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ABSTRACT Keywords

The problem of scalable and robust distributed data storage has re-overlay networks, peer-to-peer systems, robustness
cently attracted a lot of attention. A common approach in the area
of peer-to-peer systems has been to use a distributed hash table (o], |INTRODUCTION
DHT). DHTSs are based on the concept of virtual space. Peers and
data items are mapped to points in that space, and local-control
rules are used to decide, based on these virtual locations, how to
interconnect the peers and how to map the data to the peers.

DHTs are known to be highly scalable and easy to update as
peers enter and leave the system. It is relatively easy to extend the e Insert(): this inserts data itend into the system.
DHT concept so that a constant fraction of faulty peers can be han-
dled without any problems, but handling adversarial peers is very
challenging. The biggest threats appear to be join-leave attacks
(i.e., adaptive join-leave behavior by the adversarial peers) and at-Once a distributed storage system becomes large enough, one also
tacks on the data management level (i.e., adaptive insert and lookuphas to deal with nodes leaving and joining the system, simply be-
attacks by the adversarial peers) against which no provably robustcause storage devices may break down or new devices have to be
mechanisms are known so far. Join-leave attacks, for example, mayadded in order to maintain a desired service quality. Hence, two
be used to isolate honest peers in the system, and attacks on the dataore operations are needed:
management level may be used to create a high load-imbalance, se-
riously degrading the correctness and scalability of the system.

We show, on a high level, that both of these threats can be han- 4 | eaveg): nodev leaves the system
dled in a scalable manner, even if a constant fraction of the peers in
the system is adversarial, demonstrating that open systems for scalHOW can these four operations be implemented to obtain a robust
able distributed data storage that are robust against even massivé@nd scalable distributed storage system? The most prominent ap-

In a distributed storage system, information is distributed among
multiple storage devices, simply calladdesin the following. To
provide a basic lookup service, the following operations have to be
implemented:

e Lookuppame): this returns any data itemi with Name(d)
= name, if it exists.

e Join@): nodew joins the system

adversarial behavior are feasible. proach studied in the research community is to implement a dis-
tributed hash table, or DHT. DHTs have been realized in various
Categories and Subject Descriptors contexts including server-based systems such as Akamai and peer-

T o to-peer systems such as Chord [32], CAN [23], Pastry [9], and
C.2.4 [Computer-Communication Networks]: Distributed Sys- Tapestry [34]. Most of the DHT-based systems are based on two
tems—Distributed gppllcatlonsF.Z_.Z [Analys_ls of Algorithms and influential papers: a paper by Plaxton, Rajaraman, and Richa on
Problem Complexity]: Nonnumerical Algorithms and Problems—  ocity-preserving data management in distributed environments
Routing and layout [22] and a paper by Karger, Lehman, Leighton et al. on consistent
hashing and web caching [14]. The consistent hashing approach is
General Terms ?u\llsry simple and elegant approach that is based on the following
Algorithms, Theory Suppose that we have two random functigrandg. The func-
tion f maps the nodes randomly to real numberfiri), and the
“Supported by NSF-ANIR 0240551, NSF-CCF 0515080, and functiong maps the data items randomly to real number®ijn).
NSF-CCR 0311795. Every data item is stored at the node with a minimum distance
betweenf (v) andg(d) (viewing [0, 1) here as a ring). It turns out
that this rule has several nice features [14]:
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However, all of these properties only holdfifand g are random requests for the red nodes, but it can do this in an arbitrary adaptive
and the names selected for the nodes and the data items are indesmanner. That is, at any time it can inspect the entire system and
pendent off andg. Unfortunately, in a DHTg must be a fixed hash ~ select whatever red node it likes to rejoin the system. Our goal is
function because otherwise it would not be possible to compute the to find anobliviousjoin strategy, i.e., a strategy that cannot distin-
location of the data items. Hence, itis easy for the adversary to gen-guish between the blue and red nodes, so thaafyradversarial
erate many data items that all need to be stored at the same nodestrategy above the following two conditions can be preserved for
even if it cannot invery. It just has to try sufficiently many names.  every intervall C [0, 1) of size at leasfclogn)/n for a constant

In fact, millions of names can be quickly tested with hash functions ¢ > 0 and any polynomial number of roundsin

like SHA-1.

Fortunately,f does not have to be a fixed hash function for the
DHT to work. But even a truly random mapping does not protect e Majority condition: the blue nodes i are in the majority.
against adversarial attacks. Suppose, for example, that every ne
node is mapped uniformly at random to a point[in1). If the
adversary wants to overpopulate a certain area oftthe) space,
say some interval, it just needs to execute sufficiently many join
and leave operations in which it keeps all nodes that made iffinto
in the system and removes all others for another join attempt.

DHT constructions are very vulnerable to a node and data im-
balance in the virtual space since this can seriously degrade their,
scalability. Can we design simple protocols for the operations join,
leave, insert and lookup that apeovablyrobust against these at-
tacks without restricting the openness of the system?

In this paper we show that, on a high level, this is possible. More
precisely, we will show that there are scalable join and leave proto-
cols so that for a polynomial number of join and leave requests the
nodes will be evenly distributed in thHe, 1) space, with high prob- ~ Cuckoo rule: If a new nodev wants to join the system, pick a
ability*, and the honest and adversarial nodes will be well-spread randomz € [0,1). Placev into x and move all nodes iy (z)
so that quorums of siz€(log n) can be formed to wash out any !0 points in[0, 1) chosen uniformly and independently at random
adversarial behavior violating the protocols by simple majority de- (Without replacing any further nodes).
cision. Moreover, we will show that there are scalable and robust gy first main result is summarized in the following theorem.
insert and lookup protocols so that for a polynomial number of at-
tempts the adversary will not manage to find data names so thatit THEOREM 1.1. For any constants andk withe < 1—-1/k, the

e Balancing condition:/ contains9 (|| - n) nodes.

Yt is not difficult to see that the brute-force strategy of giving every
node a new random place whenever a node rejoins will achieve the
stated goal, with high probability, but this would be a very expen-
sive strategy. The challenge is to find a join operation that needs as
little randomness and as few rearrangements as possible to satisfy
the two conditions. Fortunately, there is such a strategy, called the
cuckoo rule We first introduce some notation, and then we describe
the strategy.

