
Can ISPs and P2P users cooperate
for improved performance?

Vinay Aggarwal
Deutsche Telekom

Laboratories/TU Berlin
Vinay.Aggarwal@telekom.de

Anja Feldmann
Deutsche Telekom

Laboratories/TU Berlin
Anja.Feldmann@telekom.de

Christian Scheideler
TU München

scheideler@in.tum.de

ABSTRACT
Peer-to-peer (P2P) systems, which are realized as overlayson top
of the underlying Internet routing architecture, contribute a signif-
icant portion of today’s Internet traffic. While the P2P users are a
good source of revenue for the Internet Service Providers (ISPs),
the immense P2P traffic also poses a significant traffic engineering
challenge to the ISPs. This is because P2P systems either imple-
ment their own routing in the overlay topology or may use a P2P
routing underlay [1], both of which are largely independentof the
Internet routing, and thus impedes the ISP’s traffic engineering ca-
pabilities. On the other hand, P2P users are primarily interested in
finding their desired content quickly, with good performance. But
as the P2P system has no access to the underlying network, it ei-
ther has to measure the path performance itself or build its overlay
topology agnostic of the underlay. This situation is disadvantageous
for both the ISPs and the P2P users.

To overcome this, we propose and evaluate the feasibility ofa so-
lution where the ISP offers an “oracle” to the P2P users. Whenthe
P2P user supplies the oracle with a list of possible P2P neighbors,
the oracle ranks them according to certain criteria, like their prox-
imity to the user or higher bandwidth links. This can be used by the
P2P user to choose appropriate neighbors, and therefore improve its
performance. The ISP can use this mechanism to better managethe
immense P2P traffic, e.g., to keep it inside its network, or todirect
it along a desired path. The improved network utilization will also
enable the ISP to provide better service to its customers.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: [Network topol-
ogy]; C.2.4 [Distributed Systems]: [Distributed applica-
tions]

General Terms
Design, Experimentation, Management, Performance

Keywords
P2P, ISP, cooperation, routing, biased neighbor selection

1. INTRODUCTION
P2P systems have recently gained a lot of attention from

the Internet users and the research community. Popular ap-
plications that use P2P systems include file sharing systems

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Copyright 2007 ACM Computer Communication Review ...$5.00.

such as Bit-torrent, eDonkey, Kazaa, Gnutella as well as
VoIP systems such as Skype and GoogleTalk [2]. P2P sys-
tems are so popular that they contribute more than 50% to
the overall network traffic [3, 4, 5].

However, the wide-spread use of such P2P systems has
put ISPs in a dilemma! On the one hand, P2P system ap-
plications have resulted in an increase in revenue for ISPs,
as they are one of the major reasons cited by Internet users
for upgrading their Internet access to broadband [6]. On
the other hand, ISPs find that P2P traffic poses a signifi-
cant traffic engineering challenge [4, 7]. P2P traffic often
starves other applications like Web traffic of bandwidth [8],
and swamps the ISP network. This is because most P2P sys-
tems rely on application layer routing based on an overlay
topology on top of the Internet, which is largely independent
of the Internet routing and topology [9].

To construct an overlay topology, unstructured P2P net-
works usually employ an arbitrary neighbor selection pro-
cedure [5]. This can result in a situation where a node in
Frankfurt downloads a large content file from a node in Syd-
ney, while the same information may be available at a node
in Berlin. It has been shown that P2P traffic often crosses
network boundaries multiple times [9, 10]. This is not nec-
essarily optimal as most network bottlenecks in the Internet
are assumed to be either in the access network or on the links
between ISPs, but not in the backbones of the ISPs [11].
Besides, studies have shown that the desired content is of-
ten available “in the proximity” of interested users [10, 12].
This is due to content language and geographical regions of
interest. Since a P2P user is primarily interested in finding
his desired content quickly with good performance, we be-
lieve that increasing the locality of P2P traffic will benefit
both ISPs and P2P users.

To better understand the origin of the problem of overlay-
underlay routing clash, let us consider how routing works
in the Internet and P2P systems. In the Internet, which is
a collection of Autonomous Systems (ASes), packets are
forwarded along a path on a per-prefix basis. This choice
of path via the routing system is limited by the contractual
agreements between ASes and the routing policy within the
AS (usually shortest path routing based on a fixed per link
cost) [13].

P2P systems, on the other hand, setup an overlay topol-
ogy and implement their own routing [14] in the overlay
topology which is no longer done on a per-prefix basis but
rather on a query or key basis. In unstructured P2P networks
queries are disseminated, e.g., via flooding [15] or random
walks while structured P2P networks often use DHT-based
routing systems to locate data [5]. Answers can either be

sent directly using the underlay routing [5] or through the
overlay network by retracing the query path [15]. By rout-
ing through the overlay of P2P nodes, P2P systems hope to
use paths with better performance than those available via
the Internet [14, 16]. But the benefits of redirecting traffic
on an alternative path, e.g., one with larger available band-
width or lower delay, are not necessarily obvious. While the
performance of the P2P system may temporarily improve,
the available bandwidth of the newly chosen path will de-
teriorate due to the traffic added to this path. The ISP then
has to redirect some traffic so that other applications using
this path receive enough bandwidth. In other words, P2P
systems reinvent and reimplement a routing system whose
dynamics should be able to interact with the dynamics of
the Internet routing [7, 17]. While a routing underlay as
proposed by Nakao et al. [1] can reduce the work dupli-
cations it cannot by itself overcome the interaction prob-
lems. Consider a situation where a P2P system imposes a
lot of traffic on an ISP network. This may cause the ISP
to change some routing metrics and therefore some paths (at
the routing layer) in order to improve its network utilization.
This can however cause a change of routes (at the applica-
tion layer) by the P2P system, which may again trigger a
response by the ISP, and so on. In summary, we identify the
following drawbacks:

• The ISP has limited ability to manage its traffic and
therefore incurs potentially increased costs for its in-
terdomain traffic, as well as for its inability to do traf-
fic engineering on its internal network.

• The P2P system has limited ability to pick an optimal
overlay topology and therefore provide optimal per-
formance to its users, as it has no prior knowledge of
the underlying Internet topology. It therefore has to
either disregard or reverse engineer it.

• Different P2P systems have to measure the path per-
formance independently.

While we do not know of a P2P network that tries to
reverse-engineer the Internet topology, there are some pro-
posals that suggest that P2P networks should bias their over-
lay topology by choosing neighbors that are close in the
sense of high throughput or low latency, e.g., [18, 19, 20]
or that are within the same AS, e.g., [10, 21]. Others such
as the Brocade [22] system propose to build an overlay on
top of a structured DHT P2P system that exploits knowl-
edge of the underlying network characteristics. Yet another
system [8] proposes to use caching to relieve the tension be-
tween ISPs and P2P systems.

We, in this paper, propose and evaluate the feasibility of
a simpler solution where ISPs help P2P systems by offering
an oracle service. The oracle acts like an abstract routing
underlay to the overlay network but as it is a service offered
by the ISP it has direct access to the relevant information
and does not have to infer or measure it. For example, an
ISP knows whether a customer has a DSL broadband or a
modem connection, its link delay, etc. The benefit to the
ISP is twofold: first, it can now influence the P2P routing
decisions via the oracle and so regain its ability to perform
traffic engineering (control the traffic flow) and second, the
P2P measurement traffic to infer network distances is omit-
ted. The P2P users benefit as explained below.

