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ABSTRACT
The problem of scalable and robust distributed data storage has re-
cently attracted a lot of attention. A common approach in the area
of peer-to-peer systems has been to use a distributed hash table (or
DHT). DHTs are based on the concept of virtual space. Peers and
data items are mapped to points in that space, and local-control
rules are used to decide, based on these virtual locations, how to
interconnect the peers and how to map the data to the peers.

DHTs are known to be highly scalable and easy to update as
peers enter and leave the system. It is relatively easy to extend the
DHT concept so that a constant fraction of faulty peers can be han-
dled without any problems, but handling adversarial peers is very
challenging. The biggest threats appear to be join-leave attacks
(i.e., adaptive join-leave behavior by the adversarial peers) and at-
tacks on the data management level (i.e., adaptive insert and lookup
attacks by the adversarial peers) against which no provably robust
mechanisms are known so far. Join-leave attacks, for example, may
be used to isolate honest peers in the system, and attacks on the data
management level may be used to create a high load-imbalance, se-
riously degrading the correctness and scalability of the system.

We show, on a high level, that both of these threats can be han-
dled in a scalable manner, even if a constant fraction of the peers in
the system is adversarial, demonstrating that open systems for scal-
able distributed data storage that are robust against even massive
adversarial behavior are feasible.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems—Distributed applications; F.2.2 [Analysis of Algorithms and
Problem Complexity]: Nonnumerical Algorithms and Problems—
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1. INTRODUCTION
In a distributed storage system, information is distributed among

multiple storage devices, simply callednodesin the following. To
provide a basic lookup service, the following operations have to be
implemented:

• Insert(d): this inserts data itemd into the system.

• Lookup(name): this returns any data itemd with Name(d)
= name, if it exists.

Once a distributed storage system becomes large enough, one also
has to deal with nodes leaving and joining the system, simply be-
cause storage devices may break down or new devices have to be
added in order to maintain a desired service quality. Hence, two
more operations are needed:

• Join(v): nodev joins the system

• Leave(v): nodev leaves the system

How can these four operations be implemented to obtain a robust
and scalable distributed storage system? The most prominent ap-
proach studied in the research community is to implement a dis-
tributed hash table, or DHT. DHTs have been realized in various
contexts including server-based systems such as Akamai and peer-
to-peer systems such as Chord [32], CAN [23], Pastry [9], and
Tapestry [34]. Most of the DHT-based systems are based on two
influential papers: a paper by Plaxton, Rajaraman, and Richa on
locality-preserving data management in distributed environments
[22] and a paper by Karger, Lehman, Leighton et al. on consistent
hashing and web caching [14]. The consistent hashing approach is
a very simple and elegant approach that is based on the following
rule:

Suppose that we have two random functionsf andg. The func-
tion f maps the nodes randomly to real numbers in[0, 1), and the
functiong maps the data items randomly to real numbers in[0, 1).
Every data itemd is stored at the nodev with a minimum distance
betweenf(v) andg(d) (viewing [0, 1) here as a ring). It turns out
that this rule has several nice features [14]:

• On expectation, every node has the same load,

• when integrating a node into or removing a node from a sys-
tem of n nodes, only a1/n-fraction of the data has to be
replaced on expectation, and

• when storingO(log n) copies of each data item, the system
is robust against a constant fraction of faulty nodes.



However, all of these properties only hold iff and g are random
and the names selected for the nodes and the data items are inde-
pendent off andg. Unfortunately, in a DHT,g must be a fixed hash
function because otherwise it would not be possible to compute the
location of the data items. Hence, it is easy for the adversary to gen-
erate many data items that all need to be stored at the same node,
even if it cannot invertg. It just has to try sufficiently many names.
In fact, millions of names can be quickly tested with hash functions
like SHA-1.

Fortunately,f does not have to be a fixed hash function for the
DHT to work. But even a truly random mapping does not protect
against adversarial attacks. Suppose, for example, that every new
node is mapped uniformly at random to a point in[0, 1). If the
adversary wants to overpopulate a certain area of the[0, 1) space,
say some intervalI, it just needs to execute sufficiently many join
and leave operations in which it keeps all nodes that made it intoI
in the system and removes all others for another join attempt.

DHT constructions are very vulnerable to a node and data im-
balance in the virtual space since this can seriously degrade their
scalability. Can we design simple protocols for the operations join,
leave, insert and lookup that areprovably robust against these at-
tacks without restricting the openness of the system?

In this paper we show that, on a high level, this is possible. More
precisely, we will show that there are scalable join and leave proto-
cols so that for a polynomial number of join and leave requests the
nodes will be evenly distributed in the[0, 1) space, with high prob-
ability1, and the honest and adversarial nodes will be well-spread
so that quorums of sizeO(log n) can be formed to wash out any
adversarial behavior violating the protocols by simple majority de-
cision. Moreover, we will show that there are scalable and robust
insert and lookup protocols so that for a polynomial number of at-
tempts the adversary will not manage to find data names so that it
can create a high request or load imbalance in the system.

1.1 Our contributions
Next we give a detailed description of our contributions. For sim-

plicity, we assume that the number of honest nodes in the system
will only change by a constant factor over time. In this way, notions
like “in a polynomial number of rounds” and “with high probabil-
ity” are well-defined. However, using the techniques in [3], our
approach can also be extended to systems in which the number of
honest nodes in the system may change in an arbitrary way over
time, as long as it does not drop too rapidly.

In the following, letn be the maximum number of honest nodes
in the system at any time and letεn for someε < 1 be the maximum
number of nodes that the adversary can have in the system at any
time. Thus, the adversary has bounded resources, but apart from
that the adversary can do what it likes, such as choosing any names
it likes for the data items and the nodes.

Join-leave attacks
First, we focus on making a DHT robust against join-leave attacks.
More precisely, we consider the following scenario. There aren
blue (or honest) nodes andεn red (or adversarial) nodes for some
fixed constantε < 1. There is a rejoin operation that, when applied
to nodev, letsv first leave the system and then join it again from
scratch. The leaving is done by simply removingv from the system
and the joining is done with the help of a join operation to be spec-
ified by the system. We assume that the sequence of rejoin requests
is controlled by an adversary, which is a typical assumption in the
analysis of online algorithms. The adversary can only issue rejoin
1By “with high probability” or “w.h.p.” we mean a probability of
at least1− 1/n wheren is the size of the system.

requests for the red nodes, but it can do this in an arbitrary adaptive
manner. That is, at any time it can inspect the entire system and
select whatever red node it likes to rejoin the system. Our goal is
to find anobliviousjoin strategy, i.e., a strategy that cannot distin-
guish between the blue and red nodes, so that forany adversarial
strategy above the following two conditions can be preserved for
every intervalI ⊆ [0, 1) of size at least(c log n)/n for a constant
c > 0 and any polynomial number of rounds inn:

• Balancing condition:I containsΘ(|I| · n) nodes.

• Majority condition: the blue nodes inI are in the majority.