In the following, aregionis an interval of sizd /2" in [0, 1) for
some integer that starts at an integer multiple @f2". Hence,
there are exactlg” regions of sizel /2". A k-regionis a region of
size (closest from above té)/n, and for any point: € [0,1), the
k-region Ry (z) is the uniquek-region containinge.

can create a high request or load imbalance in the system. cuckoo rule with parametet satisfies the balancing and majority
. . conditions for a polynomial number of rounds, with high probabil-
1.1 Our contributions ity, for any adversarial strategy within our model. The inequality

Next we give a detailed description of our contributions. For sim- € < 1 — 1/k is sharp as counterexamples can be constructed oth-
plicity, we assume that the number of honest nodes in the system€rwise.

will only change by a constant factor over time. In this way, notions Hence, a constarit > 1 would be sufficient to prevertdaptive

!ik? ‘ina polynomial number of rounds” and “With high probabil- join-leave attacks of aonstant fractiorof adversarial peers. Thus,
ity” are well-defined. However, using the techniques in [3], our

h Is0 b tended t t in which th b 'gt is remarkably easy to defend an open distributed storage system
approach can aiso be extended to systems in which the number 0against even massive join-leave attacks. The cuckoo rule allows
honest nodes in the system may change in an arbitrary way over

. | itd d i us to use local quorum strategies in order to wash out adversarial
time, as long as It does not drop too rapidly. behavior violating the protocols.

In the following, letn be the maximum number of honest nodes
in the system at any time and let for somee < 1 be the maximum Lookup and insert attacks

r_lumber of nodes that the adversary can have in the system at AMN6ur basic strategy to handle attacks on the data layer is tause
time. Thus, the adversary has bounded resources, but apart fro

L . = O(log n) one-way hash functions mapping each data item to
that the adversary can do what it likes, such as choosing any names. 1 [()oi%]ts)in thel0 i/) space. These hasﬁ?un?:tions are fixed but
itlikes for the data items and the nodes. have certain expansion properties to make it hard for the adversary
Join-leave attacks to create bad sets of insert or lookup requests. In order to achieve
an even load balance of the requests and the data items, we use the
majority trick of Upfal and Wigderson [33]: for each insert request,
store copies of the data item in at leastf the 2¢ — 1 locations,

and for each lookup request, access at ledstations of the data

i g ‘ item. This indeed suffices for the correct implementation of these
to nodev, letsw first leave the system and then join it again from o 6515 because if the copies are stored in a reliable way, then the
scratch. The leaving is done by simply removinfyom the system lookup operation will always retrieve at least one copy of the data
and the joining is done with the help of a join operation to be spec- jam
ified by the system. We assume that the sequence of rejoin requests  gjyen this basic scheme, we present a scalable dynamic overlay
is controlled by an adversary, which is a typical assumption in the oyqrk and robust protocols for the insert and lookup operations.
analysis of online algorithms. The adversary can only issue rejoin |, the following, U may represent the space of all names or the
1By “with high probability” or “w.h.p.” we mean a probability of names that the adversary can sample in a polynomial number of
at leastl — 1/n wheren is the size of the system. time steps.

First, we focus on making a DHT robust against join-leave attacks.
More precisely, we consider the following scenario. Thererare
blue (or honest) nodes and red (or adversarial) nodes for some
fixed constant < 1. There is a rejoin operation that, when applied




THEOREM 1.2. For any collection of lookup requests for data  attacks [6, 8] and various solutions have been proposed that may
items out of a selV' of polynomial size with one request per node, help thwart these attacks in practice [4, 5, 28, 20, 27, 29] but un-
the lookup protocol can serve all of these requests correctly and til recently no mechanism was known that gaovablycope with
reliably in polylogarithmic time so that each node is passed by at these attacks without sacrificing the openness of the system.
mostO(log® n) requests. One such mechanism, that can only cope with a linear number

of adversarial join requests, was proposed in [11]. The first mech-

Notice that the upper bound guaranteedfor any adaptively  anjsm that was shown to preserve randomness in the system under
chosen set of lookup requests, including data items with multiple adaptive adversarial behavior for a polynomial number of adversar-
lookup requests. The hash functions just need to be selected sqg| join-leave requests usesndomnode IDs and enforcedlianited
that they satisfy certain expansion properties. AlSO, notice that the lifetime on every node in the system‘ i.e.' every nbdsto reinject
adversary cannot modify or delete a request in transit since we useitself after a certain amount of time steps [3]. However, this leaves
quorum Strategies. Certainly, the bound is still too h|gh for practical the System ina hyperactive mode that may unnecessar”y consume
purposes, but the best bound previously known for adaptively cho- resources that could be better used for other purposes. Ideally, one
sen lookup requests in overlay networks is the trivial linear bound. would like to usecompetitivestrategies. That is, the resources con-

In light of this, our result is an exponential improvement, and an symed by the mixing mechanism should scale with the join-leave
interesting problem for future research will certainly be whether activity of the system. Recently, it was shown that for a pebble-
fL_thher improvements are possible. For insert requests we obtain ashuffling game this can be achieved [26]. In this game, there are
similar result. n blue pebbles aner red pebbles for some fixed constant 1.

The pebbles are laid out on a ring and the red pebbles can join
and leave the ring in an adaptive adversarial fashion. It was shown
in [26] that a simple protocol callek-rotation exists that can pre-
serve the majority condition with high probability. That is, for any
sequence 0®(log n) pebbles along the ring, a majority of them is
blue. However, the result in [26] cannot be taken over to a virtual
space setting as adversarial strategies exist for which-tio¢ation

rule cannot satisfy the balancing condition. Therefore, we had to
design a new strategy, which we called the cuckoo rule.

Also attacks on the data management layer have been considered
in the past. Most of the work considers the flash crowd scenario in
which many peers want to access the same information at the same
Prerequisites time. When using a pure DHT design, this can lead to severe bot-
An important prerequisite for our join and leave operations to work tlenecks. To remove these bottlenecks, various caching strategies

have been proposed. Among them are CoopNet [21], Backslash

correctly is a distributed random number generator that can gener- . X .

ate an unbiased random number even under the influence of a con-[SO]’ PROOF.S [31] in the systems community and [19] in thg the
. . . .~ ory community. However, being able to handle flash crowds is not

stant fraction of adversarial nodes, and an important prerequisite

. . . sufficient to survive the attacks considered in this paper because
for our insert and lookup operations to work correctly is that one-

. ) . . - - much worse than having many requests toshmedata item is to
way hash functions with certain expansion properties are available . ; s
. : have many requests ttifferentdata items residing at treamepeer.
so that the adversary has no other way then sampling names in orde

. . . . . Standard combining or caching strategies do not work here, so new
to design malicious collections of names. It is commonly believed

- . strategies are needed. It turns out that, interestingly, work on deter-
that one-way hash functions exist though no formal proof has been™ . ~—2 ™~ .
. . ministic simulations of CRCW PRAMSs comes to the rescue here.
found yet. But we will at least prove that random hash functions

will have expansion properties, w.h.p., that are good enough for our This was pioneered by Mehlhorn and Vishkin [18] and further de-
results to hold. A distributed random number generator sufficient veloped in a series of papers [1, 13, 16, 33]. The basic ideas behind
for our purposes can be built on top of existing verifiable-secret- our insert and lookup protocols_, are based on these results though
sharing (VSS) protocols. In fact, we have developed a distributed adaptations of the proof techniques were necessary here because

1 . our strategies are based on a dynamic well-structured overlay net-
random num_ber gen_erat_or based on {Hg-|-VSS proto_col In work whereas the PRAM results above have only considered static
[12] that we include in this paper for completeness. This genera- complete networks or networks with expander-like properties
tor may be used by th®(log n) nodes in any quorum in our DHT P P prop )
to correctly and efficiently generate random numbers under the as-1 .3 Organization of the paper
sumption that the honest nodes are in a sufficient majority in that
quorum.