1.1 An oracle service
Let’s consider how unstructured P2P networks tend to

maintain their topologies. New P2P nodes usually retrieve

a list of members of the P2P network either via a well known
Web page, a configuration file, or some history mechanism [2,
5]. They then pick some subset of these as possible neigh-
bors either randomly [15] or based on some degree of per-
formance measurement [18]. If the chosen neighbor cannot
serve the new node it might redirect the new node by sup-
plying an alternative list of P2P members.

Instead of the P2P node choosing neighbors independently,
the ISP can offer a service, which we call theoracle, that
ranks the potential neighbors according to certain metrics.
This ranking can be seen as the ISP expressing preference
for certain P2P neighbors. Possible coarse-grained distance
metrics are:

• inside/outside of the AS
• number of AS hops according to the BGP path [13]
• distance to the edge of the AS according to the IGP

metric [13]

For P2P nodes within the AS the oracle may further rank the
nodes according to:

• geographical information such as: same point of pres-
ence (PoP), same city

• performance information such as: expected delay, band-
width

• link congestion (traffic engineering)

This ranking can then be used by the P2P node to select a
closeby neighbor although there is no obligation.

The benefit to P2P nodes of all overlays is multifold: (1)
they do not have to measure the path performance them-
selves; (2) they can take advantage of the knowledge of the
ISP; (3) they can expect improved performance in the sense
of low latency and high throughput as bottlenecks [11] can
be avoided. That P2P networks benefit by increasing traf-
fic locality has also been shown by Bindal et. al [21] for the
case of BitTorrent.

The benefit to the ISPs is that they can influence the neigh-
borhood selection process of the P2P network to, e.g., en-
sure locality of traffic flows and therefore again have the
ability to manage the flow of their traffic. This will also al-
low them to provide better service to their customers and en-
sure fairness for other applications like Web traffic, etc. Be-
sides, the ISPs will gain cost advantages, by reducing costs
for traffic that leaves their internal network.

As the ability to control/manage its traffic is crucial to the
operating costs of every ISP, we expect that the benefit ac-
cruing from this ability will outweigh the potential risks of
providing an oracle, namely that the oracle exposes some
information about the ISP topology and the network per-
formance. As the oracle server only needs to roughly rank
the IP nodes, it does not need to reveal more information
about its network than can anyhow be inferred by reverse-
engineering the ISP network via measurements [23].

The oracle is available toall overlay networks. One does
neither need nor want to use a separate oracle for each P2P
network. Furthermore, as an open service, it can be queried
by any application and is not limited to file-sharing systems.
Hence, querying the oracle does not necessarily imply par-
ticipation in file sharing systems. This should limit the desir-
ability of the oracle logs to, e.g., the music industry. More-
over the P2P system could permute, e.g., the last byte of
the IP addresses it is interested in or use an anonymization
service for querying the oracle.

Realizing an oracle service: It may seem rather chal-
lenging to build such an oracle in a scalable manner, but

much more complicated services, e.g., DNS, already ex-
ist. The oracle service can be realized as a set of replicated
servers within each ISP that can be queried using a UDP-
based protocol or run as a Web service. It can rely on a
semi-static database with the ISP’s prefix and topology in-
formation. Updating this information should not impose any
major overhead on the ISP.

While the oracle service is not yet offered by the ISPs,
P2P nodes have the chance of using a simple service to
gain some of the oracle benefits already using the “pWhoIs”
service [24]. This service is capable of satisfying 100,000
queries using standard PC-hardware [25] in less than one
minute. It enables the P2P node to retrieve information
about possible P2P neighbors such as the AS and some ge-
ographic information. This information can then be used by
the P2P node to bias its neighbor selection. But purely using
the “pWhois” service only helps the P2P system. It does not
enable the ISP to express its preference and therefore does
not enable cooperation.

Overview of Paper:
To overcome the argument that biasing the neighborhood
selection process adversely affects the structural properties
of the overlay topology one needs appropriate metrics. We
propose metrics for evaluating the impact of using the oracle
on the overlay as well as the underlay topology in Section 2
in addition to discussing how to derive realistic topologies.

To evaluate the impact of using the oracle one should ide-
ally study P2P systems with many nodes over the Internet, a
network with many ASes and complex intra-AS topologies.
Yet as the oracle service is not yet offered by the ISPs we
are confined to using testlab facilities or simulators. Graph
simulators enable us to explore large topologies as long as
we focus purely on the graph properties. Packet level simu-
lators enable us to incorporate the behavior of an actual P2P
system but limit the complexity of the network that can be
considered. Using testlab facility we can run the actual P2P
system code and therefore no longer require to model it. Yet
we again have to reduce the complexity of the network.

Accordingly we show in Section 3, relying on graph based
simulations and measured Internet topologies, that the re-
sulting P2P overlays maintain their graph properties like
small diameter, small mean path length and node degree,
but the densely connected subgraphs are now local to the
ISPs. To study the impact of biased neighbor selection on
a real P2P network that implements its own routing, we run
extensive simulations of the Gnutella protocol in Section 4.
These experiments help us to evaluate the effect of churn in
P2P systems, and to study the impact of oracle on scalabil-
ity and traffic content localization. We find that the Gnutella
topologies maintain their graph properties, the ISP now has
the ability to influence the overlay topology, and the scala-
bility and network performance of Gnutella improves con-
siderably. Then, in Section 5, we show that a modified ver-
sion of Gnutella when used in a testbed can indeed take ad-
vantage of the oracle service. Finally, in Section 6, we sum-
marize our findings and give an outlook on future work.

2. EVALUATION METHODOLOGY
In this section, we first propose metrics for evaluating the

effectiveness of the idea of using an oracle which can also
be used to characterize overlay-underlay graphs in general.
Then we describe how we derive representative topologies
for our simulations from the Internet AS topology.

2.1 Metrics
As a basic model for our investigations, we model the AS-

graph as a complete bi-directed graphG= (V,E) with a cost
functionc : E → IR

+ associated with the edges. Every node
represents an AS, and for every pair(u,v), let c(u,v) denote
the overall cost of routing a message from ASu to AS v
(which depends on the routing policies of the ASes such a
message may traverse).

Given a set of peers1 P, let AS: P → V define how the
peers are mapped to the ASes andb : P→ IR

+ denotes the
bandwidth of the Internet connections of the peers. The
overlay network formed by the peers is given as a directed
graphH = (P,F) in which every edge(p,q) ∈ F has a cost
of c(AS(p),AS(q)). The graphH can be characterized using
several metrics.

Degree: The degreeof a peer is defined as the number of
its outgoing connections. Ideally, every peer should have
a large number of connections to other peers within its AS
so as to favor communication within the AS, while connec-
tions to other ASes should be limited to avoid high commu-
nication costs and high update costs as peers enter/leave the
network.