It is not difficult to see that the brute-force strategy of giving every
node a new random place whenever a node rejoins will achieve the
stated goal, with high probability, but this would be a very expen-
sive strategy. The challenge is to find a join operation that needs as
little randomness and as few rearrangements as possible to satisfy
the two conditions. Fortunately, there is such a strategy, called the
cuckoo rule. We first introduce some notation, and then we describe
the strategy.

In the following, aregion is an interval of size1/2r in [0, 1) for
some integerr that starts at an integer multiple of1/2r. Hence,
there are exactly2r regions of size1/2r. A k-region is a region of
size (closest from above to)k/n, and for any pointx ∈ [0, 1), the
k-regionRk(x) is the uniquek-region containingx.

Cuckoo rule: If a new nodev wants to join the system, pick a
randomx ∈ [0, 1). Placev into x and move all nodes inRk(x)
to points in[0, 1) chosen uniformly and independently at random
(without replacing any further nodes).

Our first main result is summarized in the following theorem.

THEOREM 1.1. For any constantsε andk with ε < 1−1/k, the
cuckoo rule with parameterk satisfies the balancing and majority
conditions for a polynomial number of rounds, with high probabil-
ity, for any adversarial strategy within our model. The inequality
ε < 1 − 1/k is sharp as counterexamples can be constructed oth-
erwise.

Hence, a constantk > 1 would be sufficient to preventadaptive
join-leave attacks of aconstant fractionof adversarial peers. Thus,
it is remarkably easy to defend an open distributed storage system
against even massive join-leave attacks. The cuckoo rule allows
us to use local quorum strategies in order to wash out adversarial
behavior violating the protocols.

Lookup and insert attacks
Our basic strategy to handle attacks on the data layer is to use2c−
1 = Θ(log n) one-way hash functions mapping each data item to
2c−1 points in the[0, 1) space. These hash functions are fixed but
have certain expansion properties to make it hard for the adversary
to create bad sets of insert or lookup requests. In order to achieve
an even load balance of the requests and the data items, we use the
majority trick of Upfal and Wigderson [33]: for each insert request,
store copies of the data item in at leastc of the2c − 1 locations,
and for each lookup request, access at leastc locations of the data
item. This indeed suffices for the correct implementation of these
requests because if the copies are stored in a reliable way, then the
lookup operation will always retrieve at least one copy of the data
item.

Given this basic scheme, we present a scalable dynamic overlay
network and robust protocols for the insert and lookup operations.
In the following, U may represent the space of all names or the
names that the adversary can sample in a polynomial number of
time steps.



THEOREM 1.2. For any collection of lookup requests for data
items out of a setU of polynomial size with one request per node,
the lookup protocol can serve all of these requests correctly and
reliably in polylogarithmic time so that each node is passed by at
mostO(log5 n) requests.

Notice that the upper bound isguaranteedfor any adaptively
chosen set of lookup requests, including data items with multiple
lookup requests. The hash functions just need to be selected so
that they satisfy certain expansion properties. Also, notice that the
adversary cannot modify or delete a request in transit since we use
quorum strategies. Certainly, the bound is still too high for practical
purposes, but the best bound previously known for adaptively cho-
sen lookup requests in overlay networks is the trivial linear bound.
In light of this, our result is an exponential improvement, and an
interesting problem for future research will certainly be whether
further improvements are possible. For insert requests we obtain a
similar result.

THEOREM 1.3. For any collection of insert requests for data
items out of a setU of polynomial size with one request per node,
the insert protocol can serve all of these requests in polylogarithmic
time so that each node is passed by at mostO(log5 n) requests.
Moreover, the maximum amount of copies to be stored by any node
to serve all of the requests is bounded byO(log3 n).

TheO(log3 n) bound is just anO(log n) factor away from the
optimal number of copies per node since we need to storeΘ(n log n)
copies inΘ(n/ log n) quorum regions containingΘ(log n) nodes
each.

Prerequisites
An important prerequisite for our join and leave operations to work
correctly is a distributed random number generator that can gener-
ate an unbiased random number even under the influence of a con-
stant fraction of adversarial nodes, and an important prerequisite
for our insert and lookup operations to work correctly is that one-
way hash functions with certain expansion properties are available
so that the adversary has no other way then sampling names in order
to design malicious collections of names. It is commonly believed
that one-way hash functions exist though no formal proof has been
found yet. But we will at least prove that random hash functions
will have expansion properties, w.h.p., that are good enough for our
results to hold. A distributed random number generator sufficient
for our purposes can be built on top of existing verifiable-secret-
sharing (VSS) protocols. In fact, we have developed a distributed
random number generator based on thebn−1

4
c-VSS protocol in

[12] that we include in this paper for completeness. This genera-
tor may be used by theΘ(log n) nodes in any quorum in our DHT
to correctly and efficiently generate random numbers under the as-
sumption that the honest nodes are in a sufficient majority in that
quorum.

1.2 Previous work
In the area of peer-to-peer systems, work on robustness in the

context of overlay network maintenance has mostly focused on how
to handle a large fraction of faulty nodes (e.g., [2, 25, 32]) or churn,
that is, peers frequently enter and leave the system (e.g., [15, 24]).
However, none of these approaches can protect a DHT against the
join-leave attacks considered in this paper because just assigning a
random or pseudo-random point to each new node (by using some
random number generator or cryptographic hash function) does not
suffice to preserve the balancing and majority conditions [3]. Peo-
ple in the peer-to-peer community are aware of the danger of these

attacks [6, 8] and various solutions have been proposed that may
help thwart these attacks in practice [4, 5, 28, 20, 27, 29] but un-
til recently no mechanism was known that canprovablycope with
these attacks without sacrificing the openness of the system.

One such mechanism, that can only cope with a linear number
of adversarial join requests, was proposed in [11]. The first mech-
anism that was shown to preserve randomness in the system under
adaptive adversarial behavior for a polynomial number of adversar-
ial join-leave requests usesrandomnode IDs and enforces alimited
lifetime on every node in the system, i.e., every nodehasto reinject
itself after a certain amount of time steps [3]. However, this leaves
the system in a hyperactive mode that may unnecessarily consume
resources that could be better used for other purposes. Ideally, one
would like to usecompetitivestrategies. That is, the resources con-
sumed by the mixing mechanism should scale with the join-leave
activity of the system. Recently, it was shown that for a pebble-
shuffling game this can be achieved [26]. In this game, there are
n blue pebbles andεn red pebbles for some fixed constantε < 1.
The pebbles are laid out on a ring and the red pebbles can join
and leave the ring in an adaptive adversarial fashion. It was shown
in [26] that a simple protocol calledk-rotation exists that can pre-
serve the majority condition with high probability. That is, for any
sequence ofΘ(log n) pebbles along the ring, a majority of them is
blue. However, the result in [26] cannot be taken over to a virtual
space setting as adversarial strategies exist for which thek-rotation
rule cannot satisfy the balancing condition. Therefore, we had to
design a new strategy, which we called the cuckoo rule.

