhood graphs may be good weak spanners,
they may not be geometric spanners or power spanners with a low cost.
Here, two basic approaches have been pursued in the literature to obtain
geometric spanners and/or power spanners with low cost:

• The nodes cut the space around them into sectors of equal angle
θ, where θ is sufficiently small. Such graphs are also known as
θ-graphs or Yao graphs [6, 25, 31].

• The nodes triangulate the space to form Delaunay-like graphs.
We first consider Yao graphs and their variants, which we also call sector-
based spanners, and afterwards we study Delaunay graphs and their vari-
ants, which we also call planar spanners.

2.3. Sector-based spanners. The basic idea underlying the Yao
graphs is to cut the space around each node into sectors of equal angle
θ and to connect each node to the nearest neighbor in each of its sectors
(see Figure 5). As we will see, this will give a relative neighborhood graph
if θ is sufficiently small. For any pair of nodes u, v, let Cu,v denote the
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sector (or cone) of u containing v.

Fig. 5. An example of a Yao graph.

Definition 2.5. Consider any finite V ⊂ R2 and let k ∈ N. Suppose
that the space around every node v ∈ V is cut into k sectors with angle
θ = 2π/k. Then the Yao graph Y Gθ(V ) of V consists of the following set
of edges:

E = {(u, v) | u, v ∈ V and there is no w ∈ V with w ∈ Cu,v and
||uw|| < ||uv||} .

We start with a basic property of Yao graphs.
Theorem 2.10. If θ = 2π/k with k > 6, then Y Gθ(V ) is a RNG.
The theorem immediately implies that Yao graphs with k > 6 are weak

spanners. But they are more than that, as shown in the next theorem.
Theorem 2.11 ([25]). If θ = 2π/k with k > 6, then Y Gθ(V ) is a

geometric spanner with stretch factor at most
1

1− 2 sin(θ/2)
.

Combining this with Theorem 2.6 yields the following result.
Corollary 2.1. If θ = 2π/k with k > 6, then Y Gθ(V ) is a (c, δ)-

power spanner for every δ ≥ 1 with

c ≤
(

1
1− 2 sin(θ/2)

)δ

.

A much better result was shown by Li et al. [21] for δ ≥ 2. We recently
strengthened their result to any δ ≥ 1.

Theorem 2.12 ([26]). If θ = 2π/k with k > 6, then Y Gθ(V ) is a
(c, δ)-power spanner for every δ ≥ 1 with

c ≤ 1
1− (2 sin(θ/2))δ

.
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The drawback of the Yao graph is that, although its out-degree is at
most k, its in-degree may be as high as n−1 (consider, for example, the disk
in Figure 9 with one node in its center and all other nodes on its border).
Various sub-graphs of the Yao graph have been suggested to remove this
drawback. We will present two of them here (see also [3]).

Definition 2.6. The sparsified Yao graph SpY Gθ(V ) is a sub-graph
of Y Gθ(V ) with edge set

E = {(u, v) ∈ E(Y Gθ(V )) | for all w ∈ V with (w, v) ∈ E(Y Gθ(V )) and
w ∈ Cv,u : ||vw|| > ||vu||} .

In words, for every sector of every node v, the sparsified Yao graph
only keeps the shortest of all edges into v. Hence, the sparsified Yao graph
has an in-degree of at most k and an outdegree of at most k, and therefore
a degree of at most 2k.

Definition 2.7. The symmetric Yao graph SyY Gθ(V ) is a sub-graph
of Y Gθ(V ) with edge set

E = {(u, v) ∈ E(Y Gθ(V )) | (v, u) ∈ E(Y Gθ(V ))} .

In words, the symmetric Yao graph only keeps an edge (u, v) if not only
v is the nearest neighbor of u in Cu,v but also u is the nearest neighbor
of v in Cv,u. Hence, the symmetric Yao graph has a degree of at most k.
Obviously,

SyY Gθ(V ) ⊆ SpY Gθ(V ) ⊆ Y Gθ(V )

and Figure 6 shows that there are cases in which the edge sets of the
different graphs are proper subsets of each other. Thus, it suffices to prove
connectivity for SyY Gθ(V ) in order to prove connectivity for both variants
of the Yao graph.

Fig. 6. The Yao graph, the sparsified Yao graph, and the symmetric Yao graph of
a point set.
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Theorem 2.13 ([11]). For all non-degenerate node sets V and k > 6,
SyY Gθ(V ) is connected.