Hop count diameter: Another parameter that should be
small is the hop count diameter of the overlay graphH. The
hop count diameterD of H is the maximum over all pairs
p,q∈ P of the minimum length of a path (in terms of num-
ber of edges) fromp to q in H. It is well-known that any
graph ofn nodes and degreed has a hop count diameter of
at least logd−1 n, and that dynamic overlay networks such as
variants of the de Bruijn graph [26] can get very close to this
lower bound, a very nice property. However, even though
the hop count diameter may be small, the AS diameter (i.e.,
the distance between two P2P nodes when taking the under-
lying AS-graphG with cost functionc into account) can be
very large.

AS diameter: The AS diameter ofH is defined as the max-
imum over all pairsp,q∈ P of the minimum cost of a path
from p to q in P, where the cost of a path is defined as the
sum of the cost of its edges. Ideally, we would like both the
hop count diameter and the AS diameter to be as small as
possible. Research in this direction was pioneered by Plax-
ton et al. [27], and the (theoretically) best construction today
is the LAND overlay network [28].

Surprisingly, the best AS diameter achievable when avoid-
ing many P2P connections to other ASes can be better than
the best AS diameter achievable when all P2P connections
go to other ASes. Consider the simple scenario in which the
cost of a P2P edge within the same AS is 0 and that between
two different ASes is 1. Let the maximum degree of a peer
bed. In scenario 1, we require all edges of a peer to leave its
AS, and in scenario 2, we only allow one edge of a peer to
leave its AS. In scenario 1, the best possible AS diameter is
logd−1 n (see our comments above). However, in scenario 2
one can achieve an AS diameter of just logd−2(n/(d−1)).
For this, organize the peers into cliques of sized−1 within
the ASes (we assume that the number of peers in each AS
is a multiple ofd−1). We can then view each clique as a
node of degreed−1. It is possible to connect these nodes
with a graph of diameter close to logd−2(n/(d−1)), giving
the result above.

1In this paper a peer refers to a node of the P2P network and
not to a BGP peer.

Flow conductance: Having a small hop count diameter and
AS diameter is not enough to ensure high network perfor-
mance. A tree, for example, can have very low hop count
and AS diameter. Yet, it is certainly not a good P2P network,
since one single faulty peer is sufficient to cut the network in
half. Ideally, we would like to have a network that is well-
connected so that it can withstand many faults and can route
traffic with low congestion. A standard measure for this has
been the expansion of a network. However, it seems that
the expansion of a network cannot be approximated well.
The best known algorithm can only guarantee an approxi-
mation ratio ofO(

√
logn) [29]. Therefore, we propose an

alternative measure here that we call theflow conductance
of a network (which is related to the flow number proposed
in [30]).

Consider a directed networkG = (V,E) with edge band-
widths b : E → IR

+. If E(v) is the set of edges leavingv
then for every nodev∈V, let b(v) = ∑e∈E(v) b(e). Further-
more, for any subsetU ⊆ V let b(U) = ∑v∈U b(v). Next
we consider the concurrent multicommodity flow problem
M0 with demandsdv,w = b(v) · b(w)/b(V) for every pair
v,w of nodes. That is, we consider the heavy-traffic sce-
nario in which each node aims at injecting a flow into the
system that is equal to its edge bandwidth, and the desti-
nations of the flows are weighted according to their band-
width. Theflow conductance Cmeasures how well the net-
work can handle this scenario, or more formally, the flow
conductance is equal to the inverse of the largest value of
λ so that there is a feasible multicommodity flow solution
for the demandsλdv,w in G. It is easy to show that for any
networkG, 0≤ λ ≤ 1, and the largerλ is, the better is the
network. As an example, for uniform link bandwidths the
flow conductance of then×n-mesh isΘ(1/n) and the flow
conductance of the hypercube of dimensionn is Θ(1/ logn).

Interestingly, one can significantly lower the number of
inter-AS edges without losing much on the flow conduc-
tance. Suppose we havem peers with bandwidthb that can
have a maximum degree ofd. Consider a class of networks
G(n) of degreed and sizen with monotonically increasing
flow conductanceC(n). Connecting them peers byG(m)
gives a network with flow conductanceC(m). Suppose now
that every peer can establish only one inter-AS edge with
bandwidthb/2, and the remaining bandwidth can be used
for intra-AS edges. In this case, let us organize the peers
into cliques of sized−1 within the ASes (we assumed that
the number of peers in each AS is a multiple ofd−1) and in-
terconnect the cliques so that they formG(m/(d−1)). Then
it is not difficult to see that the resulting network has a flow
conductance of 2C(m/(d− 1)). Hence, compared to arbi-
trary networks we lose a factor of at most 2.

Summary: We propose measures that are useful for P2P
systems and our results demonstrate that it is possible to
have a highly local topology with an AS diameter and a flow
conductance that is comparable to the best non-local topolo-
gies. Hence, worst-case communication scenarios can be
handled by local topologies (i.e., topologies with many intra-
AS connections) essentially as well as by non-local topolo-
gies. In addition, we expect local topologies to be far better
cost-wise for serving P2P traffic in practice than non-local
topologies, which we aim to validate through experiments.

2.2 Simulation Topologies
The simulation results can be heavily influenced by the

topologies used. Hence, we make the basis for our simula-
tions the current AS topology of the Internet [31, 32], as it
can be derived from the BGP routing information. We use
BGP data from more than 1,300 BGP observation points in-
cluding those provided by RIPE NCC, Routeviews, GEANT,
and Abilene. This includes data from more than 700 ASes
as on November 13, 2005. Our dataset contains routes with
4,730,222 different AS-paths between 3,271,351 different
AS-pairs. We derive an AS-level topology from the AS-
paths. If two ASes are next to each other on a path, we
assume that they have an agreement to exchange data and
are therefore neighbors. We are able to identify 58,903
such edges. We identify level-1 providers by starting with
a small list of providers that are known to be level-1. An
AS is added to the list of level-1 providers if the resulting
AS-subgraph between level-1 providers is complete, that
is, we derive the AS-subgraph to be the largest clique of
ASes including our seed ASes. This results in the following
10 ASes being referred to as level-1 providers: 174, 209,
701, 1239, 2914, 3356, 3549, 3561, 5511, 7018. While this
list may not be complete, all found ASes are well-known
level-1 providers. There are 7,994 ASes that are neighbors
of a level-1 provider, which we refer to aslevel-2.
All other 13,174 ASes are grouped together into the class
level-3. We thus identify 21,178 ASes in all.

As it is not known how many P2P nodes are in each AS,
and we may want to study smaller subsets to be able to com-
pute the complex graph properties in reasonable time, we
randomly subsample the AS-topology by keeping all level-
1 ASes and their interconnections, and selecting a fraction
of the level-2 and level-3 ASes while keeping their propor-
tion the same as in the original data. Hereby, we first select
the level-2 ASes and keep their interconnections. Only then
do we select the level-3 ASes from among the ASes that are
reachable in our subgraph.

Most level-1 ASes traditionally are expected to serve more
customers than level-2 and level-3 ASes [33, 34]. At the
same time there are more level-3 than level-2 than level-1
ASes. Thus we distribute the P2P clients among the ASes in
the following ad-hoc manner: a P2P node has equal proba-
bility to pick an AS from each level. This results in a 1/3 :
1/3 : 1/3 split of the nodes among the AS levels. This way a
level-1 AS serves many more P2P nodes than a level-3 AS.
All the topologies used in our experiments have been de-
rived in this manner by randomly subsampling the AS topol-
ogy derived from the BGP table dumps. Indeed, sensitivity
analysis of our results show that if we move more peers to
level-2, level-3 ASes the results improve even more.