Also attacks on the data management layer have been considered
in the past. Most of the work considers the flash crowd scenario in
which many peers want to access the same information at the same
time. When using a pure DHT design, this can lead to severe bot-
tlenecks. To remove these bottlenecks, various caching strategies
have been proposed. Among them are CoopNet [21], Backslash
[30], PROOFS [31] in the systems community and [19] in the the-
ory community. However, being able to handle flash crowds is not
sufficient to survive the attacks considered in this paper because
much worse than having many requests to thesamedata item is to
have many requests todifferentdata items residing at thesamepeer.
Standard combining or caching strategies do not work here, so new
strategies are needed. It turns out that, interestingly, work on deter-
ministic simulations of CRCW PRAMs comes to the rescue here.
This was pioneered by Mehlhorn and Vishkin [18] and further de-
veloped in a series of papers [1, 13, 16, 33]. The basic ideas behind
our insert and lookup protocols are based on these results though
adaptations of the proof techniques were necessary here because
our strategies are based on a dynamic well-structured overlay net-
work whereas the PRAM results above have only considered static
complete networks or networks with expander-like properties.

1.3 Organization of the paper
In Section 2 we will prove Theorem 1.1 and in Section 3 we will

prove Theorems 1.2 and 1.3. The paper ends with a conclusion.

2. ANALYSIS OF THE CUCKOO RULE
Recall that aregion is an interval of size1/2r in [0, 1) for some

positive integerr that starts at an integer multiple of1/2r. Let R̂
be any fixed region of size(c log n) · k/n, for some constantc,
for which we want to check the balancing and majority conditions
over polynomial inn many steps. Thus,̂R contains exactlyc log n
manyk-regions. Theageof ak-region is the difference between the
current round and the last round when a new node was placed into
it (and all old nodes got evicted), and the age ofR̂ is defined as the
sum of the ages of itsk-regions. A node in̂R is callednewif it was



placed inR̂ when it joined the system, and otherwise it is calledold.
Before we start with our analysis, we state some technical lemmas.
The bounds in the first are also known as Chernoff bounds.

LEMMA 2.1 ([17]). Suppose thatX1, . . . , Xn are indepen-
dent binary random variables. LetX =

∑n
i=1 Xi andµ = E[X].

Then it holds for allε ≥ 0 thatPr[X ≥ (1+ε)µ] ≤ e−ε2µ/(2(1+ε))

and for all0 ≤ ε ≤ 1 thatPr[X ≤ (1− ε)µ] ≤ e−ε2µ/2.

LEMMA 2.2. Suppose thatX1, . . . , Xn are independent ran-
dom variables withPr[Xi = t] = p(1− p)t−1 for everyt ∈ IN for
some fixed0 < p < 1. LetX =

∑n
i=1 Xi andµ = E[X]. Then it

holds for everyε > 0 thatPr[X ≥ (1 + ε)µ] ≤ e−ε2n/2(1+ε) and

for all 0 ≤ ε ≤ 1 thatPr[X ≤ (1− ε)µ] ≤ e−ε2n/2.

PROOF. Consider transforming everyXi = t into a binary string
Bt = (000...01) with (t − 1) zeroes. Then the eventX1 = t1,
X2 = t2, X3 = t3, ... can be represented by a stringB of the
form Bt1 ◦ Bt2 ◦ Bt3 ... = 00...1 00...1 00...1.... Notice thatB
containsn many 1’s and the total number of positions (0 or 1) inB
is T =

∑
i ti.

Now, consider instead an infinite set of binary random variables
Y1, Y2, Y3, . . . with Pr[Yi = 1] = p. Viewing Yi as representing
theith position inB, it is not difficult to check that

Pr

[
n∑

i=1

Xi ≥ T

]
= Pr

[
T∑

j=1

Yj ≤ n

]

and

Pr

[
n∑

i=1

Xi ≤ T

]
= Pr

[
T∑

j=1

Yj ≥ n

]

SettingT = (1±ε)µ and applying the Chernoff bounds to
∑T

j=1 Yj

gives the lemma.

THEOREM 2.3 ([10]). LetX1, . . . , Xn be an arbitrary set of
random variables and letf be a function satisfying the property
that for eachi ∈ {1, . . . , n} there is a non-negativeci such that
|E[f | X1, . . . , Xi]− E[f | X1, . . . , Xi−1]| ≤ ci. Then

Pr[f ≥ E[f ] + t] ≤ e−t2/(2
∑n

i=1 c2i )

and

Pr[f ≤ E[f ]− t] ≤ e−t2/(2
∑n

i=1 c2i ) .

Note that theXi’s in this theorem arenot required to be indepen-
dent. Now we can start with the proof of Theorem 1.1. We assume
that before the adversary starts with its rejoin operations, only the
n blue nodes were in the system, and sufficiently many rejoin oper-
ations have been executed on the blue nodes so that everyk-region
has been entered by a new node at least once. Afterwards, the ad-
versary enters with itsεn red nodes one by one, using the cuckoo
rule in each round, and then it starts executing rejoin operations on
the red nodes as it likes. The assumption of acting on a sufficiently
old system significantly simplifies the proofs.

The next lemma follows directly from the cuckoo rule because
everyk-region can have at most one new node at any time.

LEMMA 2.4. At any time,R̂ contains at mostc log n new nodes.

In order to bound the number of old nodes inR̂, we first have to
bound the age of̂R (Lemma 2.5). Then we bound the maximum
number of nodes in ak-region (Lemma 2.6) and use this to bound

the number of evicted blue and red nodes in a certain time interval
(Lemma 2.9). After that, we can combine all lemmas to bound the
number of old blue and red nodes in̂R (Lemma 2.10).

LEMMA 2.5. At any time,R̂ has an age within(1± δ)(c log n)
n/k, with high probability, whereδ > 0 is a constant that can be
made arbitrarily small depending on the constantc.

PROOF. Let R1, . . . , RC be thek-regions ofR̂, whereC =
c log n. For everyk-region Ri, let the random variableXi de-
note the age ofRi at the beginning of the given round, and let
X =

∑C
i=1 Xi. For all i andt ≥ 1 it holds thatPr[Xi = t] =

(k/n)(1− (k/n))t−1. Hence,Xi is geometrically distributed with
probabilityp = k/n. Thus,E[Xi] = 1/p = n/k, and therefore,
E[X] =

∑C
i=1 E[Xi] = (n/k) · C. It remains to show thatX is

concentrated aroundE[X].
Unfortunately, the ages of thek-regions are not independent as

two k-regions cannot have the same age. However, there is an easy
solution to this problem. LetY1, . . . , YC be independent random
variables with the same probability distributions asX1, . . . , XC

and letY =
∑C

i=1 Yi. Then it holds for all ages0 < t1 < t2 . . . <
tC that

Pr[X1 = t1 ∧ . . . ∧ XC = tC ]

=

C∏
i=1

Pr[Xi = ti | X1 = t1 ∧ . . . ∧ Xi−1 = ti−1]

=

C∏
i=1

(
1− k

n

)−(i−1)

Pr[Yi = ti]

=

(
1− k

n

)−(C
2)

Pr[Y1 = t1 ∧ . . . ∧ YC = tC ]

Hence, because allXi’s have the same probability distribution, it
holds for anyT ≥ 1 that

Pr[X ≥ T ]

=
∑

{t1,...,tC}⊆IN,
∑

i ti≥T

Pr[X1 = t1 ∧ . . . ∧ XC = tC ]

=
∑

{t1,...,tC}⊆IN,
∑

i ti≥T

Pr[Y1 = t1 ∧ . . . ∧ YC = tC ]

(
1− k

n

)−(C
2)

≤
(

1− k

n

)−(C
2)

Pr[Y ≥ T ] ≤ eC2k/n Pr[Y ≥ T ] .