1.2 Previous work
In the area of peer-to-peer systems, work on robustness in the2' ANALYSIS OF THE CUCKOO RULE

context of overlay network maintenance has mostly focused onhow ~ Recall that aegionis an interval of size /2" in [0, 1) for some

to handle a large fraction of faulty nodes (e.g., [2, 25, 32]) or churn, positive integer- that starts at an integer multiple ©f2". Let R

that is, peers frequently enter and leave the system (e.g., [15, 24]).be any fixed region of sizéclogn) - k/n, for some constant,
However, none of these approaches can protect a DHT against thefor which we want to check the balancing and majority conditions
join-leave attacks considered in this paper because just assigning aver polynomial inn many steps. Thus® contains exactly:logn
random or pseudo-random point to each new node (by using somemanyk-regions. Thegeof ak-region is the difference between the
random number generator or cryptographic hash function) does notcurrent round and the last round when a new node was placed into
suffice to preserve the balancing and majority conditions [3]. Peo- it (and all old nodes got evicted), and the agduis defined as the

ple in the peer-to-peer community are aware of the danger of thesesum of the ages of its-regions. A node iR is callednewif it was

THEOREM 1.3. For any collection of insert requests for data
items out of a sel/ of polynomial size with one request per node,
the insert protocol can serve all of these requests in polylogarithmic
time so that each node is passed by at n@gibg® n) requests.
Moreover, the maximum amount of copies to be stored by any node
to serve all of the requests is bounded®glog® n).

The O(log® n) bound is just arO(log n) factor away from the
optimal number of copies per node since we need to &¢relog n)
copies in®(n/logn) quorum regions containing@ (log n) nodes
each.

In Section 2 we will prove Theorem 1.1 and in Section 3 we will
prove Theorems 1.2 and 1.3. The paper ends with a conclusion.



placed ink when it joined the system, and otherwise it is cathéi

the number of evicted blue and red nodes in a certain time interval

Before we start with our analysis, we state some technical lemmas.(Lemma 2.9). After that, we can combine all lemmas to bound the

The bounds in the first are also known as Chernoff bounds.

LEMMA 2.1 ([17]). Suppose thak, ..., X,, are indepen-
dent binary random variables. Léf = " | X; andp = E[X].

Then itholds for alk > 0 thatPr[X > (1+€)u] < e~ #/ 21+

number of old blue and red nodesf(Lemma 2.10).

LEMMA 2.5. Atany time,& has an age withirf1 + §)(clog n)

n/k, with high probability, wheré > 0 is a constant that can be

made arbitrarily small depending on the constant

and forall0 < e < 1 thatPr[X < (1 — )] < e~< /2, A
PROOF.  Let Ry,..., Rc be thek-regions of R, whereC =
clogn. For everyk-region R;, let the random variable; de-
note the age of?; at the beginning of the given round, and let
X = Y7, X,. Foralli andt > 1 it holds thatPr[X; = ] =
(k/n)(1— (k/n))'~*. HenceX; is geometrically distributed with
probabilityp = k/n. Thus,E[X;] = 1/p = n/k, and therefore,
E[X] = Y% | E[Xi] = (n/k) - C. It remains to show thaX is
concentrated arourid[ X].

Unfortunately, the ages of theregions are not independent as
two k-regions cannot have the same age. However, there is an easy
solution to this problem. LeY7, ..., Yc be independent random

LEMMA 2.2. Suppose thai, ..., X, are independent ran-
dom variables wittPr[X; = t] = p(1 —p)*~* for everyt € IN for
some fixed < p < 1. LetX =37 | X; andp = E[X]. Then it
holds for every > 0 thatPr[X > (1 + €)u] < e~ "/2(1+9) and
forall 0 < e < 1thatPr[X < (1 —e)u] < e < "/2,

PrROOF. Consider transforming every; = ¢ into a binary string
B, = (000...01) with (¢ — 1) zeroes. Then the ever¥; = ¢,

Xy = ta, X3 = ts,... can be represented by a strifi}) of the
form B:, o Bt, 0 By,... = 00...100...100...1.... Notice thatB

contains, many 1's and the total number of positions (0 or 1Hn variables with the same probability distributions &s, ..., X¢
isT =3, t. andlety = > | ;. Thenitholds for allage8 < t; < t2... <

Now, consider instead an infinite set of binary random variables t¢c that
Y1,Y2,Ys, ... with Pr[Y; = 1] = p. Viewing Y; as representing

theith position inB, it is not difficult to check that PriXi =t1 A A Xo = tc]

C

n T T
= Pl”[Xi:ti‘X1=t1 AN... A Xi71:t~;71]
Pr|d Xi>T|=Pr|) Y;<n 1;[1
Li=1 1 Li=1 ] )
c k —(i—=1)
and = (1 — 7) PI‘[Yi = ti]
- n
[ n 1 rr 7 i=1
Pr X, <T|=Pr Y;>n -(%)
_; ] _jzzjl ] = (1—%) Pr[Yl:tl VANPAN Yc:tc]

SettingT” = (14¢)u and applying the Chernoff boundsZ@jT:1 Y;

gives the lemma. [ Hence, because alt;’s have the same probability distribution, it

holds for anyl" > 1 that

THEOREM2.3 ([10]). LetXy,..., X, be an arbitrary set of

/ ) an. PriX > T]
random variables and lef be a function satisfying the property

that for eachi € {1,...,n} there is a non-negative; such that = Z PriXi=t1 A...A Xc =tc]
‘E[f | X1, PN XZ] — E[f ‘ Xl, . ,Xi—lH < ¢. Then {t1, s tc}CNY; 82T
C
—¢2 n_ 2 7(2)
Pr(f > E[f] +#] < et /CXime = S PrYi=t AL A YCZtc](l—ﬁ)
and {t1,..., tc}CIN,Y,; 6, >T n

2 n 2 (¢
Pr[fﬁE[f]—t]Se /(250 o . < (1_E> (Q)Pr[sz] < eczk/nPr[YzT].
n

Note that theX;’s in this theorem areotrequired to be indepen-
dent. Now we can start with the proof of Theorem 1.1. We assume Combining this with Lemma 2.2, it follows th&r[X > (1+46)C-
that before the adversary starts with its rejoin operations, only the n/k] is polynomially small for any constant > 0 depending on
n blue nodes were in the system, and sufficiently many rejoin oper- the constant it .
ations have been executed on the blue nodes so that kwregion For a lower bound on the age &, we use the mapping :
has been entered by a new node at least once. Afterwards, the adN® — IN“ with
versary enters with itsn red nodes one by one, using the cuckoo
rule in each round, and then it starts executing rejoin operations on fltrsto, .
the red nodes as it likes. The assumption of acting on a sufficiently where
old system significantly simplifies the proofs.