3. OVERLAY / UNDERLAY GRAPH
PROPERTIES

In this section, we first evaluate how the use of the oracle
changes the graph properties of the P2P overlay topology.
Later, in Sections 4 and 5 we explore the interactions of the
two routing systems, the impact of churn on the topology,
and the benefits of the oracle for satisfying queries. For this
purpose we in this section use a general graph simulator as it
allows us to explore large topologies. Namely, we rely on a
simulation environment, the Subjects environment [35], that
is very light-weight, such that we can run experiments on
large topologies with many P2P nodes.

For our evaluation we consider five graphs, each with 300
ASes and 4,372 P2P nodes, which results in an average of

14.6 nodes per AS. Each graph consists of 4 level-1 ASes,
100 level-2 ASes and 196 level-3 ASes. We place 375 nodes
within each level-1 AS, 15 nodes within each level-2 AS,
and 7 nodes within each level-3 AS. Increasing the number
of nodes in the level-2, level-3 ASes only helps our case.

We establish P2P neighbor relationships by randomly pick-
ing one of the P2P nodes and let it establish a neighborship
either

unbiased: to a single randomly chosen P2P node or
biased: to one from a list of candidates.

The unbiased case corresponds to a P2P protocol with
arbitrary neighbor selection, while the biased case corre-
sponds to a P2P node giving a list of potential neighbors to
the oracle, and the oracle helping it pick an optimal neigh-
bor. We simulate the simplest of such oracles where it either
chooses a neighbor within the querying node’s AS if such a
one is available, or a node from the nearest AS (considering
AS hop distance). We experiment with different sizes of the
oracle’s choice list.

We experimented with establishing from 1000 upto 40,000
neighbor relationships in total. Given that for random graphs,
the threshold for the number of edges to ensure connectivity
is logn/2 times the numbern of nodes, it is not surprising
that we need roughly 18,000 edges to ensure that the simu-
lated graph is connected. Increasing the number of edges be-
yond this number does not change the graph properties no-
ticeably. Accordingly, we concentrate on results for 20,000
peerings.

We run four experiments for each of the five AS graphs
where the oracle is used for each neighbor relationship with
candidate lists of length 1, 10, 50, 100, 200, 375, resulting
in 120 experiments. Note that a list length of 1 corresponds
to the unbiased case. The results we obtained are as follows.

Structural properties
First, we check whether the overlay graphs remain connected
using biased neighbor selection. In principle it is possi-
ble that due to a heavy bias, the graph disintegrates into
disconnected components which are themselves well con-
nected. We experimentally verify that all resulting graphs
remain connected, thereby not impacting the reachability of
the overlay graph.

The next question is if the mean degree of the P2P nodes
changes. We find that the mean degree value of 9.138 of
an unbiased graph changes to 8.8 in biased graphs with list
size 200, see Figure 1(a). The small change in node degree
implies that we do not affect the structural properties of the
overlay graph seriously.

One may expect that our biased neighborhood selection
increases the diameter and mean path length, as it prefers
“closeby” neighbors. Yet, in all experiments the hop count
diameter of the overlay graph stays at 7 or 8 hops and the AS
diameter of the underlying AS graph stays at 5 hops. Neither
does the average path length in the overlay graph increase
significantly, see Figure 1(b). Therefore we can conclude
that the biased neighborhood selection does not negatively
impact the structural properties of the overlay graph.

Locality in topology
We find that locality in overlays improves significantly as
captured by the average AS-distance of P2P neighbors. Fig-
ure 1(c) shows how the AS-distance improves with the abil-
ity of the P2P node to choose a nearby neighbor. A lower
AS-distance should correspond to lower latency. This is also

reflected in the number of P2P neighbor connections that
stay within each of the ASes, see Figure 1(d). Without con-
sulting the oracle, only 4% of the edges are local to any of
the ASes. The use of the oracle increases locality by a fac-
tor of 7 from 697 to 5088 (in a total of 20,000 peerings),
even with a rather short candidate list of length 10. With
a candidate list of length 200, more than half of the edges,
59%, stay within the AS. We find that the effects are even
more pronounced for smaller networks. This demonstrates
how much the oracle increases the ability of the AS to keep
traffic within its network and with a refined oracle to bet-
ter manage the P2P traffic. These results also indicate the
benefit to the user, as traffic within the AS is less likely to
encounter network bottlenecks than inter-AS traffic.

Flow conductance
The remaining question is if the network maintains its abil-
ity to route traffic with low congestion. Since the run time
requirements of our algorithm for computing a lower bound
for the flow conductance of a graph isO(n4), we can cur-
rently only estimate the flow conductance for small graphs2.
Being able to calculate the conductance of smaller graphs
only is not a big problem as in case of Gnutella [15], we
can calculate the conductance of the graph of ultrapeers,
which is naturally much smaller than the entire Gnutella
connectivity graph. We construct unbiased as well as biased
graphs with 10 nodes and 21 edges, respectively 18 nodes
and 51 edges. Both graphs are generated on a topology with
6 ASes.

The expected flow conductance of the unbiased graphs is
0.505 for the 10 node graph and 0.533 for the 18 node graph
(see Section 2). We experimentally verify that both unbi-
ased graphs support a conductance of at least 0.5. Also, we
find that the penalty for the two biased graphs is less than
a factor of 2. The 10 node biased graph supports a flow
conductance of at least 0.3, and the 18 node graph, of at
least 0.25. We furthermore observe that subgraphs of the
biased graphs support a higher flow conductance which in-
dicates that the connectivity within the ASes is good. This
will likely result in a performance boost if the desired con-
tent can be located within the proximity of the interested
user. The locality of biased graphs increases to 50% (for 10
nodes), respectively 80% (for 18 nodes) compared to 20%
in the unbiased graphs.

4. P2P SIMULATIONS
In the previous section, we have seen that the results of

biased neighbor selection on the graph properties of a gen-
eralized overlay network as well as its correlation to the un-
derlay graph are promising. We now explore how a real P2P
file sharing system benefits from using the oracle using a
packet level network simulator [36]. For this purpose, we
choose Gnutella, an unstructured P2P file sharing system.
In the following we first give an overview of the Gnutella
protocol, then discuss how we realize it within the simula-
tion framework, and then discuss the simulation setup and
our results.

4.1 Gnutella and SSFNet
Gnutella [15] is a popular file-sharing network with about

2 million users [12, 37]. Moreover it is an open-source sys-
2Meanwhile, we have found a way to reduce the complexity
to O(n2logn) and work on computing the conductance of
larger graphs is continuing.

Oracle list size

M
ea

n
N

od
e

D
eg

re
e

8.
4

8.
6

8.
8

9.
0

unbiased 10 50 100 200 375

(a) P2P node degree
Oracle list size

M
ea

n
P

at
h

Le
ng

th
4.

1
4.

2
4.

3
4.

4
4.