Combining this with Lemma 2.2, it follows thatPr[X ≥ (1+δ)C ·
n/k] is polynomially small for any constantδ > 0 depending on
the constant inC.

For a lower bound on the age of̂R, we use the mappingf :
INC → INC with

f(t1, t2, . . . , tC) = (t1 + d1, t2 + d2, . . . , tC + dC)

where

dj = |{k ∈ {1, . . . , C} | tk < tj ∨ (tk = tj ∧ k < j)}|
for all j ∈ {1, . . . , C}. It is easy to check that this mapping
is injective. Furthermore, for all(t1, . . . , tC) ∈ IN it holds for
(t′1, . . . , t

′
C) = f(t1, . . . , tC) thatt′1, . . . , t

′
C are pairwise disjoint

and

Pr[Y1 = t1 ∧ . . .∧ YC = tC ] = Pr[X1 = t′1 ∧ . . .∧ XC = t′C ]



Hence, for anyT ≥ 0,

Pr[Y ≥ T ]

=
∑

(t1,...,tC)∈INC ,
∑

i ti≥T

Pr[(Y1, . . . , YC) = (t1, . . . , tC)]

=
∑

(t1,...,tC)∈INC ,
∑

i ti≥T

Pr[(X1, . . . , XC) = f(t1, . . . , tC)]

≤
∑

{t′1,...,t′
C
}⊆IN,

∑
i t′i≥T

Pr[(X1, . . . , XC) = (t′1, . . . , t
′
C)]

= Pr[X ≥ T ]

and thereforePr[X ≤ T ] ≤ Pr[Y ≤ T ]. Combining this with
Lemma 2.2, it follows thatPr[X ≤ (1−δ)C ·n/k] is polynomially
small for any constantδ > 0 depending on the constant inC.

LEMMA 2.6. For anyk-regionR in R̂ it holds at any time that
R has at mostO(k log n) nodes, with high probability.

PROOF. We need two claims to prove the lemma. LetT =
γ(n/k) ln n, whereγ is a sufficiently large constant.

CLAIM 2.7. For any (red or blue) nodev, v gets replaced at
most(1 + δ)γ ln n times withinT rounds, w.h.p., whereδ > 0 can
be made arbitrarily small depending onγ.

PROOF. For anyt ∈ {1, . . . , T} let the binary random variable
Xt be 1 if and only ifv gets replaced in thetth round. LetX =∑T

t=1 Xt. Because ak-region is chosen uniformly at random for
eviction,Pr[Xt = 1] = k/n for everyt. Hence,E[X] = (k/n) ·
T = γ ln n. Since theXt’s are independent, the bound onX
follows from the Chernoff bounds.

CLAIM 2.8. For anyk-regionR in R̂ it holds at any time that
R has an age of at mostT , w.h.p.

PROOF. The probability thatR is evicted in some round isk/n,
and this probability is independent of other rounds. Hence, the
probability thatR has an age of at leastT is equal to(1 − k

n
)T ≤

e(k/n)·T = n−γ .

The two claims imply that there are at most(1+ε)n·(1+δ)γ ln n
node replacements during the lifetime of ak-region, w.h.p. Hence,
the expected number of nodes in ak-region can be at most

k

n
· ((1 + ε)n · (1 + δ)γ ln n + 1) = (1+ ε)(1+ δ)k ·γ ln n+1 .

Since the locations of the node replacements are independent of
each other, it follows from Lemma 2.1 that the number of nodes in
ak-region is at mostO(k log n) at any time, w.h.p.

Next we bound the number of blue and red nodes that are evicted
in a certain time interval.

LEMMA 2.9. For any time intervalI of sizeT = (γ/ε) log3 n,
the number of blue nodes that are evicted inI is within(1±δ)T ·k,
with high probability, and the number of red nodes that are evicted
in I is within (1± δ)T · εk, with high probability, whereδ > 0 can
be made arbitrarily small depending onγ.

PROOF. We start with the proof for the blue nodes. Consider any
time intervalI consisting ofT rounds. For everyt ∈ {1, . . . , T}
let the random variableXt denote the number of blue nodes evicted
in the tth round ofI, and letX =

∑T
t=1 Xt. Since there are

n blue nodes in the system, it follows thatE[Xt] = k for ev-
ery t, no matter how the blue nodes are distributed, and therefore
E[X] = T · k. From Lemma 2.6 we know that everyXt is at
most4 log n, w.h.p. Also, for any givenX1, . . . , Xt−1, E[Xt |
X1, . . . , Xt−1] = E[Xt] = k. Hence, it holds for the function
f(X1, . . . , Xn) =

∑n
i=1 Xi that

|E[f | X1, . . . , Xi]− E[f | X1, . . . , Xi−1]|

=

∣∣∣∣∣

(
E

[
n∑

j=i+1

(Xj | X1, . . . , Xi)

]
+

i∑
j=1

Xj

)
−

(
E

[
n∑

j=i

(Xj | X1, . . . , Xi−1)

]
+

i−1∑
j=1

Xj

)∣∣∣∣∣
= |Xi − E[Xi]| ≤ 4 log n

Thus, the method of bounded martingale differences (Lemma 2.3)
implies that, for any constantδ ≥ 0,

Pr[X ≥ (1 + δ)T · k] ≤ e−δ2(T ·k)2/(2
∑T

i=1(4 log n)2)

which is polynomially small inn if the constant inT is sufficiently
large. The same holds forPr[X ≤ (1 − δ)T · k], which proves
the lemma for the blue nodes. The proof for the red nodes is the
same.

Combining Lemmas 2.5 to 2.9, we obtain the following lemma.

LEMMA 2.10. At any time,R̂ has within(1 ± δ)(c log n) · k
old blue nodes and within(1± δ)(c log n) · εk old red nodes, with
high probability, if none of these has rejoined.

PROOF. Consider any age distributiont1, . . . , tC for thek-regions
R1, . . . , RC of R̂, whereC = c log n. Let T = (γ/ε) log3 n be
selected as in Lemma 2.9. Then it follows from Lemma 2.9 and the
Chernoff bounds that̂R hat at least

(1 + δ)T · k
n/k

C∑
i=1

bti/T c ≥ (1 + δ)k2

n

(
C∑

i=1

ti − C · T
)

blue nodes and at most

(1− δ)T · k
n/k

C∑
i=1

dti/T e ≤ (1− δ)k2

n

(
C∑

i=1

ti + C · T
)

blue nodes, w.h.p. Since
∑C

i=1 ti is within (1±δ′)Cn/k according
to Lemma 2.5, Lemma 2.10 follows for the blue nodes.

The same calculations (with an additionalε factor) apply to the
red nodes.

Combining Lemmas 2.4 and 2.10, we can now prove when the
balancing and majority conditions are satisfied.