Unfortunately, the symmetric Yao graph is not a good power spanner
for any δ ≥ 1, which implies that it is not even a good weak spanner.

Theorem 2.14 ([3]). The symmetric Yao graph is not a (c, δ)-power
spanner for any constant c and any δ ≥ 1.

However, the sparsified Yao graph is a good weak spanner.
Theorem 2.15 ([3]). If k > 6, then the sparsified Yao graph is a weak

c-spanner with c = 2
1−2 sin(θ/2) .

Though the sparsified Yao graph is not a relative neighborhood graph
like the original Yao graph, it is easy to check that when restricting to
the UDG of V , the proof of Theorem 2.15 is still correct for all pairs u,w
with ||uw|| ≤ 1. Hence, it follows from the proof of Theorem 2.1 that the
sparsified Yao graph is also a weak c-spanner of the UDG of V . Thus,
Theorem 2.7 implies that it is also a power spanner of the UDG of V for
every δ ≥ 2 and therefore useful for wireless ad hoc networks.

2.4. Planar spanners. The most well known class of planar spanners
are the Delaunay graphs. The Delaunay graph of a set of points in R2 is
equivalent to their Delaunay triangulation and the dual of their Voronoi
diagram. Since the Delaunay triangulation of any point set in R2 is planar,
the Delaunay graph is planar. In the following, let 4(uvw) be the triangle
formed by the nodes u, v, and w and ©(uvw) be the unique circle through
u, v, and w.

Definition 2.8. For any V ⊂ R2, the Delaunay graph Del(V ) of V
consists of all edges (u, v) that have a node w ∈ V for which ©(uvw) does
not contain any other node of V .

Fig. 7. An example of a Delaunay graph.

For an example of a Delaunay graph see Figure 7. It is known [7, 14]
that the Delauney graph is a geometric c spanner with c = 2π

3 cos(π/6) ≈ 2.42,
but the Delaunay graph is difficult to maintain locally. Therefore, several
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variants of it have been proposed. The most well-known variant is the
Gabriel graph.

Definition 2.9. For any V ⊂ R2, the Gabriel graph GG(V ) of V
consists of all edges (u,w) with the property that there is no node v ∈ V
with

||uv||2 + ||vw||2 < ||uw||2 .

In words, the Gabriel graph of V consists of all edges {u,w} with the
property that the open sphere through u and w with diameter ||uw|| does
not contain any other node in V . An example of a Gabriel graph is given
in Figure 8. The Gabriel graph has the following interesting properties:

Fig. 8. A Gabriel graph.

Theorem 2.16. For any V ⊂ R2, the Gabriel graph of V is a relative
neighborhood graph and a subgraph of the Delaunay graph of V .

Unfortunately, Theorem 2.5 implies that the Gabriel graph is not a
geometric spanner. With better techniques one can even create a coun-
terexample with stretch factor Ω(

√
n) [21]. But Theorem 2.9 implies that

the Gabriel graph is a weak 2-spanner, and even more importantly, it is an
optimal power spanner for every δ ≥ 2.

Theorem 2.17 ([21]). For every δ ≥ 2, the Gabriel graph is an
optimal power spanner.

Unfortunately, the outdegree of a Gabriel graph can be as high as n−1
(see Figure 9). Also, since the Gabriel graph is not a geometric spanner,
one may ask whether there are locally constructible planar graphs that are
geometric spanners. To investigate the latter issue, we define the following
classes of graphs.

Definition 2.10. A triangle 4(uvw) satisfies the k-localized Delau-
nay property if the interior of the disk©(uvw) does not contain any node of
V that is a k-neighbor of u, v, or w in UDG(V ) and (u, v), (v, w), (w, u) ∈
UDG(V ). Such a triangle is called a k-localized Delaunay triangle.
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Fig. 9. Gabriel graph for the unit disk with one node in its center and all other
nodes on its border.

Definition 2.11. The k-localized Delaunay graph over V , denoted
by LDel(k)(V ), has exactly all Gabriel edges and the edges of all k-localized
Delaunay triangles.

Let the constrained Delaunay graph of a point set V be defined as
UDel(V ) = Del(V ) ∩ UDG(V ). The following facts are known about k-
localized Delaunay graphs.