5

unbiased 10 50 100 200 375

(b) Overlay path length
Oracle list size

M
ea

n
A

S
 D

is
ta

nc
e

0.
8

1.
0

1.
4

1.
8

2.
0

unbiased 10 50 100 200 375

(c) Underlay AS distance
Oracle list size

In
tr

a−
A

S
 c

on
ne

ct
io

ns
2K

4K
6K

8K
10

K
14

K

unbiased 10 50 100 200 375

(d) Intra-AS P2P connections

Figure 1: Error plots showing comparison of metrics with increasing size of Oracle list.

tem, which has attracted a healthy interest from researchers,
e.g., [37, 38, 39]. The Gnutella network is comprised of
agents called servents, who can initiate as well as serve re-
quests for resources. When launched, a servent searches for
other peers to connect to by sending Hello-likePing mes-
sages. ThePings are answered byPong messages, which
contain address and shared resource information. Search
queries are flooded within the Gnutella network usingQuery
messages, and answered byQuery Hits. To limit flood-
ing Gnutella uses TTL (time to live) and message IDs. Each
answer message (Query Hit/Pong) traverses the reverse
path of the corresponding trigger message. While the nego-
tiation traffic is carried within the set of connected Gnutella
nodes, the actual data exchange of resources takes place out-
side the Gnutella network, using the HTTP protocol. Due to
scalability problems, new versions of Gnutella take advan-
tage of a hierarchical design in which some servents are el-
evated to ultrapeers, while others become leaf nodes. Each
leaf node connects to a small number of ultrapeers, while
each ultrapeer maintains a large number of neighbors, both
ultrapeers and leafs. To further improve performance and
to discourage abuse, thePing/Pong protocol underwent
semantic changes. Answers toPings are cached (Pong
caching) and too frequentPings or repeatedQuerys may
cause termination of connection.

We coded the Gnutella protocol within the packet level
network simulator SSFNet [40]. The Scalable Simulation
Framework (SSF) [36] is an open standard for simulating
large and complex networks. Written in Java, it supports
discrete-event simulations. SSF Network models (SSFNet)
are Java models of different network entities, built to achieve
realistic multi-protocol, multi-domain Internet modeling and
simulation at and above the IP packet level of detail. These
entities include Internet protocols like IP, TCP, UDP, BGP
and OSPF, network elements like hosts, routers, links, and
LANs, and their various support classes. The network topolo-
gies are defined using the Domain Modeling Language (DML),
and the SSFNet class instances autonomously configure and
instantiate themselves by querying these DML configura-
tion files. The coding for the lower layers of the IP stack is
thus provided by SSFNet, while we implement the Gnutella
protocol as an SSFNet application [40].

We modify the neighbor selection procedure of Gnutella
to take advantage of the oracle [41]. Normally, when a
Gnutella node connects to the network, it gets a list of popu-
lar Gnutella node addresses in its Hostcache [42], which is a
locally maintained Gnutella hosts list, typically containing a
few hundred IP addresses. The node chooses a random sub-
set of the Hostcache, and initiates Gnutella peerings with
these selected nodes. We modify this procedure slightly
so that the Gnutella node sends the contents of its Host-
cache (list of IP addresses) to the oracle, which then picks a
node within the querying node’s AS if it exists, or a random

node otherwise. The node then establishes a Gnutella peer-
ing with this oracle-preferred node. This way, we influence
the neighborhood selection of Gnutella network, to choose
a peer within the AS if it exists. Moreover when a Gnutella
node receives query results for its search requests, it again
consults the oracle to select the nearest node from whom it
then downloads the file content.

4.2 Simulation setup
The topologies are derived using the methodology ex-

plained in Section 2.2. The network consists of a total of
25 ASes and 1000 nodes. More specifically it consists of 1
level-1 AS, 8 level-2 ASes and 16 level-3 ASes. We place
360 nodes within the level-1 AS, 40 nodes within each level-
2 AS, and 20 nodes within each level-3 AS. Within each AS,
all the nodes are connected in a star topology to an intra-AS
router. Each node in level-1 AS has a 1 Gbit network inter-
face, each node in level-2 AS has a 100 Mbit network inter-
face, while each node in level-3 AS has a 10 Mbit network
interface. The links between level-l and level-2 ASes have
a delay of 2 ms, while the links between level-2 and level-3
ASes have a delay of 10 ms. Each AS has 2 routers, one
for the intra-AS node connections, and one for the inter-AS
connections between different ASes. Thus, we have a topol-
ogy with 25 ASes, 50 routers and 1000 nodes running the
Gnutella protocol.

Each leaf node can have between 2 to 4 connections to
ultrapeers, while each ultrapeer initiates at least 10 connec-
tions to other Gnutella nodes itself, and stops accepting in-
coming connections from other nodes, once it is connected
to 45 nodes, be they leafs or ultrapeers. Each node shares
between 0 and 100 files, uniformly distributed.

To take churn in P2P systems into account, each node re-
mains online for a minimum of 1 and a maximum of 1500
seconds. Once a node goes off-line, it may become online
again after a time period between 1 to 300 seconds. For a
start, we take these time periods as uniformly distributed but
we are in the process of migrating to more precise distribu-
tions, as recently revealed in [39]. Furthermore, a leaf node
must be online for at least 600 seconds before it can serve as
an ultrapeer. At any given point of time in our simulations,
we find that 20−25% nodes are off-line3, and a quarter of
the online nodes are functioning as ultrapeers.

We ran multiple simulations for arbitrary lengths of time
and found that the startup phase of the simulation lasts for
about 500 seconds. After 5000 seconds of simulation time,
the summary statistics do not show significant changes. There-
fore we run our simulations for 5000 seconds.

4.3 Results
We first analyze the Gnutella network graph according

3This is more aggressive as compared to other studies, e.g.,
[43] which assume that only half the nodes churn.

to the metrics explained in Section 2, followed by an eval-
uation of some Gnutella specific metrics like scalability of
network, number of messages exchanged, localization of file
content exchange and visualization of topology.

We run three different experiments on five different topol-
ogy instances with roughly the same number of search queries
and the following parameters for the Gnutella nodes:

• Cache size = 1000, without oracle
• Cache size = 100, with oracle for neighbor selection
• Cache size = 1000, with oracle for neighbor selection

Note that in our implementation, each Gnutella node sends
the contents of its Hostcache to the oracle, which ranks the
list of IP addresses according to proximity from the query-
ing node. In other words, the above three cases correspond
to experiments with oracle list size of 1, 100, and 1000 re-
spectively. The success rates of the search queries are simi-
lar.

To explore the influence of consulting the oracle on the
network topology we visualize, in Figure 2 [41], the Gnutella
overlay topology, for the unbiased case and the biased case
with oracle list size 1000. At a particular instant in time, we
sample the Gnutella overlay topology, display all the online
nodes in the graph, and join two nodes with an edge if there
exists a Gnutella peering between them at this point of time.
Then, using the visualization library yWorks [44], we con-
vert both the graphs into a structured hierarchical format.
The resulting graph structures are displayed in Figure 2. We
can easily observe that the Gnutella topology in the biased
case is well correlated with the Internet AS topology, where
the nodes within an AS form a dense cluster, with only a
few connections going to nodes in other ASes. This is in
stark contrast to the unbiased Gnutella graph, where no such
property can be observed.