• Balancing condition: From Lemmas 2.4 and 2.10 it follows
that every regionR of size (c log n)k/n has at least(1 −
δ)(c log n) · k and at most(1 + δ)(c log n + (c log n)k +
(c log n)εk) = (1 + δ)(c log n)(1 + (1 + ε)k) nodes, where
the constantδ > 0 can be made arbitrarily small. Hence, the
regions are balanced within a factor of close to(1+ε+1/k).

• Majority condition: From Lemmas 2.4 and 2.10 it also fol-
lows that every region of size(c log n)k/n has at least(1−
δ)(c log n) · k blue nodes and at most(1 + δ)(c log n +
(c log n)·εk) red nodes, w.h.p., where the constantδ > 0 can
be made arbitrarily small. These bounds are also tight in the



worst case, which happens if the adversary focuses on a spe-
cific regionR of size(c log n)k/n and continuously rejoins
with any red node outside ofR. Hence, the adversary is not
able to obtain the majority in any region of size(c log n)k/n
as long as(c log n)(εk + 1) < (c log n) · k which is true if
and only ifε < 1− 1/k.

Hence, forε < 1 − 1/k the balancing and majority conditions are
satisfied, w.h.p., and this is sharp, which proves Theorem 1.1.

3. INSERT AND LOOKUP PROTOCOLS
In this section we present our robust insert and lookup proto-

cols. These protocols are based on a dynamic de Bruijn graph and
2c − 1 one-way hash functions with certain expansion properties.
Also other dynamic graphs may be used, but the dynamic de Bruijn
graph turns out to be the most useful for our purposes. We first de-
scribe the dynamic de Bruijn graph and how to store data and route
messages in it, and then we specify what kind of expansion proper-
ties the hash functions need to satisfy. Afterwards, we present and
analyze the insert and lookup protocols.

For simplicity, we assume that the number of honest nodes in the
system only deviates by a constant factor over time and thatn is
the maximum number of nodes in the system at any time. (We just
need this so that we can focus on a fixed region size. Local-control
update mechanisms for the region size such as the ones in [3, 11]
may be used ifn significantly changes over time.

3.1 The dynamic de Bruijn graph
In the classicald-dimensional de Bruijn graph,{0, 1}d repre-

sents the set of nodes and two nodesx, y ∈ {0, 1}d are con-
nected by an edge if and only if there is ab ∈ {0, 1} so that
x = (x1 . . . xd) andy = (bx1 . . . xd−1) (i.e., y is the result of
a right shift of the bits inx with the highest bit position taken byb)
or y = (x2 . . . xdb). When viewing every nodex ∈ {0, 1}d as a
point

∑d
i=1 xi/2i ∈ [0, 1) and lettingd → ∞, then the node set

of the de Bruijn graph is equal to[0, 1) and two pointsx, y ∈ [0, 1)
are connected by an edge if and only ifx = y/2, x = (1 + y)/2,
x = 2y mod1, or x = (2y− 1) mod1. This motivates the follow-
ing dynamic variant of the de Bruijn graph (e.g., [19]):

Recall the definition of a region. We identify the peers by their
points in[0, 1). Given a peerv ∈ [0, 1), we define itsquorum re-
gion Rv as the unique region of size closest to(γ log n)/n from
above that containsv, whereγ > 1 is a sufficiently large but fixed
constant. For any set of peersV ⊂ [0, 1), we require that every peer
v ∈ V maintains connections to all peers whose quorum regions
contain a point in{v, v/2, (1 + v)/2, 2v mod1, (2v− 1) mod1}.
Let us call the resulting graphDB(V ). The following lemma eas-
ily follows from the fact that thed-dimensional de Bruijn graph has
a constant degree and a diameter ofO(d).

LEMMA 3.1. For any node setV ⊂ [0, 1) that satisfies the bal-
ancing condition, every quorum region forms a clique ofΘ(log n)
nodes, which implies thatDB(V ) has a diameter ofO(log n) and
a degree ofO(log n).

Besides having nice topological properties, the dynamic de Bruijn
graph is easy to update. Whenever a peerv enters of leaves the sys-
tem, only the quorum regions containing a point in{v, v/2, (1 +
v)/2, 2v mod1, (2v − 1) mod1} are affected, which only sum up
to O(log n) nodes when using the cuckoo rule, w.h.p.

3.2 Reliable storage and routing
If also the majority condition holds, then the honest nodes are in

the majority in each quorum region. This allows the honest nodes

to wash out adversarial behavior violating the protocols by simple
majority decision. In order to reliably store data, we therefore de-
mand that copyi of data itemx be stored in all nodes of the unique
quorum region containinghi(x).

In order to route a message from a nodev ∈ [0, 1) to a point
w ∈ [0, 1) (representing a node or location of a copy) in a reliable
way, we execute the following Route(v, w) protocol:

Focus only on the firstlog n bits of the binary representation of
v, denoted by(v1v2 . . . vlog n), and forward the message fromRv

along the quorum regions containing the points(v2v3 . . . vlog nw1),
(v3v4 . . . vlog n w1w2), and so on, until the quorum region contain-
ing the point(w1w2 . . . wlog n) is reached, which also containsw.
It is easy to check that this routing strategy can be performed along
adjacent regions inDB(V ) and that the following lemma holds.

LEMMA 3.2. If the balancing and majority conditions are sat-
isfied, then Route(v, w) combined with majority decision reliably
routes a message in at mostlog n communication rounds from the
quorum region containingv to the quorum region containingw.

The only problem is the congestion caused by routing multiple
messages. As a prerequisite for this we need suitable hash func-
tions.

3.3 Robust hash functions
Next we specify two properties the2c−1 hash functionsh1, . . . ,

h2c−1 have to satisfy for our protocols to work. The first property,
given in Lemma 3.3, will be crucial to show that many requests can
avoid congested nodes during the routing, and the second property,
given in Lemma 3.4, will be crucial to show that many requests can
avoid destination nodes with a high contention, no matter which
collection of data items is selected for the requests.

In order to investigate the congestion caused by the routing in
the dynamic de Bruijn graph, we introduce the shuffle graph. For
any d ≥ 1, the d-dimensional shuffle graphSH(d) consists of
d + 1 levels numbered from 0 tod. The node set of leveli is given
asVi = {0, 1}d, and for every0 ≤ i < d, every pair of nodes
v ∈ Vi and w ∈ Vi+1 is connected if and only if their binary
representations satisfyv = (v1v2 . . . vd) andw = (v2v3 . . . vdb)
for some bitb ∈ {0, 1}.

The shuffle graph is related to the well-known Omega network.
It is a leveled form of the de Bruijn graph and contains for every
sources ∈ V0 and destinationt ∈ Vd a unique path of length
d from s down to t. In fact, these paths represent the paths the
packets will move along throughDB(V ) when using the reliable
routing strategy above. So instead of focusing on routing prob-
lems between nodes inDB(V ) we will focus on routing problems
from source nodes inV0 to destination nodes inVd in SH(d). This
makes it easier to investigate congestion issues inDB(V ). Notice
that for every1 ≤ ` ≤ d, SH(d) contains2d−` disjoint graphs
SH(`) from level 0 to`. LetSH(`) denote their set.