Theorem 2.18 ([20]). Localized Delaunay graphs have the following
properties:

1. UDel(V ) ⊆ LDel(k)(V ) for all k ≥ 1.
2. LDel(k+1)(V ) ⊆ LDel(k)(V ) for all k ≥ 1.
3. LDel(2)(V ) is a planar graph.
4. LDel(1)(V ) is not always planar.
Since UDel(V ) is a geometric c-spanner with c ≈ 2.42 it follows that

LDel(2)(V ) is a geometric c-spanner with c ≈ 2.42, and it is also planar.
However, as mentioned above, Gabriel graphs and therefore all graphs

of the localized Delaunay graph family have the problem that the degree
may be very high (see Figure 9). This problem can be solved by con-
straining a Delaunay graph in the same way Yao graphs are constrained to
sparsified Yao graphs: cut the space around each node into k > 6 sectors
of equal angle, and accept only the connection of the closest node with an
incoming edge in the original graph. Similar to the proof of the sparsi-
fied Yao graph, this gives a sparsified Delaunay graph that is still a weak
spanner. Other constructions have been proposed that can even maintain
a Euclidean O(1)-spanner but at the cost of requiring an algorithm that
may need a long time to stabilize at some solution [29].

3. From ideal to realistic models. In the previous section we saw
that in the ideal world (i.e., a perfect 2-dimensional Euclidean space) it
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is possible to construct good spanners. But how about the real world?
In the real world, many assumptions made above are not valid any more.
For example, instead of the unit disk graph, more involved models have
to be chosen to model the transmission range of a node in real life. The
position of a node or its distance or angle to another node may not be
easy to determine. The energy consumed by transmitting a message over
a distance of d is not simply dδ for some fixed δ ≥ 2. Also, the spanner
constructions above can create very dense networks that can possibly create
a lot of contention, reducing the effectiveness of wireless communication in
practice. Finally, mobility has not been addressed above. We will present
possible solutions to each of these problems.

3.1. Unit disk model. Certainly, the unit disk model is too sim-
plistic to model the transmission range of wireless nodes. One alternative
model would be the standard packet radio network model used in many
papers on wireless broadcasting:

We model the wireless medium as a graph G = (V, E) where V rep-
resents the set of wireless nodes and (u, v) ∈ E if and only if u is able to
transmit a message to v.

This model has two disadvantages. First of all, it is too general. Patho-
logical cases can be constructed that would never occur in practice. It is
possible, for example, to choose a graph G that makes it impossible to con-
struct a low-degree (and therefore low contention) geometric spanner. In
fact, it is easy to come up with a node distribution V and graph G where
any geometric spanner with constant stretch factor would have to be a star
graph, i.e., one node in it must have a degree of n − 1. Also, the packet
radio network model does not allow us to say how the transmission range
of a node changes when changing its transmission power. An alternative
model could be the following:

We are given a set V of wireless nodes that are distributed in an
arbitrary way in a 2-dimensional Euclidean space. Consider any function
t with the property that there is a fixed constant γ ∈ [0, 1) so that for any
two points p and q in the Euclidean space,

1. t(p, q) ∈ [(1− γ) · ||pq||, (1 + γ) · ||pq||] and
2. t(p, q) = t(q, p), i.e. t is symmetric.

For any two nodes u, v ∈ V where u sends with transmission power cor-
responding to a value of tu, v is in the transmission range of u if and
only if t(u, v) ≤ tu. Applying the UDG model to this new model, this
means that two nodes u and v are within transmission range if t(u, v) ≤ 1.
Thus, t determines the transmission range of the nodes and γ bounds the
non-uniformity of the environment. Notice that we do not require t to
be monotonic in the distance or to satisfy the triangle inequality. This
makes sure that our model even applies to highly irregular environments.
In Figure 10, for example, the distance between u and v is greater than the
distance between u and w. Yet, the cost of communicating between u and
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w, t(u,w), is bigger than t(u, v). Similar cost functions were also used in
[18].

u

v

w

Fig. 10. The area covered by the maximum transmission range of node u is given by
the shaded area. Given a maximum transmission range of 1, this means that t(u, v) ≤ 1
and t(u, w) > 1.

Does the cost model still allow us to construct good spanners? Yes,
it does, because of condition 1 on the cost function above. This condition
essentially states that t(p, q)δ = Θ(||pq||δ) for any constant δ ≥ 0. Hence,
the following fact holds.