The next lemma follows directly from the cuckoo rule because
everyk-region can have at most one new node at any time.

,tc) = (tl -‘rdl,tg-‘rdg,‘..,tc—l—dc)

4=k e{l,....CHta<t; V (th=t; Ak <}

forall j € {1,...,C}. Itis easy to check that this mapping

is injective. Furthermore, for allt1,...,tc) € IN it holds for

. th,...,to) = f(t1,...,tc) thatt!, ..., t are pairwise disjoint
In order to bound the number of old nodes/tnwe first have to ééd o) = fli o) ' ¢ P )

bound the age of: (Lemma 2.5). Then we bound the maximum

number of nodes in &-region (Lemma 2.6) and use this to bound

LEMMA 2.4. Atanytime R contains at mostlog n new nodes.

PrlYi=t1 A...A Yo =tc] =Pr[X1 =11 A...A Xc = t¢]



Hence, for anyl” > 0,

PrlY > T
= > Pr[(va,...,Ye) = (t, ..., to)]
(t1,...,tc)ENC, Y, t;>T
= > Pr((Xu,..., Xo) = f(t,. .., to)]
(t1,0-tc)ENC S ¢, >T
< > Pr((Xy,..., Xo) = (..., te)]

tL}CNY, t)>T
Pr[X > T]

and thereforePr[X < T] < Pr[Y < T]. Combining this with
Lemma 2.2, it follows thaPr[X < (1—6)C-n/k]is polynomially
small for any constant > 0 depending on the constant@ [

LEMMA 2.6. For anyk-region R in R it holds at any time that
R has at mosO(k log n) nodes, with high probability.

PROOF.  We need two claims to prove the lemma. LBt=
~v(n/k)Inn, wherey is a sufficiently large constant.

CLAIM 2.7. For any (red or blue) node, v gets replaced at
most(1 + )~ Inn times withinT” rounds, w.h.p., wher& > 0 can
be made arbitrarily small depending on

PROOF. For anyt € {1,...,T} let the binary random variable
X, be 1 if and only ifv gets replaced in th&th round. LetX =
S°F | X:. Because &-region is chosen uniformly at random for
eviction,Pr[X; = 1] = k/n for everyt. Hence E[X] = (k/n) -

T = ~Inn. Since theX;'s are independent, the bound dn
follows from the Chernoff bounds.[]

CLAIM 2.8. For any k-region R in R it holds at any time that
R has an age of at mo§t, w.h.p.

PrRoOOF. The probability thatR is evicted in some round i8/n,
and this probability is independent of other rounds. Hence, the

probability thatR has an age of at leagtis equal to(1 — £)” <
e L
The two claims imply that there are at m@st-€)n-(1446)yInn

node replacements during the lifetime of-aegion, w.h.p. Hence,
the expected number of nodes ik-@egion can be at most

k

E-((1+e)n~ (I14+0)ylnn+1)=1+¢)(1+0)k-yInn+1.

n blue nodes in the system, it follows thB{X;] = k for ev-
ery t, no matter how the blue nodes are distributed, and therefore
E[X] = T - k. From Lemma 2.6 we know that every, is at
most4logn, w.h.p. Also, for any givenXy, ..., X;—1, E[X; |

X1,...,X—1] = E[X:] = k. Hence, it holds for the function
F( X1, Xn) =30, X that
|E[f | X1,...,Xi] = E[f | X1,..., Xi-1]]
= (E S Xy, X) +ij>—
j=i+1 j=1
n i—1
(E (X | X1,..., Xi 1) +ZXJ-)'
Jj=1i j=1

| X; — E[X;]| < 4logn

Thus, the method of bounded martingale differences (Lemma 2.3)
implies that, for any constaat> 0,

Pr[X > (14 0)T - k] < e (TH* /T (4loem))

which is polynomially small im if the constant iril” is sufficiently
large. The same holds fd@r[X < (1 — §)T - k|, which proves

the lemma for the blue nodes. The proof for the red nodes is the
same. [

Combining Lemmas 2.5 to 2.9, we obtain the following lemma.

LEMMA 2.10. At any time,2 has within(1 & &)(clogn) - k
old blue nodes and withifil + §)(clogn) - ek old red nodes, with
high probability, if none of these has rejoined.

PrROOF. Consider any age distributian, . . ., ¢ for thek- regions
Ri,...,Rc of R, whereC' = clogn. LetT = (y/€)log®n be
selected asinLemma2.9. Then it follows from Lemma 2.9 and the
Chernoff bounds thak hat at least

1+5 (Ztc T)

C

=1
blue nodes and at most

(-
n/k

5)T.k§c:[t e YRS

=1

(Ztﬁ-c T)

blue nodes, w.h.p. Sin@f=1 t; is within (1+6")Cn/k according
to Lemma 2.5, Lemma 2.10 follows for the blue nodes.
The same calculations (with an additiordhactor) apply to the

Since the locations of the node replacements are independent ofred nodes. []

each other, it follows from Lemma 2.1 that the number of nodes in
ak-region is at mosO (k log n) at any time, w.h.p. [J

Next we bound the number of blue and red nodes that are evicted

in a certain time interval.