Now, letU be the universe of data items,C = U ×{1, . . . , 2c−
1} be the set of copies,V =

⋃d
i=1 Vi be the set of nodes inSH(d)

andH = {h1, . . . , h2c−1} be the set of hash functions used to
assign the2c − 1 copies of each data item to points in[0, 1). The
mapping of copies to points in Section 3.2 implies that, givenH,
the destination node of theith copy of data itemu ∈ U in SH(d)
is the nodev ∈ Vd representing the highestd bits in the binary
representation ofhi(u). To simplify our presentation, when we talk
in the following about the nodehi(u), we mean the corresponding
nodev ∈ Vd.

In order to witness a bad congestion, we will make use of so-
calledk-bundlesF ⊆ C × V , where every edge(c, v) ∈ F repre-
sents an event that a request for copyc passes through a congested



nodev ∈ V . Let U(F ) = {u ∈ U | ∃v ∈ V : ((u, i), v) ∈ F for
somei} andV (F ) = {v ∈ V | ∃c ∈ C : (c, v) ∈ F}. Given a
setH, we callF ak-bundleif

1. |F | = k|U(F )| and

2. there is an injective mappingf : U(F ) → V0 of data items
to source nodes so that for every edgee = ((u, i), v) ∈ F
the path fromf(u) ∈ V0 to hi(u) ∈ Vd in SH(d) passes
throughv.

F is also called ak-bundle ofU(F ), and we defineΓF (U(F )) =
V (F ). A k-bundle is calledσ-sparseif for any subsetV ′

` ⊆ V`

representing all nodes in level` of some graphSH(`) in SH(`) it
holds that|V (F ) ∩ V ′

` | ≤ σ|V ′
` |. H is called a(σ, k)-expanderif

for anyS ⊆ U with |S| ≤ n and anyσ-sparsek-bundleF of S,
|ΓF (S)| ≥ |S|. In the following, let|U | = m.

LEMMA 3.3. If c ≥ 6 log m andm ≥ n3, σ ≤ 1/(8e log n)
and the functionsh1, . . . , h2c−1 are chosen uniformly and inde-
pendently at random, thenH is a(σ, c/2)-expander with high prob-
ability.

PROOF. Let d = log n. Suppose that, for randomly chosen func-
tionsh1, . . . , h2c−1, H is not a(σ, c/2)-expander. Then there ex-
ists a setS ⊂ U with |S| ≤ n and aσ-sparsec/2-bundleF of S
with |ΓF (S)| < |S|. We claim that the probabilityps that such a
setS of sizes exists is at most

(
m

s

)(
n

s

)(
(2c− 1)s

cs/2

)
dcs/2

(
dn

s

)
· σcs/2

This holds because there are
(

m
s

)
ways of choosing a subsetS ⊂ U ,(

n
s

)
ways of assigning the nodes inS to nodes inV0,

(
(2c−1)s

cs/2

)
ways

of selectingcs/2 edges forF anddcs/2 ways of specifying a level
for them. Furthermore, there are at most

(
dn
s

)
ways of choosing

a σ-sparseW ⊆ V witnessing a bad expansion ofF . SinceW
is σ-sparse, the probability that any particular edge selected forF
indeed points to a node inW is at mostσ, and since the hash func-
tions are chosen uniformly and independently at random, we obtain
a total probability of at mostσcs/2.

Next we simplifyps. Using the conditions onc andσ in the
lemma it holds that
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Hence, summing up over all possible values ofs, we obtain a prob-
ability of having a badσ-sparsec/2-bundle of at most2/m, which
proves the lemma.

Although it seems that we only proved an expansion property
for a static graph, notice that as long asn is the maximum number
of nodes in the system at any time, we just need to consider all
SH(d) with d ≤ log n to capture all possible routing strategies
for the nodes inDB(V ) at any time. Since the probability bound

in Lemma 3.3 is polynomially small, the hash functions can also
satisfy all of theseSH(d) together with high probability.

Next we prove another expansion result that is needed for an
even load balancing of the data. We callH a (λ, k, σ)-expanderif
for anyS ⊆ U with |S| ≤ σn/c and anyk-bundleF of S with
V (F ) ⊆ Vd it holds that|ΓF (S)| ≥ λk|S|. We just focus on the
nodes inVd here since we are only interested in the contention at
the destinations of the requests for the data items inU(F ).

LEMMA 3.4. Let0 < λ < 1 be any constant. Then it holds that
for any c ≥ 6 log m and σ ≤ 1/(λ(4e)(1+λ)/(1−λ)) that if the
functionsh1, . . . , h2c−1 are chosen uniformly and independently
at random, thenH is a (λ, c/2, σ)-expander with high probability.

PROOF. The proof is similar to the proof of Theorem 1 in [13].
Suppose that, for randomly chosen functionsh1, . . . , h2c−1, H is
not a (λ, c/2, σ)-expander. Then there exists a setS ⊂ U with
|S| ≤ σn/c and ac/2-bundleF of S with V (F ) ⊆ Vd and
|ΓF (S)| < λ(c/2)|S|. We claim that the probabilityps that such
a setS of sizes exists is at most(

m

s
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(2c− 1)s

cs/2

)(
n
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)
·
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ways of choosing a subsetS ⊂ U .

Furthermore, there are
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cs/2

)
ways of a choosingcs/2 edges for

F and at most
(

n
dλ(c/2)s−1e

)
ways of choosing a setW ⊆ Vd wit-

nessing a bad expansion of the edges inF . The fraction of collec-
tionsH for which the selected edges indeed point to nodes inW is
at most( dλ(c/2)s−1e

n
)cs because the hash functionsh1, . . . , h2c−1

are chosen independently and uniformly at random.
Next we simplifyps. Using the conditions onc andσ in the
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Hence, summing up over all possible values ofs, we obtain a prob-
ability of having a badc/2-bundle of at most2/m, which proves
the lemma.

We are now ready to describe and analyze our lookup and update
protocols. For both protocols we assume thatH is appropriately
chosen, i.e., it satisfies the expansion properties in Lemmas 3.3 and
3.4.

3.4 The lookup protocol
Suppose that we haven adversarially chosen lookup requests,

one per peer. A naive lookup protocol for the requests would be as
follows:

Sent out2c− 1 packets per request, one for each hash function.
Forward the packets level by level. For every quorum regionR
and every level̀ , combine all lookup packets to the same copy



into a single lookup packet. Once the packets have reached the
destinations, answers are sent back level by level. In each level, the
answers are split so that for all packets that were previously merged
in that level an answer is sent back.

Under arbitrary adversarial behavior, this strategy does not work
well because the adversary can generate many packets for differ-
ent copies to the same destination. Moreover, even if the packets
have a low congestion at the destinations, according to the Borodin-
Hopcroft lower bound it can still happen that their unique routing
paths through the network create a high congestion at intermediate
levels. The latter congestion problem could be handled with the
help of Valiant’s trick of sending the packets to random intermedi-
ate destinations, but randomness in an adversarial environment is a
costly resource that should avoided if possible. Thus, we decided
to focus on a deterministic lookup protocol.