To analyze how churn influences the metrics such as node
degree, path length, diameter and number of intra-AS peer-
ings, we sample the Gnutella network 10 times during the
simulation run, i.e., every 500 seconds. The results are shown
in Figure 3. Multiple runs of the above experiments, using
different world topologies yield similar results.

Graph connectivity: We begin by checking whether the
Gnutella network graph remains connected using biased neigh-
bor selection. We define the Gnutella network graph at a
particular time instant as the graph formed by nodes that are
online at that instant, where two nodes are connected by an
edge if there exists a Gnutella connection between them at
that instant. We experimentally verify that the Gnutella net-
work remains connected at all 10 times where we sample the
network, for all three cases. Hence, biased neighbor selec-
tion does not affect the connectivity of Gnutella network.

Mean Node Degree: Since ultrapeers have a much larger
node degree than leaf nodes, we show, in Figure 3(a) and (b),
how the mean node degree changes over time in a barplot for
all three cases separately for ultrapeers and leaf nodes. This
enables us to check if a biased neighbor selection affects
the structural properties of Gnutella adversely. We observe
that the mean node degree for leafs decreases only slightly,
across time, with a maximum decrease from 3.14 to 2.08
at 3500 seconds. The same is the case for ultrapeers, where
the maximum decrease is from 15.29 to 10.75, again at 3500
seconds. In other words, despite biasing the neighbor selec-
tion via the oracle, the node degree for both leafs and ul-
trapeers stays within the expected range, and the network
structure of Gnutella remains unchanged.

Graph diameter: The diameter of the overlay graph, which
is 5−7 hops in the unbiased case, increases to 6−8 hops
with a oracle size of 100, only a nominal increase. Using an
oracle with list size of 1000 results in a diameter between
7−12 hops, with an average of 9.2. The AS diameter of the
underlay graph remains is 4 hops in all cases.

Mean Overlay path length: The average path length in the
Gnutella overlay, shown in Figure 3(c), while registering an
increase, does not change significantly. The maximum in-
crease occurs at 3500 seconds, from 3.35 in the unbiased
case to 5.21 hops in the biased case with oracle list size of
1000.

Mean AS distance: The benefits of using an oracle for bias-
ing the neighborhood in Gnutella are visible in Figure 3(d),
which shows the average AS distance (in the underlay) be-
tween any two connected Gnutella nodes. The AS distance
is obtained as follows. We map each Gnutella node’s IP
address to its parent AS, and for each overlay edge, we find
the network distance in AS hops between the two end-nodes.
We observe that the least amount of decrease in the average
AS distance occurs from 1.93 to 0.8 at 1000 seconds, and
the maximum decrease from 1.94 to 0.25 happens at 5000
seconds. Given that the AS diameter remains constant at 4
hops, the average decrease of 1.45 in the AS distance is sig-
nificant. Besides, as the average AS distance in the case of
oracle list size of 1000 is 0.45, a value less than 1, it im-
plies that most of the Gnutella peerings are indeed within
the ASes, i.e., they are not crossing AS boundaries. This
can be a major relief for ISPs, as they do not incur any addi-
tional cost for traffic within their domains. Also traffic that
does not leave the network is easier to manage. Moreover,
P2P traffic will not encounter inter-ISP bottlenecks.

Intra-AS P2P connections: The above observations on AS
distance are even better understood from the plots in Fig-
ure 3(e) and (f), where we show the total number of intra-AS
P2P connections in the Gnutella network as a percentage of
the total number of intra- and inter-AS P2P connections, for
both leafs and ultrapeers.

In Figure 3(e), we observe that in the case of leaf nodes,
taking the average over the 10 time points, the percentage of
intra-AS P2P connections increases from 14.6% in unbiased
case to 47.88% in the case of oracle with list size 100. For
oracle with list size 1000, we note an average of 82.22%
intra-AS P2P connections.

In Figure 3(f), we observe similar results for ultrapeers.
The percentage of intra-AS P2P connections increases from
an average value of 14.54% in the unbiased case to 38.04%
in the case of oracle with list size 100, and further to 74.95%
in case of oracle with list size 1000.

The percentage increase in intra-AS P2P connections is
larger for leaf nodes as compared to ultrapeers, a welcome
development. One needs a certain number of inter-AS con-
nections, to maintain network connectivity and to be able
to search for file content that may not be available within an
AS. However, as leaf nodes typically have poor connectivity
to the Internet, and have lower uptimes, it is reasonable to
have leaf nodes keep most of their peerings within their AS,
while allowing the ultrapeers to have slightly more inter-AS
connections.

Overall, we observe that the results for the metrics com-
parison in Gnutella simulations are in conformity with the
graph-based simulation results in Section 3.

(a) Unbiased Gnutella (b) Gnutella with Oracle

Figure 2: Visualization of Gnutella overlay topology

Gnutella Unbiased Biased, Biased,
Message Type Gnutella cache 100 cache 1000

Ping 7.6M 6.1M 4.0M
Pong 75.5M 59.0M 39.1M
Query 6.3M 4.0M 2.3M

QueryHit 3.5M 2.9M 1.9M

Table 1: Number of exchanged Gnutella message types

Scalability of Gnutella: In order to quantify the impact
of biased neighborhood selection on the scalability of the
Gnutella network, we measure the number of Gnutella mes-
sages generated in the entire network, for all the three cases.
The negotiation traffic in many P2P systems like Gnutella
represents a large portion of the total P2P traffic [38]. In Ta-
ble 1, we show the number of each type of Gnutella message
(Ping, Pong, Query andQueryHit) generated during
the entire simulation run. Note that the number of unique
messages generated is about the same in all the three cases.
However, when aPing or Query is generated by a node,
and flooded to itsn neighbors, the message is countedn
times. Hence, the table shows the total number of messages
exchanged between Gnutella nodes.

As we can observe, the number ofPing messages de-
creases from 7.6 million in the unbiased case to 4 million
in the case of oracle with list size 1000. Even more sig-
nificant is the reduction ofPong messages, from 75.5 mil-
lion to 39 million messages. TheQuery andQueryHit
messages also register similar improvements. This reduc-
tion of Ping/Pong messages by a factor of 2, and search
queries by a factor of almost 3 proves that the scalability of
Gnutella network improves significantly with biased neigh-
borhood selection.

The reason for this reduction in message volume is as fol-
lows. Even though the node degrees are largely unchanged,
the oracle helps in building an efficient overlay topology.
As the nodes form a dense cluster within an AS with very
few inter-AS connections, caching of messages ensures that
messages are flooded within sub-networks very efficiently,
by traversing lesser overlay hops, which is reflected in Ta-
ble 1. Thus information is propagated with lesser message
hops, lower delays and reduced network overhead.