LEMMA 2.9. For any time intervall of sizeT = (v/¢) log® n,
the number of blue nodes that are evicted is within (1£6)7- &,
with high probability, and the number of red nodes that are evicted
in I is within (14 0)T - ek, with high probability, wheré > 0 can
be made arbitrarily small depending on

PROOF. We start with the proof for the blue nodes. Consider any
time intervall consisting ofI’ rounds. For every € {1,...,7T}

let the random variabl&’, denote the number of blue nodes evicted
in the tth round of I, and letX = " X;. Since there are

Combining Lemmas 2.4 and 2.10, we can now prove when the
balancing and majority conditions are satisfied.

e Balancing condition: From Lemmas 2.4 and 2.10 it follows
that every regionR of size (clogn)k/n has at leas{l —
0)(clogn) - k and at mos{(1 + &)(clogn + (clogn)k +
(clogn)ek) = (14 9)(clogn)(1+ (14 €)k) nodes, where
the constané > 0 can be made arbitrarily small. Hence, the
regions are balanced within a factor of clos¢tg-¢+1/k).

e Majority condition: From Lemmas 2.4 and 2.10 it also fol-
lows that every region of sizglogn)k/n has at leasfl —
0)(clogn) - k blue nodes and at mog$t + 4)(clogn +
(clogn)-ek) red nodes, w.h.p., where the constant 0 can
be made arbitrarily small. These bounds are also tight in the



worst case, which happens if the adversary focuses on a spe-to wash out adversarial behavior violating the protocols by simple

cific region R of size(clogn)k/n and continuously rejoins
with any red node outside d&. Hence, the adversary is not
able to obtain the majority in any region of sig€log n)k/n
as long agclogn)(ek + 1) < (clogn) - k which is true if
andonly ife <1 —1/k.

Hence, fore < 1 — 1/k the balancing and majority conditions are
satisfied, w.h.p., and this is sharp, which proves Theorem 1.1.

3. INSERT AND LOOKUP PROTOCOLS

In this section we present our robust insert and lookup proto-

majority decision. In order to reliably store data, we therefore de-
mand that copy of data item be stored in all nodes of the unique
guorum region containing; ().

In order to route a message from a nades [0,1) to a point
w € [0, 1) (representing a node or location of a copy) in a reliable
way, we execute the following Route(w) protocol:

Focus only on the firdibg n bits of the binary representation of
v, denoted by(v1vz . .. vieg ), @and forward the message fraRy,
along the quorum regions containing the poiftsvs . . . Vieg nw1),
(v3V4 . . . Viog n w1w2), @and so on, until the quorum region contain-
ing the point(wiws . . . wiog ») is reached, which also contains

cols. These protocols are based on a dynamic de Bruijn graph andlt is easy to check that this routing strategy can be performed along

2¢ — 1 one-way hash functions with certain expansion properties.
Also other dynamic graphs may be used, but the dynamic de Bruijn

graph turns out to be the most useful for our purposes. We first de-

adjacent regions it B(V') and that the following lemma holds.

LEMMA 3.2. If the balancing and majority conditions are sat-

scribe the dynamic de Bruijn graph and how to store data and route 'Sfied, then Route(w) combined with majority decision reliably

messages in it, and then we specify what kind of expansion proper-

routes a message in at mdsgg n communication rounds from the

ties the hash functions need to satisfy. Afterwards, we present andduorum region containing to the quorum region containing.

analyze the insert and lookup protocols.

For simplicity, we assume that the number of honest nodes in the

system only deviates by a constant factor over time andrthat
the maximum number of nodes in the system at any time. (We just

The only problem is the congestion caused by routing multiple
messages. As a prerequisite for this we need suitable hash func-
tions.

need this so that we can focus on a fixed region size. Local-control 3.3 Robust hash functions

update mechanisms for the region size such as the ones in [3, 11] Nextwe specify two properties te — 1 hash functiong , .

may be used if: significantly changes over time.

3.1 The dynamic de Bruijn graph

In the classicall-dimensional de Bruijn graph{0,1}¢ repre-
sents the set of nodes and two nodeg € {0,1} are con-
nected by an edge if and only if there isbac {0,1} so that
z = (z1...2q) andy = (bxi...zq4-1) (i.e., y is the result of
a right shift of the bits inc with the highest bit position taken [y
ory = (z2...xqb). When viewing every node € {0,1}? as a
point ¢, x; /2" € [0,1) and lettingd — oo, then the node set
of the de Bruijn graph is equal {0, 1) and two pointse, y € [0, 1)
are connected by an edge if and onlyit= y/2, x = (1 4+ y)/2,

x =2y modl, orz = (2y — 1) mod 1. This motivates the follow-
ing dynamic variant of the de Bruijn graph (e.g., [19]):

Recall the definition of a region. We identify the peers by their
points in[0,1). Given a peew € [0,1), we define itgjuorum re-
gion R, as the unique region of size closest(tplog n)/n from
above that contains, wherey > 1 is a sufficiently large but fixed
constant. For any set of pedrsC [0, 1), we require that every peer
v € V maintains connections to all peers whose quorum regions
contain a point inlv, v/2, (1 4+ v)/2,2v mod1, (2v — 1) mod1}.
Let us call the resulting grapP B(V'). The following lemma eas-
ily follows from the fact that thel-dimensional de Bruijn graph has
a constant degree and a diamete©g#l).

LEMMA 3.1. For any node set’ C [0, 1) that satisfies the bal-
ancing condition, every quorum region forms a cliquedfog n)
nodes, which implies thdd B(V') has a diameter of (log n) and
a degree oD (logn).

hac—1 have to satisfy for our protocols to work. The first property,
given in Lemma 3.3, will be crucial to show that many requests can
avoid congested nodes during the routing, and the second property,
given in Lemma 3.4, will be crucial to show that many requests can
avoid destination nodes with a high contention, no matter which
collection of data items is selected for the requests.

In order to investigate the congestion caused by the routing in
the dynamic de Bruijn graph, we introduce the shuffle graph. For
anyd > 1, the d-dimensional shuffle grapl§ H(d) consists of
d + 1 levels numbered from 0 t@. The node set of levelis given
asV; = {0,1}%, and for every0 < i < d, every pair of nodes
v € V; andw € V41 is connected if and only if their binary
representations satisty = (vivz...vq) andw = (vavs ... vgb)
for some bith € {0,1}.

The shuffle graph is related to the well-known Omega network.
It is a leveled form of the de Bruijn graph and contains for every
sources € V; and destinatiort € Vy a unique path of length
d from s down tot. In fact, these paths represent the paths the
packets will move along through B(V') when using the reliable
routing strategy above. So instead of focusing on routing prob-
lems between nodes B B(V') we will focus on routing problems
from source nodes ity to destination nodes W in SH (d). This
makes it easier to investigate congestion issud3(1"). Notice
that for everyl < ¢ < d, SH(d) contains2?~*¢ disjoint graphs
SH(¢) from level 0 to¢. Let SH(¢) denote their set.

Now, letU be the universe of data itemS,= U x {1,...,2¢c—

1} be the set of copie$] = U,‘le V; be the set of nodes ifiH (d)
andH = {hi,...,hac_1} be the set of hash functions used to
assign thec — 1 copies of each data item to points[ih 1). The

Besides having nice topological properties, the dynamic de Bruijn mapping of copies to points in Section 3.2 implies that, gi¥&n

graph is easy to update. Whenever a peenters of leaves the sys-
tem, only the quorum regions containing a point{in v/2, (1 +
v)/2,2v mod1, (2v — 1) mod1} are affected, which only sum up
to O(log n) nodes when using the cuckoo rule, w.h.p.