Our lookup protocol allows several attempts for each lookup re-
quest and uses a simple threshold mechanism to control the con-
gestion in each attempt. More precisely, we repeat the following
procedure for sufficiently many rounds:

For each of the remaining lookup requests,2c−1 packets are sent
out, one for each of its2c− 1 destinations. The packets are routed
level by level, and packets to the same copy are combined in each
region. If the number packets left in a region is more thanγc log2 n
for some level̀ , then all of them are discarded. Otherwise, all of
the packets are forwarded to the next level. For all packets that have
reached their destinations, answers are sent back by reversing the
routing of the lookup packets, splitting the answers whenever their
lookup packets were combined. A lookup request is successful in
that round if at leastc answers are received for it.

Each of these attempts will take at mostO(c log3 n) commu-
nication rounds (under the assumption that one packet can be for-
warded by each region in a communication round), but the question
is, how many attempts are needed until all of the lookup requests
are successful, no matter which data items have been selected for
them. The following theorem gives an answer to this, which im-
plies Theorem 1.2.

THEOREM 3.5. For any set ofn lookup requests out of a setU
of polynomial size with one request per node, the lookup protocol
can serve all requests in a guaranteed number ofO(log n) attempts
and needs at mostO(c log4 n) communication rounds altogether.

PROOF. Let us consider any fixed attempt and lets be the num-
ber of remaining lookup requests. For simplicity, let us view the
routing of packets in the dynamic de Bruijn graph as routing them
along thed-dimensional shuffle graphSH(d) with d = log n.

Let the threshold set by the lookup protocol be2c/σ with σ =
1/(8e log n) so that Lemma 3.3 can be applied. A node in the shuf-
fle graph is calledcongestedif packets for more than2c/σ different
copies pass it, and letW be the set of all congested nodes. Note that
W is σ-sparse because in every subgraphSH(`) in SH(`) there
can be a total of at most(2c − 1)2` packets and therefore at most
(2c−1)2`/(2c/σ) ≤ σ2` nodes at level̀ with at least2c/σ pack-
ets. Furthermore, since the total number of packets is(2c − 1)s,
|W | ≤ d · (2c− 1)s/(2c/σ) = σds.

SinceH is a(σ, c/2)-expander, there can be at most|W | lookup
requests with at leastc/2 packets passing through nodes inW
because otherwise we would have aσ-sparsec/2-bundleF with
|ΓF (U(F ))| < |U(F )|. Hence, at most|W | = σds = s/8e of
the lookup requests fail. Therefore, at mostO(log n) attempts are
necessary until all requests have been served.

Going back fromSH(d) to region routing in the de Bruijn graph,
we have to multiply the congestion threshold by a factor ofO(log n)
as there areO(log n) nodes in each quorum region.

3.5 The insert protocol
The insert protocol is similar to the lookup protocol, with the dif-

ference that we play a collision game at the destinations (first used
in [7] in the context of PRAM simulations) to keep the number of
copies each node has to store as small as possible. The protocol
proceeds in rounds. In each round, every remaining insert request
generates a packet for each of its2c − 1 destinations. The packets
are routed level by level, combining packets wherever possible. If
a region has more thanγc log2 n packets in a level, all of them are
discarded, and otherwise all of them are forwarded. In the destina-
tion level, we use a slightly more restrictive bound. If a region in
the destination level has more thanγ′c log n packets, for a constant
γ′, then all of them discarded, and otherwise acknowledgements
are sent out for all of them. The acknowledgements will be sent
back level-wise and split appropriately in order to inform all rele-
vant source nodes. An insert request is successful in that round if
at leastc acknowledgements are received for it.

This insert protocol has the following performance, which im-
plies Theorem 1.3.

THEOREM 3.6. For any set ofn insert requests out of a setU of
polynomial size with one request per node, the insert protocol can
serve all requests in a guaranteed number ofO(log n) attempts
and needs at mostO(c log4 n) communication rounds altogether.
Furthermore, every node has to store at mostO(c log2 n) copies.

PROOF. Consider any fixed attempt and lets be the number of
remaining insert requests. For simplicity, we again view the routing
of packets in the dynamic de Bruijn graph as routing them along the
d-dimensional shuffle graphSH(d) with d = log n.

Let the threshold for the intermediate levels be2c/σ with σ =
1/(8e log n) and the threshold for the final level be2γc. A node
in an intermediate level iscongestedif packets for more than2c/σ
different copies pass it, and a node in the final level iscongested
if packets for more than2γc different copies reach it. LetW1 be
the set of all intermediate congested nodes andW2 be the set of all
final congested nodes. From the previous proof we know thatW1

is σ-sparse and|W1| ≤ σds, and it is easy to see that|W2| ≤ s/γ.
Let S be the set of failed lookup requests. Then eitherS andW1

form a σ-sparsec/2-bundle orS andW2 form a c/2-bundle. In
the first case, we know from the previous proof that|S| ≤ s/8e. In
the second case,|S| ≤ |W2|/(λc) for some constant0 < λ < 1
becauseH is a(λ, c/2, 1/γ)-expander ifγ is sufficiently large. In
both cases,|S| ≤ s/8e. Hence, at mostO(log n) attempts are
necessary until all requests have been served.

Since each node only starts to accept packets once the total num-
ber of different copies in it with packets is below2γc, every node
only has to storeO(c) copies at the end. Moving from nodes to
regions, this means that every quorum region has to store at most
O(c log n) copies.

The total number of stored copies per node could be reduced to
O(c log n) if in each attempt we could count the total number of
copies for which packets are sent to a quorum region and reject
all packets based on this total count and the thresholdγ′c log n.
Doing this deterministically is possible but requires sophisticated
techniques based on sorting. So we did not consider this approach
in this paper.

4. ROBUST RANDOM ID GENERATION
In order to generate a random ID for a node, we use a verifiable

secret sharing (VSS) scheme. In VSS, a dealerD tries to store
a secrets in n nodes so that it can be reliably recovered. More



precisely, a protocol onn nodes is called a(n, k)-VSS scheme
if, for any adversary owningk nodes, the following requirements
hold:

• Privacy: If D is honest, then the adversary’s view during the
sharing phase reveals no information abouts.

• Correctness: If D is honest, then the reconstructed value is
alwaysequal to the secrets.

• Commitment: Even ifD is dishonest, any successful execu-
tion of the sharing phase determines a unique values∗ which
will be reconstructed at the reconstruction phase.

A protocol fulfilling all these properties is, for example, thebn−1
4
c-

VSS in [12]. For completeness, we present it here:

• Sharing phase:

1. D chooses a random bivariate polynomialF ∈ K[x, y]
of degree (at most)k in each variable s.t.F (0, 0) = s.
It sends to each playerPi the (univariate) polynomials
fi(x) = F (x, i) andgi(y) = F (i, y).