Localization of content exchange: The negotiation traffic

traverses within the set of connected Gnutella nodes, but the
actual file content exchange happens outside the Gnutella
network, using the standard HTTP protocol. When a Gnutella
node gets multipleQueryHits for its search query, it chooses
a node randomly and initiates an HTTP session with it to
download the desired file content. Since the file content is
often bulky, it is prudent to localize this traffic as well, as
it relates directly to user experience. In the above experi-
ments, we use the oracle to bias only the neighborhood se-
lection. In other words, when a node comes online, it con-
sults the oracle and sends connection requests to an oracle-
recommended node selected from its Hostcache. However,
while choosing a node from theQueryHits, it so far did
not consult the oracle. We now analyse how much of the file
content exchange remains local in this case and how much
one can gain if one consults the oracle again at this stage.

We observe that the intra-AS file exchange, which is 6.5%
in the unbiased case, improves slightly to 7.3% in case of
oracle with list size 100, and to 10.02% in case of oracle
with list size 1000.

We then further modify the neighborhood selection, so
that a node consults the oracle again at the file-exchange
stage, with the list of nodes from whom it gets theQueryHits.
After this change, we notice that 40.57% of the file transfers
now occur within an AS. In other words, 34% of file content,
which is otherwise available at a node within the querying
node’s AS, was previously downloaded from a node outside
the querying node’s AS.

This leads us to conclude that consulting the oracle for
neighborhood selection, during bootstrapping stage as well
as file-exchange stage, leads to significant increase in local-
ization of P2P traffic.

5. TESTLAB EXPERIMENTS
After extensive simulations on general overlay graphs and

Gnutella system, we now confirm these results by modifying
P2P clients, namely Gnutella, to take advantage of the oracle
service in a controled setting, a Testlab.

Using 5 routers, 6 switches, and 15 computers, we con-
figure four different 5-AS topologies: ring, star, tree and
random mesh. Each router is connected to 3 machines, and
each machine runs 3 instances of Gnutella software, where
one is an ultrapeer and the other two are leaf nodes. Thus,
we have a network of 45 Gnutella nodes, each running the

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Simulation time (sec)

M
ea

n
Le

af
 d

eg
re

e
0

1
2

3
4

no Oracle
Oracle 100
Oracle 1000

(a) Mean Leaf Node Degree

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Simulation time (sec)

M
ea

n
U

ltr
ap

ee
r

de
gr

ee
0

5
10

15
20

25

no Oracle
Oracle 100
Oracle 1000

(b) Mean Ultrapeer Degree

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Simulation time (sec)

M
ea

n
P

at
h

Le
ng

th
0

1
2

3
4

5
6

no Oracle
Oracle 100
Oracle 1000

(c) Mean Path Length in Overlay

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Simulation time (sec)

M
ea

n
A

S
 d

is
ta

nc
e

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

no Oracle
Oracle 100
Oracle 1000

(d) Mean AS distance in Underlay

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Simulation time (sec)

In
tr

a−
A

S
 p

ee
rin

gs
 (

%
)

LE
A

F
0

20
40

60
80

10
0

no Oracle
Oracle 100
Oracle 1000

(e) Intra-AS peerings (%) for Leaf nodes

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Simulation time (sec)

In
tr

a−
A

S
 p

ee
rin

gs
 (

%
)

U
LT

R
A

P
E

E
R

0
20

40
60

80
10

0

no Oracle
Oracle 100
Oracle 1000

(f) Intra-AS peerings (%) for Ultrapeers

Figure 3: Plots showing comparison of metrics in Gnutella simulations

GTK-Gnutella software [45]. A router is taken as an ab-
straction of an AS boundary.

We modify the source code of the Gnutella nodes, so that
when a node wishes to join the network, it sends the con-
tents of its Hostcache to the oracle. The Hostcache of each
node is filled with a random subset of the network nodes’
IP addresses. The oracle is a central machine accessible to
all Gnutella nodes, and running the oracle’s neighbor selec-
tion algorithm. When it gets a list of IP addresses from a
node, it ranks the list according to AS hops distance. Hence,
the Gnutella node joins another node within its AS if such
a node is present in its Hostcache, else it joins a node from
the nearest AS.

We experiment with two schemes of file distribution. In
the uniform scheme, each node shares 6 files each. In the
variable scheme, each ultrapeer shares 12 files, half the leaf
nodes shares 6 files each, and the remaining leaf nodes share
no content. In all, we have 270 unique files, with real con-
tent.

We run two sets of experiments: unbiased Gnutella and
Gnutella using oracle. We generate 45 unique search strings,
one for each node, and allow each node to flood its search
query in the network. Each node searches for the same query
string in both the experiments. We then calculate the total
number ofQuery andQueryHit messages exchanged in
the network, and analyze whether biased neighbor selection
leads to any unsuccessful content search, which was oth-
erwise successful in unbiased Gnutella. We experimentally
verify that allQuerys that are satisfied in unbiased Gnutella
network, are also satisfied in the biased Gnutella network.
We find, as predicted by the simulations, that with biased
neighbor selection, the number ofQuery andQueryHit
messages decreases (60% reduction inQuery, 12% reduc-
tion inQueryHit) and that the messages tend to stay within
the ASes.

6. SUMMARY AND FUTURE WORK
P2P systems build their overlay topology largely agnostic

of the Internet underlay. To overcome this, we propose to
use an oracle hosted by the ISPs, so that ISPs and P2P users
can cooperate for improved performance. Such an oracle
can be queried by P2P nodes while choosing neighbors or
while deciding from whom to download content and it will
rank the possible neighbors of the querying node accord-
ing to a locality indication. We propose metrics to evaluate
the effectiveness of using an oracle and show that using the
oracle allows the overlay topologies to maintain the graph
properties like small diameter, small mean path lengths and
node degree, while at the same time, tremendously increas-
ing their network locality (lesser mean AS distance, larger
number of intra-AS peerings). Even the ability of the net-
work to route arbitrary traffic patterns with low congestion,
while reduced, is still reasonable. These results along with
results on improved scalability and network performance are
obtained relying on graph based simulations, packet level
simulation of an actual P2P system, as well as experiments
with a modified P2P client in a testlab.

We are in the process of experimenting with the oracle
scheme in Planetlab to increase the scale of our experiments
and to test the interactions of the modified P2P clients with
unmodified ones. We have realized the oracle as a Web
server, which relies on a dynamic database and are in the
process of installing Gnutella and Bittorrent clients on Plan-
etlab nodes. The Bittorrent client will consult the oracle
once it gets the node list from the tracker. Alternatively the
tracker may consult the oracle, to keep its list of Bittorrent
nodes sorted according to distance from the querying nodes.

As more of the P2P traffic is localized within an ISP the
available bandwidth may increase as it is no longer capped
by the peering links [10]. This could lead to a usage increase
which in turn may again complicate the traffic engineering
problem. Yet, even this situation can be addressed by the

oracle, as it can take the ISP topology and its bottlenecks
into account when trying to rank the possible P2P clients.

In a next step we plan to design simple, provably good,
and experimentally well-behaved distributed algorithms for
P2P neighborhood selection that take full advantage of such
an oracle. We want to experiment with recent revelations of
user behaviour and file sharing distributions (e.g. [38, 39]) in
SSFNet, and also wish to compare the performance of oracle
with latency-based join/communication protocols. Comput-
ing the flow conductance of larger graphs, and exploring its
relationship with lower resilience to churn is another task.
An important issue that we intend to investigate is the trade-
off between locality and congestion. Certainly, if strict lo-
cality is enforced (i.e., a file is always retrieved from the
closest peer), there are situations where peers can encounter
a high congestion. Hence, flexible schemes are needed that
will fetch files from nearby peers if there is no congestion
and otherwise will switch to more remote peers. This will
eventually enable us to develop a theoretical model to inves-
tigate the question, what is the optimal level of locality for
an overlay system.