3.2 Reliable storage and routing

If also the majority condition holds, then the honest nodes are in
the majority in each quorum region. This allows the honest nodes

the destination node of thi¢h copy of data itemu € U in SH(d)
is the nodev € V; representing the highestbits in the binary
representation of; (u). To simplify our presentation, when we talk
in the following about the nodk; (u), we mean the corresponding
nodev € Vj.

In order to witness a bad congestion, we will make use of so-
calledk-bundlesF C C' x V, where every edgé:, v) € F repre-
sents an event that a request for cepasses through a congested



nodev e V. LetU(F) ={ueU| I eV : ((u,i),v) € Ffor
somei} andV(F) ={v eV |3ce C: (¢v) € F}. Givena
setH, we call F' a k-bundleif

1. |F| = k|U(F)| and

2. there is an injective mapping : U(F) — V;, of data items
to source nodes so that for every edge- ((u,i),v) € F
the path fromf(u) € Vp to h;(u) € Vg in SH(d) passes
througho.

F is also called &-bundle ofU(F'), and we defind (U (F)) =
V(F). A k-bundle is calledr-sparseif for any subset, C V,
representing all nodes in levébf some graptb H (¢) in SH(¢) it
holds thatl V' (F) N V/| < o|V/|. H is called a(c, k)-expandeiif
forany S C U with |S| < n and anyo-sparsek-bundle F" of S,
IT#(S)| > |S]. In the following, let|U| = m.

LEMMA 3.3.1f ¢ > 6logm andm > n® o < 1/(8elogn)
and the functionsi, . .., hac—1 are chosen uniformly and inde-
pendently at random, theii is a (o, ¢/2)-expander with high prob-
ability.

PROOF. Letd = logn. Suppose that, for randomly chosen func-
tionshy, ..., haec—1, H is Not a(o, ¢/2)-expander. Then there ex-
ists a setS C U with |S| < n and ao-sparsez/2-bundle F" of S
with |[T'#(S)| < |S|. We claim that the probability, that such a
setS of sizes exists is at most

m\ (n)[(2c—1)s\ cs2(dn cs/2
() ()

This holds because there &f&) ways of choosing a subs€tc U,

() ways of assigning the nodessito nodes in%, (*;5)*) ways

of selectinges /2 edges forF” andd®*/? ways of specifying a level
for them. Furthermore, there are at m¢&t) ways of choosing
ao-sparselV. C V witnessing a bad expansion éf. SinceW

is o-sparse, the probability that any particular edge selected for
indeed points to a node W is at mostr, and since the hash func-

tions are chosen uniformly and independently at random, we obtain

a total probability of at most®*/2.
Next we simplify ps. Using the conditions om ando in the
lemma it holds that
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Hence, summing up over all possible values ofie obtain a prob-
ability of having a badr-sparse:/2-bundle of at mos2/m, which
proves the lemma. []

in Lemma 3.3 is polynomially small, the hash functions can also
satisfy all of these5 H (d) together with high probability.

Next we prove another expansion result that is needed for an
even load balancing of the data. We cHlla (A, k, o )-expandeiif
forany S C U with |S| < on/c and anyk-bundle F' of S with
V(F) C Vy it holds thatlT'»(S)| > Ak|S|. We just focus on the
nodes inV; here since we are only interested in the contention at
the destinations of the requests for the data itenf$(if’).

LEMMA 3.4. Let0 < A < 1be any constant. Then it holds that
foranyc > 6logm ando < 1/(A(4e)*TN/A=N) that if the
functionshy, . .., hac—1 are chosen uniformly and independently
at random, thert{ is a (\, ¢/2, o)-expander with high probability.

PrROOF. The proof is similar to the proof of Theorem 1 in [13].
Suppose that, for randomly chosen functiéns. . ., hoc—1, H is
not a (A, ¢/2,0)-expander. Then there exists a $etC U with
|S| < on/c and ac/2-bundle F' of S with V(F) C V,; and
IT#(S)| < A(c/2)|S|. We claim that the probability, that such
a setS of sizes exists is at most

m\ [ (2c—1)s n _ (D\(C/Z)s— 11)“/2
s cs/2 [A(c/2)s — 1] n

This holds because there &) ways of choosing a subsgtc U.

Furthermore, there ar(é2§:/12>s) ways of a choosings/2 edges for

F and at mos(wc/;)s_ﬂ) ways of choosing a sé¥’ C V wit-
nessing a bad expansion of the edge#’inThe fraction of collec-
tionsH for which the selected edges indeed point to nodé¥’iis
at most([2(e/2s=11)es pecause the hash functiohs, . . . , hoe—1
are chosen independently and uniformly at random.

Next we simplify ps. Using the conditions om and o in the
lemma it holds that

(m) <(2c— 1)8> < n ) . (")\(0/2)5_1'|)65/2
s cs/2 [A(c/2)s — 1] .
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Hence, summing up over all possible values ofve obtain a prob-

ability of having a bad:/2-bundle of at mosg/m, which proves
the lemma. [

IN

We are now ready to describe and analyze our lookup and update
protocols. For both protocols we assume thats appropriately
chosen, i.e., it satisfies the expansion properties in Lemmas 3.3 and
3.4.

3.4 The lookup protocol

Suppose that we have adversarially chosen lookup requests,

Although it seems that we only proved an expansion property one per peer. A naive lookup protocol for the requests would be as

for a static graph, notice that as longrags the maximum number

of nodes in the system at any time, we just need to consider all

SH(d) with d < logn to capture all possible routing strategies
for the nodes iNDB(V) at any time. Since the probability bound

follows:

Sent out2c — 1 packets per request, one for each hash function.
Forward the packets level by level. For every quorum redibn
and every leve¥, combine all lookup packets to the same copy



into a single lookup packet. Once the packets have reached the3.5 The insert protocol

destinations, answers are sent back level by level. In each level, the  The insert protocol is similar to the lookup protocol, with the dif-
answers are split so that for all packets that were previously mergedference that we play a collision game at the destinations (first used

in that level an answer is sent back.

in [7] in the context of PRAM simulations) to keep the number of

Under arbitrary adversarial behavior, this strategy does not work copjes each node has to store as small as possible. The protocol
well because the adversary can generate many packets for differ-proceeds in rounds. In each round, every remaining insert request
ent copies to the same destination. Moreover, even if the paCkethenerates a packet for each oftis— 1 destinations. The packets
have a low congestion at the destinations, according to the Borodin- gre routed level by level, combining packets wherever possible. If