Fact 3.1. For any graph G it holds that G is a geometric c-spanner
/ (c, δ)-power spanner / weak c-spanner of V w.r.t. || · || if and only if G is
a geometric c-spanner / (c, δ)-power spanner / weak c-spanner of V w.r.t.
t.

Using this fact, it is easy to verify that Theorem 2.1 still holds. Also,
the relationships between the different classes of spanners in Section 2.1
still hold due to Fact 3.1. For the various spanner constructions that we
suggested afterwards, we obtain the following results.

Proximity graphs. Definition 2.3 with || · || being replaced by t still
satisfies Theorem 2.9 since for any pair of nodes u,w ∈ V in a proximity
graph G = (V,E), either (u,w) ∈ E or (u, v) ∈ E for some node v with
t(v, w) < t(u,w). Hence, all nodes on a path from u to w lie within a
transmission range of at most t(u,w) around w.

Sector-based spanners. To make sure that the Yao graph is still a ge-
ometric spanner, an angle θ has to be chosen so that for any two nodes
u,w ∈ V it holds that either (u,w) ∈ E or there is a node v in the sector
Cu,w with (u, v) ∈ E and

t(v, w) ≤ (1− ε)t(u,w)

for some constant ε > 0. For γ = 0 in the conditions for t this is true for
any θ < 2π/k. If γ > 0, then it can be shown via trigonometric arguments
(see also Figure 11) that

t(v, w) ≤ (1 + γ)

√(
t(u, v) sin θ

1 + γ

)2

+
(

t(u, v)
1− γ

−
(

t(u, v) cos θ

1 + γ

))2

.
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Simplifying this expression, we obtain

t(v, w) ≤
√

2(1− cos θ) + 2γ2(1 + cos θ)
1− γ

· t(u, v) .

It holds that
√

2(1− cos θ) + 2γ2(1 + cos θ)
1− γ

< 1 ⇔ cos θ >
1

2(1− γ)
.

Hence, as long as θ ≤ arccos(1/(2(1 − γ))) − ε for some constant ε > 0,
which is only possible if γ < 1/2, the Yao graph construction still yields
a geometric spanner of constant stretch factor. Under this condition on θ,
also the properties for the sparsified and the symmetric Yao graph can be
shown.

u v

w

Fig. 11. Node u has a connection to v because t(u, v) < t(u, w), but w may be
closer to u then v if γ > 0.

Planar spanners. The planarity condition cannot be satisfied any more
because the Delaunay condition of having no node in ©(uvw) can create
crossing edges when applying this condition to t. These crossing edges can
be very hard to determine (see, for example, Figure 12). Nevertheless, the
Gabriel graph is still a RNG due to the condition that t(u, v)2 + t(v, w)2 <
t(u,w)2, and therefore t(u, v) < t(u,w) and t(v, w) < t(u,w). Hence, the
Gabriel graph (and also the other Delaunay graphs presented in Section 2.4
because they are supergraphs of the Gabriel graph) is still a weak spanner.

3.2. Positions, distances and angles. All spanner graph construc-
tions can be easily done in a distributed way if every node knows its po-
sition, which is possible if it has GPS. But if the nodes are not able to
determine their positions through means like GPS, then other strategies
have to be used. In the following, we list some options for the various
spanner constructions.

Proximity graphs. In proximity graphs, only the distance has to be
computed between nodes. Here, a reasonable strategy might be to mea-
sure the signal strength and from there compute the distance based on an
appropriate path loss model. This computation may not be too reliable in
a non-uniform environment, but as long as the model above with the cost
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w

v

v’ w’

Fig. 12. The typical street corner problem. Nodes v and w and nodes v′ and w′
are within transmission range of each other, but v and w cannot reach any one of v′
and w′, and vice versa.

function t can be applied (i.e., the path loss only varies by a constant fac-
tor), only a constant factor error will be done in the distance calculation.
This would suffice to obtain the same properties as shown in the previous
subsection.

Sector-based spanners. Here, knowing the distance alone does not suf-
fice because it is also important to compute the angle between the nodes.
Here, trilateration techniques may be used: First, u determines the pair-
wise distance among the nodes in its neighborhood (using the technique
mentioned for proximity graphs, for example), and then u tries to lay out
the nodes so that all distance relationships are satisfied (up to a small con-
stant factor). Using this virtual layout of the nodes, u will then cut the
layout into sectors and connect to nodes according to the Yao graph rules.
Again, if the model with the cost function t can be applied, then a similar
relationship between θ and the error in the measurement can be shown
as in the previous subsection, so that the Yao graph is still a geometric
spanner.