Acknowledgements
We would like to thank Rumen Tashev for helping us with
SSFNet simulations, and the anonymous reviewers for their
valuable comments. Support for this work was partially pro-
vided by EU FP6 project DELIS.

7. REFERENCES
[1] A. Nakao, L. Peterson, and A. Bavier, “A Routing Underlay

for Overlay Networks,” inSIGCOMM, 2003.
[2] “Slyck,” http://www.slyck.com/.
[3] T. Karagiannis, A. Broido, N. Brownlee, kc claffy, and

M. Faloutsos, “Is P2P dying or just hiding?,” in
GLOBECOM, 2004.

[4] Light Reading, “Controlling P2P Traffic,”http:
//www.lightreading.com/document.asp?site=
lightreading&doc_id=44435&page_number=3.

[5] R. Steinmetz and K. Wehrle,P2P Systems and Applications,
Springer Lecture Notes in CS, 2005.

[6] T. Mennecke, “DSL Broadband Providers Perform Balancing
Act,”
http://www.slyck.com/news.php?story=973.

[7] R. Keralapura, N. Taft, C. Chuah, and G. Iannaccone, “Can
ISPs Take the Heat from Overlay Networks?,” inHotNets,
2004.

[8] G. Shen, Y. Wang, Y. Xiong, B. Zhao, and Z. Zhang, “HPTP:
Relieving the Tension between ISPs and P2P,” inIPTPS,
2007.

[9] V. Aggarwal, S. Bender, A. Feldmann, and A. Wichmann,
“Methodology for Estimating Network Distances of Gnutella
Neighbors,” inGI Jahrestagung - Informatik 2004, 2004.

[10] T. Karagiannis, P. Rodriguez, and K. Papagiannaki, “Should
ISPs fear Peer-Assisted Content Distribution?,” inIMC,
2005.

[11] A. Akella, S. Seshan, and A. Shaikh, “An Empirical
Evaluation of Wide-Area Internet Bottlenecks,” inACM IMC,
2003.

[12] A. Rasti, D. Stutzbach, and R. Rejaie, “On the Long-term
Evolution of the Two-Tier Gnutella Overlay,” inGlobal
Internet, 2006.

[13] S. Halabi,Internet Routing Architectures, Cisco Press, 2000.
[14] D. Andersen, H. Balakrishnan, M. Kaashoek, and R. Morris,

“Resilient Overlay Networks,” inSOSP, 2001.
[15] “Gnutella v0.6 RFC,”http://www.the-gdf.org/.
[16] S. Savage, A. Collins, and E. Hoffman, “The End-to-End

Effects of Internet Path Selection,” inSIGCOMM, 1999.
[17] S. Seetharaman and M. Ammar, “On the Interaction between

Dynamic Routing in the Native and Overlay Layers,” in
INFOCOM, 2006.

[18] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker,
“Topologically aware overlay construction and server
selection,” inINFOCOM, 2002.

[19] K. Shanahan and M. Freedman, “Locality Prediction for
Oblivious Clients,” inIPTPS, 2005.

[20] M. Adler, R. Kumar, K. Ross, D. Rubenstein, T. Suel, and
D. Yao, “Optimal Selection of Peers for P2P Downloading
and Streaming,” inINFOCOM, 2005.

[21] Bindal et.al., “Improving Traffic Locality in BitTorrent via
Biased Neighbor Selection,” inIEEE ICDCS, 2006.

[22] B. Zhao, Y. Duan, L. Huang, A. Joseph, and J. Kubiatowicz,
“Brocade: Landmark Routing on Overlay Networks,” in
IPTPS, 2002.

[23] N. Spring, R. Mahajan, and D. Wetherall, “Measuring ISP
Topologies with Rocketfuel,” inSIGCOMM, 2002.

[24] “pWhoIs,” http://pwhois.org.
[25] “Cymru Whois,”

http://www.cymru.com/BGP/asnlookup.html.
[26] M. Naor and U. Wieder, “Novel architectures for P2P

applications: the continuous-discrete approach,” inSPAA,
2003.

[27] G. Plaxton, R. Rajaraman, and A. Richa, “Accessing nearby
copies of replicated objects in a distributed environment,” in
SPAA, 1997.

[28] I. Abraham, D. Malkhi, and O. Dobzinski, “LAND: stretch
(1+ ε) locality-aware networks for DHTs,” inSODA, 2004.

[29] S. Arora, S. Rao, and U. Vazirani, “Expander flows,
geometric embeddings and graph partitioning,” inSTOC,
2004.

[30] P. Kolman and C. Scheideler, “Improved bounds for the
unsplittable flow problem,” inSODA, 2002.

[31] W. Muehlbauer, A. Feldmann, O. Maennel, M. Roughan, and
S. Uhlig, “Building an AS-Topology Model that Captures
Route Diversity,” inSIGCOMM, 2006.

[32] P. Mahadevan, D. Krioukov, K. Fall, and A. Vahdat,
“Systematic Topology Analysis and Generation Using
Degree Correlations,” inSIGCOMM, 2006.

[33] L. Li, D. Alderson, W. Willinger, and J. Doyle, “A
First-Principles Approach to Understanding the Internet’s
Router-level Topology,” inSIGCOMM, 2004.

[34] H. Chang, S. Jamin, Z. Mao, and W. Willinger, “An
Empirical Approach to Modeling Inter-AS Traffic Matrices,”
in IMC, 2005.

[35] C. Scheideler, “Towards a paradigm for robust distributed
algorithms and data structures,” inHNI Symposium on New
Trends in Parallel and Distributed Computing, 2006.

[36] “SSFNet,”http://www.ssfnet.org.
[37] D. Stutzbach, R. Rejaie, and S. Sen, “Characterizing

Unstructured Overlay Topologies in Modern P2P
File-Sharing Systems,” inACM IMC, 2005.

[38] A. Gish, Y. Shavitt, and T. Tankel, “Geographical Statistics
and Characteristics of P2P Query Strings,” inIPTPS, 2007.

[39] D. Stutzbach and R. Rejaie, “Understanding Churn in P2P
Networks,” inIMC, 2006.

[40] V. Aggarwal, A. Feldmann, and S. Mohrs, “Implementation
of a P2P system within a network simulation framework,” in
ECCS P2P-Complex Workshop, 2005.

[41] R. Tashev, “Experimenting with Neighbour Discovery
Schemes for P2P Networks in a Simulation Framework,” in
Master thesis, Dept of CS, TU Munich, 2006.

[42] “Gnutella Hostcache,”http://www.the-gdf.org/
index.php?title=The_Local_Hostcache.

[43] P. Linga, I. Gupta, and K. Birman, “A Churn-Resistant P2P
Web Caching System,” inSSRS, 2003.

[44] “yWorks,” http://www.yworks.com/.
[45] “GTK-Gnutella,” http://www.gtk-gnutella.com/.