Hopcroft lower bound it can still happen that their unique routing

a region has more thayclog? n packets in a level, all of them are

paths through the network create a high congestion at intermediategiscarded, and otherwise all of them are forwarded. In the destina-
levels. The latter congestion problem could be handled with the tion |evel, we use a slightly more restrictive bound. If a region in

help of Valiant’s trick of sending the packets to random intermedi-

the destination level has more thgiz log n packets, for a constant

ate destinations, but randomness in an adversarial environment is &/ then all of them discarded, and otherwise acknowledgements
costly resource that should avoided if possible. Thus, we decided gre sent out for all of them. The acknowledgements will be sent

to focus on a deterministic lookup protocol.
Our lookup protocol allows several attempts for each lookup re-

back level-wise and split appropriately in order to inform all rele-
vant source nodes. An insert request is successful in that round if

quest and uses a simple threshold mechanism to control the con-t |east acknowledgements are received for it.

gestion in each attempt. More precisely, we repeat the following

procedure for sufficiently many rounds:
For each of the remaining lookup requegis;- 1 packets are sent
out, one for each of it8c — 1 destinations. The packets are routed

This insert protocol has the following performance, which im-
plies Theorem 1.3.

THEOREM 3.6. For any set o insert requests out of a sétof

level by level, and packets to the same copy are combined in eachpolynomial size with one request per node, the insert protocol can

region. If the number packets left in a region is more thaiog? n
for some levek, then all of them are discarded. Otherwise, all of

serve all requests in a guaranteed numberyflog n) attempts
and needs at mogd(clog* n) communication rounds altogether.

the packets are forwarded to the next level. For all packets that haveFurthermore, every node has to store at mo$t:log” n) copies.
reached their destinations, answers are sent back by reversing the

routing of the lookup packets, splitting the answers whenever their PROOF.

Consider any fixed attempt and letbe the number of

lookup packets were combined. A lookup request is successful in remaining insert requests. For simplicity, we again view the routing

that round if at least answers are received for it.
Each of these attempts will take at ma3tclog® n) commu-

nication rounds (under the assumption that one packet can be for-

of packets in the dynamic de Bruijn graph as routing them along the
d-dimensional shuffle grapBH (d) with d = log n.
Let the threshold for the intermediate levelshig o with o =

warded by each region in a communication round), but the question 1/(8elogn) and the threshold for the final level kgc. A node
is, how many attempts are needed until all of the lookup requests in an intermediate level isongestedf packets for more thac/o
are successful, no matter which data items have been selected fogifferent copies pass it, and a node in the final levedaagested

them. The following theorem gives an answer to this, which im-
plies Theorem 1.2.

THEOREM 3.5. For any set ofn lookup requests out of a s&t

of polynomial size with one request per node, the lookup protocol

can serve all requests in a guaranteed numbep @ibg n) attempts
and needs at mogd(clog* n) communication rounds altogether.

PROOF. Let us consider any fixed attempt and égbe the num-
ber of remaining lookup requests. For simplicity, let us view the
routing of packets in the dynamic de Bruijn graph as routing them
along thed-dimensional shuffle grapbiH (d) with d = log n.

Let the threshold set by the lookup protocolhg/ o with o =
1/(8elog n) so that Lemma 3.3 can be applied. A node in the shuf-
fle graph is calledongestedf packets for more thac/o different
copies pass it, and |18V be the set of all congested nodes. Note that
W is o-sparse because in every subgréfHi (¢) in SH(¢) there
can be a total of at mogRc — 1)2° packets and therefore at most
(2¢—1)2¢/(2¢c/0) < 02" nodes at levet with at leasRc/o pack-
ets. Furthermore, since the total number of packe{&ds— 1)s,

[W| <d-(2c—1)s/(2¢c/o) = ods.

SinceH is a(o, c¢/2)-expander, there can be at mgst| lookup
requests with at least/2 packets passing through nodesTii
because otherwise we would haveraparsec/2-bundle F' with
ITr(U(F))| < |U(F)|. Hence, at mostW| = ods = s/8e of
the lookup requests fail. Therefore, at méXilog n) attempts are
necessary until all requests have been served.

Going back fromS H (d) to region routing in the de Bruijn graph,
we have to multiply the congestion threshold by a factap @bog n)
as there ar®(log n) nodes in each quorum region[]

if packets for more tha@~c different copies reach it. L&/, be
the set of all intermediate congested nodesafnde the set of all
final congested nodes. From the previous proof we knowltiat
is o-sparse anflV,| < ods, and it is easy to see thil:| < s/~.

Let S be the set of failed lookup requests. Then eitfiendV;
form ao-sparsec/2-bundle orS and W, form ac/2-bundle. In
the first case, we know from the previous proof tH#t< s/8e. In
the second cas¢S| < |Wa|/(Ac) for some constart < A < 1
becausé is a(\, ¢/2,1/v)-expander ify is sufficiently large. In
both cases|S| < s/8e. Hence, at mosO(logn) attempts are
necessary until all requests have been served.

Since each node only starts to accept packets once the total num-
ber of different copies in it with packets is bel@wc, every node
only has to store)(c) copies at the end. Moving from nodes to
regions, this means that every quorum region has to store at most
O(clogn) copies. []

The total number of stored copies per node could be reduced to
O(clogn) if in each attempt we could count the total number of
copies for which packets are sent to a quorum region and reject
all packets based on this total count and the threshbtidog n.
Doing this deterministically is possible but requires sophisticated
techniques based on sorting. So we did not consider this approach
in this paper.

4. ROBUST RANDOM ID GENERATION

In order to generate a random ID for a node, we use a verifiable
secret sharing (VSS) scheme. In VSS, a dedletries to store
a secrets in n nodes so that it can be reliably recovered. More



precisely, a protocol om nodes is called &n, k)-VSS scheme
if, for any adversary owning nodes, the following requirements
hold:

e Privacy: If D is honest, then the adversary’s view during the
sharing phase reveals no information abaut

e Correctness:If D is honest, then the reconstructed value is
alwaysequal to the secrat

e Commitment: Even if D is dishonest, any successful execu-
tion of the sharing phase determines a unique vaiughich
will be reconstructed at the reconstruction phase.

A protocol fulfilling all these properties is, for example, liwél—lj -
VSSin [12]. For completeness, we present it here:

e Sharing phase:

1. D chooses arandom bivariate polynomiake K|z, y|
of degree (at most} in each variable s.t£'(0,0) = s.
It sends to each playd?; the (univariate) polynomials

fi(z) = F(z,i) andgi(y) = F(i,y).