Planar spanners. Gabriel graphs do not need to compute the distance
between two nodes but may directly use the signal strength. To see this,
recall the Gabriel condition

||uv||2 + ||vw||2 < ||uw||2 .

If the path loss scales quadratically with the distance (which is true in a
perfect outdoors environment), then this expression simply states that

e(u, v) + e(v, w) < e(u,w)

where e(x, y) is the energy necessary to send a message from x to y. But
even if this perfect situation is not given, the energy argument still guaran-
tees that the Gabriel graph is a weak spanner as long as we can apply the
cost function t above for the path loss. Since the other Delaunay graphs
are supergraphs of the Gabriel graph, these will also be weak spanners.
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3.3. Energy cost model. So far, we assumed a simple energy cost
model, i.e., given a distance of x, the energy consumption scales with
f(x) = xδ for some δ ≥ 2. In reality, there is a fixed minimum energy
consumption, so a more realistic function would be g(x) = max{e0, x

δ}
for some positive constant e0. In this case, short edges should be avoided
because sending a message along many short edges can now be much more
expensive than sending a message along a long edge. In fact, in this cost
model it is not true any more that every geometric spanner or weak spanner
is also a power spanner. So we need to adjust our spanner constructions for
this property to be true again. For this we need the concept of a dominating
set.

Definition 3.1. Given a node distribution V ⊂ R2 and a distance d,
we say that a subset U ⊆ V forms a dominating set of V w.r.t. d if for all
v ∈ V either v ∈ U or there is a node u ∈ U with ||uv|| ≤ d.

Suppose now that we found a dominating set U for the given node
distribution with respect to distance d0 = δ

√
e0. Consider the graph G =

(U,E) with E consisting of all edges {u, u′} ∈ U2 with the property that
there are v, v′ ∈ V with ||uv|| ≤ d0, ||u′v′|| ≤ d0 and ||vv′|| ≤ dmax where
dmax is the maximum transmission range of a node. Since all edges in
G have a length of at least d0, all results about the relationship between
geometric, weak and power spanners hold again for G because the threshold
e0 is effectively washed out.

Theorem 3.2. For any pair {u, v} ∈ U2, the energy of an energy-
optimal path pu,v in G is within a constant factor of the energy of an
energy-optimal path p′u,v in the UDG(V ).

Proof. Consider any energy-optimal path p′u,v in UDG(V ) w.r.t. g(x).
Let v1, . . . , vk be the nodes traversed in this path, and let ui be any node
in U with ||uivi|| ≤ d0 for all i ∈ {1, . . . , k}. Then the energy of the path
pu,v = (v1, u1, . . . , uk, vk) is within a constant factor of the energy of p′u,v

because of the following facts:
• for all i, g(||vivi+1||) = Ω(e0)
• g(||v1u1||) = O(e0) and g(||ukvk||) = O(e0)
• for all i with ||vivi+1|| ≤ d0, g(||uiui+1||) ≤ g(3d0) = (3d0)δ ≤

3δg(||vivi+1||) = O(g(||vivi+1||))
• for all i with ||vivi+1|| > d0, g(||uiui+1||) ≤ g(||vivi+1|| + 2d0) ≤

(3||vivi+1||)δ = O(g(||vivi+1||))

Hence, in order to repair our spanner constructions for g(x), we can
do the following:

1. Choose a dominating set U w.r.t. d0.
2. Apply the spanner construction to G = (U,E) defined above to

obtain a graph G′ = (U,E′).
3. Construct a graph G′′ = (V, E′′) out of G′ by replacing every edge
{u, u′} ∈ E′ by at most 3 edges of length at most min{dmax, ||uu′||}
and adding all edges {u, v} with u ∈ U , v ∈ V \U and ||uv|| ≤ d0.
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Step 3 is possible because by definition there is only an edge between two
nodes u, u′ ∈ U in G if there are two nodes v, v′ ∈ V with ||uv|| ≤ d0,
||u′v′|| ≤ d0 and ||vv′|| ≤ dmax.