2. PlayerPi sends to each playerPj the valuegi(j).

3. PlayerPi broadcasts a listLi of playersPj for whom
it holds thatfi(j) 6= gj(i).

• Local computation (by each player):

1. Add edge(i, j) to the consistency graphG onn nodes
if Pi is not inLj andPj is not inLi.

2. Find a maximal matching in̄G.

3. Define a vertex setC to include all vertices not in the
matching. (C is a clique inG.)

4. DefineADD to be the set of verticesi s.t. i 6∈ C and
there exist2k + 1 nodesj ∈ C such that(i, j) ∈ G.

5. If |C| + |ADD| ≥ 3k + 1 then accept the sharing;
otherwise, disqualify the dealer.

• Reconstruction phase: EachPi ∈ C∪ADD providesfi(0).
Use error correction on{fi(0)}i∈C∪ADD to recover the poly-
nomialg0(y) = F (0, y). Computeg0(0).

The problem with applying it to our setting is that it uses a broad-
cast operation to disseminate information and it assumes the set of
nodes to be static. However, it can be adapted so that it can be used
to generate a random ID in a dynamic, asynchronous environment
without a broadcast channel. This works as follows (the number of
adversarial nodes is assumed to be at mostk/6):

Suppose that nodeu wants to generate a new ID and letG be the
group of nodesu knows in its quorum regionRu (which includes
all honest node but may not include all adversarial nodes). Thenu
asks all nodesv ∈ G to execute the VSS scheme above onG for a
secretsv picked at random from[0, 1) by v. If v knows more than
4k nodes inG, thenv executes step 1 of the sharing phase onsv

and attachesG to its messages; otherwise, it aborts. Every node
w ∈ G that receives a message fromv with the sameG it received
from u executes step 2 of the sharing phase. Every nodew′ ∈ G
that receives step 2-messages from at least|G|−k/6 nodesw ∈ G
for somev, computesLv

w′ and sendsLv
w′ tou. Onceu has received

from at least|G| − k/6 nodesw ∈ G Lv
w ’s for all nodesv in some

setS ⊆ G with |S| = |G| − k/2, u starts the local computation
phase to determine the setP of all v with |Cv|+|ADDv| ≥ 3k+1.
If |P | ≥ |G| − k, thenu sends to eachv ∈ G an ID reconstruc-
tion request together withP and{(Cv, ADDv)}v∈P . Each node

w ∈ G receiving an ID reconstruction request fromu forwards this
request to all other nodes inG. Each nodew ∈ G receiving the
same ID reconstruction request from at least|G| − k/6 nodes inG
waits until it has sentLp

w to u for all p ∈ P and afterwards initi-
ates the reconstruction phase by sending{(fp

w(0), Lp
w)}p∈P to all

v ∈ G. Each nodew ∈ G receiving at least|G| − k/3 reconstruc-
tion messages for allp ∈ P first checks if there is ap ∈ P s.t. no
change ofLp

i for≤ k/6 messages it received together with suitable
Lp

i s for the≤ k/3 missing messages would fulfill the conditions
onCp andADDp. If so, it aborts. Otherwise, it recoversgp

0(y) for
everyp, computesx =

⊕
p∈P g0(y), and sendsx to u.

We show the correctness with two lemmata, using the assump-
tion that all honest nodes inG know each other and at mostk/6
nodes inG are adversarial.

LEMMA 4.1. In any case in which there is an honest nodev
that computes some IDx in the ID generation scheme initiated by
some (honest or adversarial) nodeu, x must be random and no
honest node computes a value different fromx.

PROOF. First of all, an honest nodev only participates in the
ID generation stage if|G| > 4k, i.e. G is sufficiently large for
the VSS-protocol in [12] with thresholdk to work. Second, notice
that every honest nodev ∈ G will only reveal any of its private
information about keysxw if it received at least|G| − k/6 votes
concerning the ID reconstruction message fromu matching the re-
construction message it got fromu. Thus,P and(Cp, ADDp)p∈P

are fixed forv at that stage. Furthermore, due to at mostk/6
adversarial nodes, no honest node can have a different view of
P and (Cp, ADDp)p∈P when revealing its private information.
Hence, at that point where the first honest node reveals private in-
formation about some keys, no adversarial node can influenceP or
(Cp, ADDp)p∈P any more for the honest nodes.

Also, at that point where the first honest nodev reveals private
information, it must have sentLp

v ’s for all p ∈ P tou. Thus, it must
have receivedgp

i (j)’s from at least|G| − k/6 nodes inG for all
p ∈ P . This, in turn, means that for eachp ∈ P at least|G| − k/3
honest nodes inG must have received a pair(fp

i (x), gp
i (y)) from p

before any private information is revealed by any honest node. Let
us call these nodesp-safe.

Now, any honest nodev that is convinced that the sharing for
somep ∈ P is successful must have used at least|G| − 5k/6
fp

i (0)’s from p-safe honest nodes, because among the at least|G|−
k/3 fp

i (0)’s it receives from nodes inG, at mostk/6 can come
from adversarial nodes and at mostk/3 can come from non-p-safe
honest nodes. Ifv is convinced of the correct sharing forp, then
because it may have changedLp

i ’s from at mostk/6 of thep-safe
honest nodes to justify this. Hence, at least|G| − k fp

i (0)’s from
p-safe nodes will be considered when revealingp’s secret which,
according to [12], will recover a unique, unbiased valuexp.

Because|P | ≥ |G| − k and |G| > 4k in order for an honest
nodev to participate, at least onexp must have been generated by
an honest node. Thisxp is random and unknown to the adversarial
nodes until(Cp, ADDp)p∈P is fixed. Hence, whenv is convinced
that the recovery phase succeeded, it computes a random IDx.

LEMMA 4.2. Any honest nodeu initiating the random ID gen-
eration scheme will get the same valuex back from at least|G| −
k/3 nodes inG.

PROOF. If u is honest, then it will wait until it has at least|G|−k/6
nodesw ∈ G that sentLv

w ’s to u for all nodesv of some setS ⊆ G
with |S| ≥ |G| − k/2. In this case, at least|G| − k/3 honest
nodesw must have sentLv

w ’s for all nodes inS, and therefore at



least|G| − k/3 honest nodes will initiate the reconstruction phase.
This makes sure that every honest node inG receives reconstruction
messages from at least|G| − k/3 honest nodes inG, which allows
them to recover the keysxp. Notice that no honest node will abort,
because ifu makes sure that the conditions forADDp andCp are
fulfilled for everyp ∈ P , then every honest node can find correc-
tions for the at mostk/6 Lp

i ’s it received from adversarial nodes
and can come up with suitableLp

i ’s for the at mostk/3 missing
nodes so that the conditions onADDp andCp are met. If these
conditions can be met, it follows from [12] that unique keys can
be recovered from the received parts, and from the lemma above it
follows that these keys must be unbiased, and at least one of them
must be random. Hence, all honest nodes inG that participate in
the recovery, which are at least|G| − k/3, will agree on the same,
random value forx.

5. CONCLUSIONS
In this paper we showed that, on a high level, a scalable DHT

can be designed that is provably robust against adaptive adversarial
join-leave attacks as well as insert and lookup attacks. Certainly,
low-level protocols still have to be designed for our operations that
work well and correctly in an asynchronous environment. We be-
lieve that designing such protocols is possible though their design
and formal correctness proofs may require a significant effort.
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