2. PlayerP; sends to each playd?; the valueg; (7).

3. PlayerP; broadcasts a list; of playersP; for whom
it holds thatf; () # g, (3).

e Local computation (by each player):

1. Add edge(s, j) to the consistency grapi onn nodes
if P;isnotinL; andP; isnotinL;.

2. Find a maximal matching igr.

3. Define a vertex sef’ to include all vertices not in the
matching. C is a clique inG.)

4. Define ADD to be the set of verticess.t. i ¢ C and
there exisk + 1 nodesj € C such tha(i, j) € G.

5.1f |C| + |ADD| > 3k + 1 then accept the sharing;
otherwise, disqualify the dealer.

e Reconstruction phase: Eagh € CUADD providesf;(0).
Use error correction ofif; (0) }iccuap b to recover the poly-
nomialgo(y) = F(0,y). Computegy(0).

The problem with applying it to our setting is that it uses a broad-

w € G receiving an ID reconstruction request franfiorwards this
request to all other nodes . Each nodev € G receiving the
same ID reconstruction request from at Idést— k/6 nodes inG
waits until it has senf.?, to « for all p € P and afterwards initi-
ates the reconstruction phase by senditff, (0), L%,) },ep to all
v € G. Each nodev € G receiving at leastG| — k/3 reconstruc-
tion messages for all € P first checks if thereis@ € P s.t. no
change ofL? for < k/6 messages it received together with suitable
LPs for the< k/3 missing messages would fulfill the conditions
onCp, andADD,. If so, it aborts. Otherwise, it recoveg§(y) for
everyp, computest = P, p go(y), and sends: to u.

We show the correctness with two lemmata, using the assump-
tion that all honest nodes i@ know each other and at moky6
nodes inGG are adversarial.

LEMMA 4.1. In any case in which there is an honest nade
that computes some I in the ID generation scheme initiated by
some (honest or adversarial) node x must be random and no
honest node computes a value different from

PrROOF.  First of all, an honest node only participates in the

ID generation stage ifG| > 4k, i.e. G is sufficiently large for

the VSS-protocol in [12] with thresholkl to work. Second, notice
that every honest node € G will only reveal any of its private
information about keys:,, if it received at leastG| — k/6 votes
concerning the ID reconstruction message fromatching the re-
construction message it got from Thus,P and(C)p, ADD,,)pcp

are fixed forv at that stage. Furthermore, due to at mbgé
adversarial nodes, no honest node can have a different view of
P and (C,, ADD,),cp When revealing its private information.
Hence, at that point where the first honest node reveals private in-
formation about some keys, no adversarial node can influBrae

(Cp, ADD,)pep any more for the honest nodes.

Also, at that point where the first honest nadeeveals private
information, it must have seiit)’s for all p € P tow. Thus, it must
have received?’ (j)'s from at leasG| — k/6 nodes inG for all
p € P. This, in turn, means that for eaphe P atleas{G| — k/3
honest nodes if¥ must have received a pdif? (), g7 (y)) fromp
before any private information is revealed by any honest node. Let
us call these nodessafe

Now, any honest node that is convinced that the sharing for
somep € P is successful must have used at legst — 5k/6
fF(0)'s from p-safe honest nodes, because among the at|[@ast

cast operation to disseminate information and it assumes the set ofk /3 f?(0)’s it receives from nodes i, at mostk/6 can come
nodes to be static. However, it can be adapted so that it can be usedrom adversarial nodes and at mégt can come from nop-safe

to generate a random ID in a dynamic, asynchronous environmenthonest nodes. I is convinced of the correct sharing fpr then
without a broadcast channel. This works as follows (the number of because it may have changgfi's from at mostk/6 of the p-safe

adversarial nodes is assumed to be at rk@6):

Suppose that nodewants to generate a new ID and (éte the
group of nodes: knows in its quorum regioiR?,, (which includes
all honest node but may not include all adversarial nodes). Then
asks all nodes € G to execute the VSS scheme above(®ifor a
secrets,, picked at random fronfD, 1) by v. If v knows more than
4k nodes inG, thenv executes step 1 of the sharing phasespn
and attaches: to its messages; otherwise, it aborts. Every node
w € G that receives a message framvith the same7 it received
from u executes step 2 of the sharing phase. Every ndde G
that receives step 2-messages from at Igast £ /6 nodesw € G
for somev, computed.;,, and send4.;,, to u. Onceu has received
from at leas{G| — k/6 nodesw € G L;,’s for all nodesv in some
setS C G with S| = |G| — k/2, u starts the local computation
phase to determine the setbf all v with |C|+|ADD, | > 3k+1.

If |P| > |G| — k, thenu sends to each € G an ID reconstruc-
tion request together witf? and{(C,, ADD,)}+cp. Each node

honest nodes to justify this. Hence, at legist — & f7(0)’s from
p-safe nodes will be considered when revealirgysecret which,
according to [12], will recover a unique, unbiased vaiye
BecausdP| > |G| — k and|G| > 4k in order for an honest
nodev to participate, at least ong, must have been generated by
an honest node. This, is random and unknown to the adversarial
nodes unti{C}, ADD,),cp is fixed. Hence, when is convinced
that the recovery phase succeeded, it computes a randam IDJ

LEMMA 4.2. Any honest node initiating the random ID gen-
eration scheme will get the same valuback from at leastG| —
k/3 nodes inG.

PROOF. If wis honest, then it will wait until it has at leagt| —k /6
nodesw € G that sentL;,’s to« for all nodesv of some sef C G
with |S| > |G| — k/2. In this case, at least7| — k/3 honest
nodesw must have senk;,’s for all nodes inS, and therefore at



least|G| — k/3 honest nodes will initiate the reconstruction phase.
This makes sure that every honest nod€ireceives reconstruction
messages from at leggt| — k/3 honest nodes i, which allows
them to recover the keys,. Notice that no honest node will abort,
because if. makes sure that the conditions tdiD D, andC,, are
fulfilled for everyp € P, then every honest node can find correc-
tions for the at mosk/6 L!’s it received from adversarial nodes
and can come up with suitable!’s for the at most:/3 missing
nodes so that the conditions ohDD,, andC,, are met. If these
conditions can be met, it follows from [12] that unique keys can
be recovered from the received parts, and from the lemma above it

follows that these keys must be unbiased, and at least one of therr{17]

must be random. Hence, all honest nodegithat participate in
the recovery, which are at ledst| — k/3, will agree on the same,
random value for. [

5. CONCLUSIONS

In this paper we showed that, on a high level, a scalable DHT

can be designed that is provably robust against adaptive adversarial

join-leave attacks as well as insert and lookup attacks. Certainly,
low-level protocols still have to be designed for our operations that
work well and correctly in an asynchronous environment. We be-
lieve that designing such protocols is possible though their design
and formal correctness proofs may require a significant effort.
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