Using this construction, all spanner results in the previous section
hold, apart from the planarity property. Here, one would have to take care
that when connecting the nodes in the dominating set in step 3, planarity
is maintained, which is possible.

3.4. Contention. In all spanner constructions above, all nodes have
equal roles. This, however, can be bad in areas with a high node density
because then a lot of nodes have to coordinate their transmissions so that
eventually messages can get through. An alternative solution is to parti-
tion the nodes into two groups: normal cluster nodes and cluster leaders,
which we will also call passive and active nodes in the following. All com-
munication is scheduled by the cluster leaders, or active nodes, in a sense
that they determine who is allowed to transmit a message at a certain time
point. This significantly simplifies the contention problem if there are only
a few cluster leaders within a transmission range.

Ideally, the active nodes should form a connected set so that they can
handle all non-local communication, and for each passive node there should
be an active node within transmission range so that also all messages from
and to passive nodes can be forwarded by the active nodes. Finding such a
set of nodes is also known as the connected dominating set problem. Various
distributed protocols have already been presented to find such a set. See,
for example, [2, 9, 13, 16, 17]. As long as our model above with the cost
function t is applicable, these protocols actually yield a connected dominat-
ing set of constant density, i.e., every node has only a constant number of
dominating set nodes within its transmission range. In addition, any of the
spanner constructions can be applied to the active nodes to further reduce
the number of potential communication links while keeping the network
connected. In this way, the effort of coordinating the transmissions be-
tween the active nodes can be kept at a low constant, no matter how many
nodes there are in the network, so that the effort of scheduling message
transmissions can scale to any number of nodes.

3.5. Mobility. As long as the nodes do not move around (and no node
fails), the overlay network only has to be constructed only once. However,
if the nodes move around, then frequent updates to the overlay network
may be necessary. To limit the amount of updates, we need a mechanism
that only connects nodes that can remain connected for a certain time.
Certainly, this requirement can only be satisfied for two nodes v and w
if the relative speed of v to w is small. This easiest way to take this
into account is to add additional dimensions for the speed (see also [27]).
Since speed in a 2-dimensional Euclidean space is a 2-dimension vector,
this would result in a 4-dimensional space. Next we investigate whether
our spanner constructions can still be used in this space.
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Proximity graphs. For these graphs, only the distance between two
nodes is relevant, not the dimension of the space. Hence, all the properties
of proximity graphs are preserved.

Sector-based graphs. For Yao-graphs, the following result is known.
Theorem 3.3 ([22, 25]). Let V be any set of n points in Rd and let

0 < θ < π/3. Then the graph Y Gθ(V ) is a geometric spanner for V with
stretch factor 1

1−2 sin(θ/2) . The number of cones needed to obtain an angle

of θ is O(d−1/2(d3/2

θ )d−1).
Hence, the stretch factor is the same as for the 2-dimensional case, but

the number of cones to obtain a certain angle θ grows exponentially in the
dimension d.

Planar graphs. Certainly, planarity is not relevant any more in a more
than 2-dimensional space, but the other spanner results about the various
Delaunay graphs can be shown to hold as before.

4. Conclusions. In this paper we gave an overview of spanner con-
structions relevant for wireless ad hoc networks. We studied the perfor-
mance of these constructions both in an idealized model and under more
realistic assumptions. Interesting open problems in the future are how to
route efficiently in these networks when using realistic communication and
mobility models. For the UDG model and static nodes, there is already a
large body of work on routing protocols (see, e.g., [5, 15, 18, 19]), but most
of these results heavily rely on the assumption that the given overlay net-
work is planar. Planarity, however, is hard to achieve under more realistic
models, as we saw above. So further research is necessary.

REFERENCES

[1] K. Alzoubi, X.-Y. Li, Y. Wang, P. Wan, and O. Frieder, Geometric spanners
for wireless ad hoc networks, IEEE Transactions on Parallel and Distributed
Systems, 14 (2003), pp. 408–421.

[2] K. Alzoubi, P.-J. Wan, and O. Frieder, New Distributed Algorithm for Con-
nected Dominating Set in Wireless Ad Hoc Networks, in Proceedings of the
Thirty-Fourth Annual Hawaii International Conference on System Science
(HICSS-35), IEEE Computer Society Press, 2002.

[3] F. M. auf der Heide, C. Schindelhauer, K. Volbert, and M. Grünewald,
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